Machine Learning for FARICH Reconstruction at NICA SPD

F.Shipilov⁽¹⁾, A.Barnyakov^(2,3), A.Ivanov⁽⁴⁾, F.Ratnikov⁽¹⁾

(1) HSE University (2) Budker Institute of Nuclear Physics (3) Novosibirsk State Technical University (4) JINR

foma@shipilov.ru

LAMBDA • HSE

May 15, 2025

Introduction: Spin Physics Detector

- A universal detector proposed by the SPD collaboration at NICA
- Study the Drell–Yan (DY) processes, J/Ψ production processes, elastic reactions, spin effects in one and two hadron production processes, polarization effects in heavy ion collisions, and more
- The SPD is a medium energy experiment, offering unique possibilities of beam operation and bridging the gap between the low-energy measurements, e.g. ANKE-COSY and the high-energy measurements, such as RHIC
- High luminosity up to 10^{32} cm⁻²s⁻¹ and free-flowing (triggerless) running mode

SPD data rate after online filter

Introduction: FARICH

Focusing Aerogel Ring Imaging Cherenkov

Compact particle ID detector

- Trade off between resolution and number of Cherenkov photons
- Improve resolution by using layers of aerogel with varying refractive index

https://nica.jinr.ru/projects/spd.php

IX SPD CM, ANSL, Yerevan

Aim and Objectives

- Particle identification (PID): the goal is to identify the most probable particle type
- Ambiguous with FARICH only, momentum p from straw tracker is needed

$$\beta = \frac{1}{n\cos\theta_c}, \quad m_0 = \frac{p\sqrt{1-\beta^2}}{\beta} \tag{1}$$

- In terms of optimization, we seek a solution to a classification problem $\mathbb{E}_{(X,y)\sim q(X,y)}\left[Q\big(f_W(X),y\big)\right] \to \max_W$
- End-to-end neural networks can combine both steps from (1)

• Potentially better performance by optimizing a more appropriate objective Objectives: develop and implement a variety of both β -outputting and end-to-end models, evaluate on a synthetic dataset, analyze and compare with the baseline

Balanced Dataset

Provided input:

- Track parameters: x_p, y_p, z_p coordinates of the particle when entering aerogel detector, θ_p, φ_p polar angle and azimuth of the direction of travel, momentum p
- Photon hits: x_c, y_c, z_c coordinates of triggered pixels in the photosensitive matrix

 $\mathsf{E} \mathsf{\times} \mathsf{pected} \ \mathsf{output} :$

- PID statistics
- Particle type

75

5/35

F.Shipilov (LAMBDA • HSE)

Production Dataset

Provided input:

- Track parameters: $x_p, y_p, z_p -$ coordinates of the particle when entering aerogel detector, θ_{p}, ϕ_{p} - polar angle and azimuth of the direction of travel. momentum p
- Photon hits: $x_c, y_c, z_c -$ coordinates of triggered pixels in the photosensitive matrix

Expected output:

PID statistics

Particle type

F.Shipilov (LAMBDA • HSE)

IX SPD CM, ANSL, Yerevan

50

0

-50 -100

-150 80

Balanced Baseline: Hough Transform

- Based on the RICH reconstruction from the CBM experiment at FAIR
- Utilizes Hough transform for ellipses, more precisely the Taubin method
- Outputs estimated parameters of the ellipse, such as a, b semi-axes, x, y center coordinates, and ϕ angle of rotation
- Does not account for refraction, does not use the information from the straw tracker, such as θ_p and ϕ_p

Based on fitting

$$heta_c(\phi_c|eta,n, heta_t) = \arccos\left(rac{1}{neta}
ight) + \arccos\left(n(1-(\mathsf{n}_0\mathsf{n}_\gamma)^2)
ight) + (\mathsf{n}_0\mathsf{n}_\gamma)\sqrt{1-n^2(1-(\mathsf{n}_0\mathsf{n}_\gamma)^2)}$$

- $\bullet~$ Outputs estimated β particle velocity
- Accounts for refraction, uses track information
- Is incomplete / broken (we have no control here)

First order approximation

$$lpha pprox eta - (n-1) an eta$$

Or fixed-point iteration

$$\sin \alpha_{k+1} = \left(n \sqrt{1 + \left(\frac{d}{r - h \tan \alpha_k} \right)^2} \right)^{-1}$$

F.Shipilov (LAMBDA • HSE)

(3)

9/35

Algorithmic Methods (Not Learnable)

Median:

- Compute θ_c distribution
- Take a median value $\hat{\theta}_c$

MLE:

- Compute θ_c distribution
- Drop unphysical velocities $\beta = \nu/c \geqslant 1$
- Construct eCDF F_{data}
- Take a numerical derivative and find its peak $\hat{\theta}_c = \arccos(1/n\hat{\beta})$

MLE example

Machine Learning Models: Beta NN

- Algorithmic models output $\hat{\theta}_c$ that can be converted to the rest mass of the particle using momentum p from the straw tracker
- The underlying task is regression
- \bullet A simple approach is to train a neural network to predict particle velocity β and then convert it into mass
- We implement a neural regressor that learns β by optimizing MSE objective.

