

Status of the physics studies by MEPhl group

Evgeny Soldatov

National Research Nuclear University "MEPhl"

IX SPD Collaboration meeting in Armenia

Introduction: MEPhI group activities

BBC detector development with JINR group (see talks by Andrey Durov and others, presented on Tuesday)

Preparation for mass-production of a reduced size (128 tiles/wheel) prototype

Tests with CAEN FERS 5202 +Alternative to CAEN 5202 electronics

Detailed tile-to-tile GEANT4 modeling

- SiPM "Transmission boxes" development
- Optical cable (clear) and connectors development

X-ray scanner For BBC tile testing

<u>Today:</u>

- Investigation of BBC performance basing on its current G4 geometry using SPDRoot
- Development of the SPD heavy ion program: limits from Straw tracker, particle spectra and flows
- \succ J/ Ψ angular coefficient study

physics

detectors

First look at the BBC occupancy maps for different colliding systems

- Occupancies with O+O, Kr+Kr, Xe+Xe systems.
- UrQMD generator, full SPDRoot chain (only BBC enabled), minbias 50 kEvents.
- sqrt(s_{NN})=12 GeV (6 GeV in back-up).

15 May 2025

E. Soldatov

Ion physics at SPD

What can be done?

Study the quark-gluon matter properties in small systems (p+p, d+d, O+O, Ar+Ar, Xe+Xe ...)

- Influence of the initial state on the system dynamics
- Dynamics and final state effects, transport coefficients
- Vortical structure
 - Access via various particle decays (hyperons, meson resonance and J/psi) in a broad acceptance.
 - Energy dependence of vortical structure.
- Heavy flavor production
 - Dissociation and recombination, partonic energy loss.
 - Access to J/psi and charmonium via dielectron and dimuon channels.

Why SPD?

- High trigger rates and spatial resolution.
- Large pseudorapidity acceptance.
- Complementary to MPD, but with unique physics opportunities.

Straw tracker occupancies

- The limitation could come from the straw tracker since the high charged particle multiplicity events (ion-ion collisions) lead to degradation of the detector resolution.
- > The ongoing study is aimed to determine occupancy effects on the tracking efficiency.
- **pp**: Minbias events using Pythia8, 10 GeV, 10k events through the full SPDRoot chain
- XeXe: Minbias events using UrQMD model, 10 GeV, 10k events through the full SPDRoot chain

Nº 5

Straw tracker track reconstruction

"First" tracks were taken.

To test the resolution change we check the track quantity (reco_pT-truth_pT)/truth_pT. **pp collisions**

Momentum resolution is about **3.6%** in pp collisions.

Ion physics at SPD: spectra

Yields and p_T spectra of of identified hadrons in Ar+Ar collision

UrQMD, Ar+Ar, √s_{NN} = 4, 10, 14.5 GeV

~ 10M events

Spectra and yields of identified hadrons allow to get values of freezeout and that may provide information about the temperature of the system and chemical potentials.

Ion physics at SPD: spectra

Yields and p_T spectra of of identified hadrons in p+p collision

UrQMD, Ar+Ar, Vs_{NN} = 4, 10, 14.5, 27 GeV

~ 10M events

Spectra and yields of identified hadrons allow to get values of freeze-out and that may provide information about the temperature of the system and chemical potentials.

Ion physics at SPD: directed flow

v_1 of identified hadrons for cent 0-10%, 10-40% and 40-80%

 v_n is sensitive to the early stages of collision, may provide information of transport properties: EOS, η/s , ζ/s , etc.

Angular coefficients in J/Ψ events using lepton pairs in pp

J/ $\psi \rightarrow \mu^+ \mu^-$; BF = 5.96 ± 0.03%, Γ = 304 ± 9 keV

 $\frac{d\sigma}{dp_T dy dm d\cos \theta \, d\varphi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T dy dm} \left[\left(1 + \cos^2 \theta \right) + \frac{1}{2} \mathbf{A}_0 \left(1 - 3\cos^2 \theta \right) + \mathbf{A}_1 \sin 2\theta \cos \varphi + \frac{1}{2} \mathbf{A}_2 \sin^2 \theta \cos 2\varphi \right]$

$$A_0 = \frac{2 \, d\sigma^L}{d\sigma^{U+L}}, \qquad A_1 = \frac{2\sqrt{2} \, d\sigma^I}{d\sigma^{U+L}}, \qquad A_2 = \frac{4 \, d\sigma^T}{d\sigma^{U+L}},$$

The Collins-Soper (CS) reference frame: $\theta = \theta_{CS}, \varphi = \varphi_{CS}$

 σ^{L} , σ^{T} , σ^{I} - the longitudinal, the transverse and the longitudinaltransverse interference cross sections.

 σ^{U+L} - the unpolarized production cross section.

Mirkes E., Kim C. S. J/\Psi decay lepton distribution in hadronic collisions //Physics Letters B. – 1995. – *T.* 346. – N_{2} . 1-2. – *C.* 124-128.