Data Transform

Simple reproject + Fourier features

Machine Learning Models: Extra Channel NN

- The objective of RICH detector is to separate different particle types, in particular π/K separation
- ML end-to-end models are able to skip the intermediate step of computing $\hat{ heta}_c$
- Moreover, the regression task is not well suited for an ML model because of the significant value imbalance

A neural classifier can receive **momentum** p as an extra channel in the input tensor along with **hit coordinates** x_c , y_c , optimizing cross entropy objective directly.

13 / 35

Machine Learning Models: Renormalize NN

The non-linear dependence of the ellipse dimensions on p can be disentangled:

$$\cos\theta_c = \frac{1}{n}\sqrt{m_0^2/p^2 + 1} \tag{4}$$

• Use (4) with rest masses m_0 of all N particle types in the data to transform θ_c into N rings, diameter of the ring corresponding to true particle type (class) is constant and known

Training Details (Balanced)

3 configurations

- Beta NN
- Extra Channel NN
- Renormalize NN
- ResNet-18 CNN architecture
 - Changed input conv, max pooling and classifier head to accommodate input and output data formats
- Input format: $N \times 32 \times 32$ tensor
- Output format: 5 class classification
- $\bullet\,$ Trained for 1700000 samples with Adam optimizer, cosine annealing scheduler, learning rate $3\cdot10^{-4}$ and batch size 128

Training Details (Production)

- Output format: binary classification (π/K)
- Countering class imbalance 20/1
 - Positive class weight
 - Downsampling
 - No adjustment (control)
- For β -outputting NN MSE can be weighted according to class
- The best performing training procedure (AUCROC on validation) evaluated on the test set

Results (Balanced)

Results (Production)

Results (Balanced)

Results (Balanced)

Results (Production)

Results

Results

Results

Method	π, K Purity@Efficiency = 0.99	$\pi, K AP$	5 class Accuracy	σ_eta
Ex Channel NN	0.95	0.998	0.68	N/A
Renormalize NN	0.95	0.998	0.67	N/A
Beta NN	0.92	0.993	0.64	0.0007
Median	0.83	0.985	0.65	0.0008
MLE	0.47	0.836	0.53	0.0018
Hough	0.46	0.721	0.50	0.0062
	Table 1 Balanced	dataset		

Table 1. Balanced dataset

Method	Purity@Efficiency = 0.99	AUROC	AP	σ_eta
Ex Channel NN	0.91	0.9998	0.997	N/A
Renormalize NN	0.77	0.9996	0.993	N/A
Beta NN	0.90	0.999	0.919	0.0018
Median	0.75	0.989	0.870	0.0030
MLE	0.05	0.978	0.733	0.0037
Baseline	0.05	0.923	0.905	0.0054
Table 2 Producti	on dataset Only hinary m	K classificat	tion is co	nsidarad

Table 2. Production dataset. Only binary π, K classification is considered

Detailed Results

Detailed Results (Balanced)

					Extra Cr	lanner r	IN AURC		Smentur	n and θ_{μ}	>			
25 -	- 1	1	1	1	1	1	1	1	1	1	0.95	1	0.875	1
24 -	- 1	1	1	1	1	1	1	1	0.999	0.996	0.994	0.977	0.952	0.917
23 -	- 1	1	1	1	1	1	1	1	1	1	0.998	0.992	0.978	0.961
22 -	- 1	1	1	1	0.999	0.999	0.997	0.995	0.985	0.97	0.963	0.938	0.919	0.896
21 -	- 1	1	1	1	1	1	1	1	1	1	0.997	0.989	0.984	0.966
20 -	- 1	1	1	1	1	1	1	1	1	1	0.998	0.993	0.983	0.966
19 -	- 1	1	1	1	1	1	1	1	1	0.999	0.997	0.989	0.977	0.978
18 -	- 1	1	1	1	1	1	1	1	1	0.999	0.997	0.992	0.983	0.953
17 -	- 1	1	1	1	1	1	1	1	1	0.999	0.996	0.988	0.982	0.952
_ 16 -	- 1	1	1	1	1	0.999	0.996	0.993	0.997	0.993	0.969	0.961	0.962	0.928
ត្លា 15 -	- 1	1	1	1	1	1	1	1	0.998	0.994	0.992	0.978	0.957	0.95
<u>0</u> 14 -	- 1	1	1	1	1	1	1	1	1	0.999	0.994	0.993	0.975	0.959
_ 13 -	- 1	1	1	1	1	1	1	1	1	0.999	0.994	0.989	0.975	0.965
Φ 12 -	- 1	1	1	1	1	1	1	1	1	0.999	0.995	0.99	0.971	0.965
11 -	1	1	1	1	1	1	1	1	1	0.999	0.995	0.988	0.979	0.94
10 -	- 1	1	1	1	1	1	1	1	1	0.998	0.997	0.986	0.978	0.967
9 -	- 1	1	1	1	1	1	0.999	0.998	0.994	0.99	0.98	0.959	0.949	0.928
8 -	- 1	1	1	1	1	1	1	1	1	0.998	0.994	0.985	0.974	0.96
7 -	1	1	1	1	1	1	1	1	1	0.998	0.994	0.988	0.97	0.974
6 –	1	1	1	1	1	1	1	1	1	0.998	0.993	0.98	0.968	0.952
5 -	1	1	1	1	1	1	1	1	0.999	0.998	0.993	0.982	0.963	0.969
4 -	1	1	1	1	1	1	1	1	0.999	0.998	0.993	0.981	0.965	0.946
3 –	1	1	1	1	1	1	1	1	0.998	0.995	0.981	0.962	0.945	0.902
	1.5	20		20		10				c o				
	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	0.0	0.5	7.0	1.5	8.0
						M	Iomentu	m [GeV/	C					

Extra Channel NN ALIDOC by means anti-

Detailed Results (Balanced)

					Me	edian AU	IROC by	momen	tum anc	θ_p					
25 -	1	1	1	1	1	1	1	1	0.988	1	0.967	1	0.625	1	
24 –	1	1	1	1	0.999	1	1	0.998	0.995	0.987	0.985	0.956	0.93	0.897	
23 –	1	1	1	1	1	1	1	1	0.999	0.997	0.987	0.975	0.964	0.946	
22 –	1	1	1	1	0.999	0.996	0.986	0.972	0.947	0.907	0.907	0.859	0.837	0.798	
21 –	1	1	1	1	1	1	1	1	0.999	0.997	0.99	0.971	0.966	0.941	
20 –	1	1	1	1	1	1	1	0.998	0.999	0.998	0.99	0.981	0.959	0.936	
19 –	1	1	1	1	1	1	1	1	0.999	0.992	0.982	0.975	0.957	0.95	
18 –	1	1	1	1	1	1	1	1	1	0.996	0.989	0.975	0.965	0.921	
17 -	1	1	1	1	1	1	1	1	0.999	0.997	0.99	0.971	0.958	0.927	
- 16 -	1	1	1	1	1	0.997	0.987	0.962	0.974	0.96	0.918	0.897	0.901	0.846	
2 15 -	1	1	1	1	1	0.998	0.999	0.992	0.988	0.972	0.965	0.941	0.903	0.902	
5 14 -	1	1	1	1	1	1	1	1	0.999	0.993	0.98	0.979	0.948	0.944	
13 –	1	1	1	1	1	1	1	0.999	0.998	0.997	0.984	0.976	0.952	0.942	
5 12 -	1	1	1	1	1	1	1	1	0.998	0.998	0.986	0.972	0.947	0.949	
11 -	1	1	1	1	1	1	1	0.997	0.999	0.996	0.987	0.963	0.959	0.913	
10 -	1	1	1	1	1	1	1	1	0.999	0.993	0.984	0.959	0.944	0.932	
9 –	1	1	1	1	0.997	0.998	0.99	0.982	0.969	0.952	0.926	0.917	0.881	0.86	
8 -	1	1	1	1	1	1	1	1	0.996	0.987	0.982	0.964	0.943	0.906	
7 -	1	1	1	1	1	1	1	1	0.998	0.991	0.982	0.965	0.936	0.928	
6 –	1	1	1	1	1	1	1	1	0.999	0.995	0.977	0.963	0.938	0.904	
5 -	1	1	1	1	1	1	1	1	0.996	0.995	0.982	0.958	0.927	0.926	
4 -	1	1	1	1	1	1	1	1	0.999	0.992	0.976	0.963	0.934	0.911	
3 -	1	1	1	1	1	1	1	0.996	0.996	0.988	0.955	0.942	0.912	0.863	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	
						M	lomentu	m [GeV/	'c]						

Detailed Results (Balanced)