J/ψ kinematic distributions

- Using the Pythia8 generator, 100k events with $J/\psi \rightarrow \mu^+ \mu^-$ production in pp collisions at $\sqrt{s}=10$ GeV were simulated under the conditions of the first phase of the SPD experiment.
- The KFParticle package was used to reconstruct J/ψ .
- When selecting muons, their PDG codes and the type of the parent particle were checked.

E. Soldatov

IX SPD collaboration meeting

15 May 2025

Muon kinematic distributions from J/ψ decays

When selecting muons, only their PDG codes were required.

Current status:

working on implementing folded polynomial templates into the analysis code.

Conclusions

MEPhI group contributes to detector construction and physics studies.

BBC detector:

- BBC detector developments are performed in close cooperation with the JINR group.
- > First estimation of the BBC occupancies was obtained.

□ Physics analyses:

- First look at the straw tracker performance for different colliding nuclei systems: occupancies, track momentum resolution.
- > Spectra for the π^{\pm} , K^{\pm} , p and anti-p were constructed for Ar+Ar and pp at SPD energies using UrQMD.
- > Directed flow v_1 of charged hadrons was estimated using UrQMD.
- > Status of J/ ψ angular coefficients study was presented.

and many more is in progress!

Back-up slides

BBC occupancies for different colliding systems

0+0

100

80

60 40

20

0-

-20

-40 -60

-80

Y coord (cm)

- Occupancies with O+O, Kr+Kr, Xe+Xe systems
- UrQMD generator, full SPDRoot chain, minbias 50 kEvents
- sqrt(s_{NN})=6 GeV

IX SPD collaboration meeting

hHitMap

Entries

Mean x

Mean y

Std Dev x

Std Dev y

Hit Map of BBC

15 May 2025

845501

-0.02952

0.07885

25.7

25.63

1200

1000

800

600

400

200

BBC occupancies for different colliding systems: final particles

O+O collisions sqrt(s_{NN})=6 GeV (left); sqrt(s_{NN})=12 GeV (right)

BBC geometry performance

E. Soldatov

IX SPD collaboration meeting

15 May 2025

BBC geometry performance

E. Soldatov

IX SPD collaboration meeting

15 May 2025

Ion physics at SPD

- Searching for the critical point and phase boundary in the QCD phase diagram is currently a focus of experimental and theoretical nuclear physics research.
- Spectra and yields of identified hadrons allow to get values of freeze-out such as T, μB and may provide information about particle production mechanisms.
- v_n sensitive to the early stages of collision, may provide information of transport properties: EOS, η/s , ζ/s , etc.
- Global hyperon polarization as a probe of vortical structure.

• Heavy flavor production.

Straw tracker track reconstruction: pp, additional plots

"First" tracks are taken Difference=(reco_pT-truth_pT)/truth_pT

|η|<1

E. Soldatov

IX SPD collaboration meeting

15 May 2025

Straw tracker track reconstruction: pp, additional plots

"First" tracks are taken Difference=(reco_pT-truth_pT)/truth_pT

|η|<1

|η|<0.1

E. Soldatov

IX SPD collaboration meeting

15 May 2025

Straw tracker track reconstruction: pp, additional plots

"First" tracks are taken

E. Soldatov

 $\sqrt{s_{NN}} = 10 GeV$

Centrality (%)	β	T (MeV)
0–5%	0.490 ± 0.001	93.3 ± 0.3
5–10%	0.487 ± 0.002	92.5 ± 0.3
10–20%	0.483 ± 0.003	88.0 ± 1.0
20–30%	0.474 ± 0.004	91.0 ± 1.0
30–40%	0.475 ± 0.004	91.4 ± 1.0
40–50%	0.422 ± 0.006	108.0 ± 1.0
50–60%	0.449 ± 0.008	96.0 ± 2.0

E. Soldatov

E. Soldatov

Yields and p_T spectra of of identified hadrons in p+p collision

UrQMD, Ar+Ar, Vs_{NN} = 4, 10, 14.5, 27 GeV **~ 10M events**

Spectra and yields of identified hadrons allow to get values of freeze-out and that may provide information about production mechanisms

E. Soldatov

J/ψ angular coefficients study: Methodology overview

- Build reference coefficients Airef with moments method from MC predictions
- Fold signal templates using Ai_{ref} and MC simulation
- Build background, data templates
- Make workspace (containing likelihood, data, parameters)
- Fit Ais, σ , NPs

Folded polynomial templates are used to build a likelihood

Variational templates also present to take into account systematic uncertainties

Angular coefficients are parameters that normalize the polynomial templates

Cross-section scales all signal templates independently in each measurement bin

Background templates are added to likelihood

Maximum likelihood fit is performed to the **reconstructed data** to determine the coefficients and crosssections in full phase space of leptons

E. Soldatov