						-	-			r-				
24 -	0.994	0.987	0.978	0.935	0.902	0.812	0.775	0.709	0.698	0.635	0.64	0.616	0.587	0.588
23 -	0.998	0.995	0.993	0.999	0.976	0.954	0.886	0.827	0.774	0.705	0.69	0.615	0.592	0.635
22 -	0.935	0.862	0.774	0.714	0.717	0.686	0.657	0.619	0.597	0.598	0.574	0.567	0.543	0.542
21 -	0.999	0.995	0.991	0.992	0.981	0.952	0.893	0.844	0.788	0.752	0.702	0.639	0.649	0.593
20 -	0.999	0.995	0.997	0.99	0.981	0.955	0.878	0.826	0.768	0.731	0.695	0.687	0.645	0.632
19 –	0.999	0.995	0.993	0.988	0.979	0.952	0.884	0.827	0.818	0.749	0.686	0.66	0.648	0.598
18 -	0.996	0.999	0.993	0.998	0.97	0.945	0.904	0.838	0.787	0.715	0.696	0.671	0.642	0.642
17 -	0.998	0.992	0.996	0.995	0.98	0.943	0.893	0.86	0.801	0.72	0.72	0.664	0.63	0.63
16 -	0.925	0.87	0.782	0.788	0.738	0.689	0.697	0.626	0.662	0.626	0.595	0.553	0.615	0.576
- 15 -	0.99	0.965	0.917	0.915	0.864	0.871	0.808	0.77	0.725	0.677	0.649	0.639	0.633	0.593
<u>v</u> 14 –	0.999	0.997	0.994	0.999	0.99	0.979	0.912	0.852	0.781	0.746	0.705	0.68	0.64	0.615
- 13 -	0.997	0.996	0.995	0.994	0.99	0.979	0.911	0.874	0.799	0.765	0.694	0.674	0.641	0.591
<u> ግ -</u> 12 -	0.998	0.998	0.998	0.991	0.997	0.979	0.946	0.859	0.778	0.78	0.7	0.673	0.684	0.654
11 -	0.998	0.995	0.99	0.994	0.992	0.976	0.943	0.892	0.832	0.772	0.704	0.675	0.708	0.613
10 -	0.999	0.999	0.997	0.993	0.996	0.982	0.957	0.893	0.831	0.81	0.73	0.715	0.645	0.667
9 -	0.929	0.92	0.821	0.791	0.767	0.79	0.732	0.735	0.685	0.626	0.619	0.627	0.606	0.622
8 –	0.999	0.998	0.992	0.995	0.985	0.974	0.958	0.926	0.864	0.816	0.761	0.714	0.7	0.61
7 -	1	0.998	0.998	0.992	0.992	0.979	0.961	0.925	0.874	0.816	0.794	0.749	0.719	0.737
6 –	0.998	0.994	0.997	0.993	0.983	0.975	0.945	0.929	0.899	0.831	0.799	0.749	0.725	0.682
5 -	0.998	0.996	0.994	0.99	0.988	0.972	0.965	0.926	0.879	0.817	0.792	0.754	0.721	0.728
4 –	0.998	0.993	0.988	0.964	0.984	0.964	0.915	0.879	0.838	0.795	0.741	0.733	0.704	0.584
3 –	0.964	0.978	0.948	0.93	0.902	0.857	0.823	0.756	0.726	0.692	0.672	0.646	0.616	0.609
						1		-			1	-		
	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
						M	omentu	m [GeV/	[c]					

Hough AUROC by momentum and $heta_p$

- 0.9 - 0.8

- 0.7

- 0.6

θ_p [deg]

F.Shipilov (LAMBDA • HSE)

Detailed Results (Production)

Detailed Results (Production)

Median AUROC by momentum and θ_p

Detailed Results (Production)

Baseline AUROC by momentum and θ_p

- Beta NN and Median nearly identical performance
- ${\, \bullet \,}$ Indicates the limit of $\beta\text{-based}$ approaches
- \bullet End-to-end models are also close to each other; qualitative improvement over $\beta\text{-}\mathsf{based}$ models
- Almost perfect π/K separation on production data
- Machine learning-based approaches demonstrate flexibility and achieve better quality

Problems/Difficulties

- ResNet-18 is a large computationally slow model
- Prior data transforms (reprojection, Fourier features extraction, renormalization) are even more computationally expensive, training and inference are CPU-bound
 - ${\scriptstyle \circ }$ We implemented data parallelism and achieved 7x speed up

- Architecture optimization
 - knowledge distillation, pruning and quantization
- Multi-ring PID, automatic track-ring matching using ML
- Integration into the SPD data processing pipeline; change point & calibration
- FARICH fast simulation

 Lebedev, S. A. and Ososkov, G. A. Fast algorithms for ring recognition and electron identification in the CBM RICH detector. Phys. Part. Nucl. Lett. 6, 161–176