ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СТАЦИОНАРНЫХ ВОЛН ЛАЗЕРНОЙ АБЛЯЦИИ МАТЕРИАЛОВ В ПОЛУ-ОГРАНИЧЕННЫХ ОБРАЗЦАХ

¹И.Сархадов, ¹З.А.Шарипов, ¹З.К.Тухлиев, ²А.С.Халиль, ³Х.Гафуров

1 Лаборатория информационных технологий,

Объединенный Институт Ядерных Исследований,

141980, ул. Жолио-Кюри б, Дубна, Московская область, Россия

ibrohim@jinr.ru ²Государственный университет, Дубна, Инженерно-физический институт,

³ Худжандский государственный университет имени академика Бободжана Гафурова

Аннотация

Моделирование лазерной абляции материалов можно проводить в рамках одномерного нестационарного уравнения теплопроводности в системе координат, связанной с движущимся фронтом испарения. Действие лазера на образец учитывается через функции источника в уравнении теплопроводности, задавая координатную и временную зависимости источника лазера. В предыдущих работах были проведены численное моделирование лазерной абляции материалов, возникающей под действием ультракоротких лазерных импульсов в полу-ограниченных образцах. Численные расчеты были проведены с применением метода конечных разностей. Полученные результаты согласовались с результатами работ других авторов

В настоящей работе проведено аналогичное численное исследование при непрерывном воздействии лазера постоянной интенсивности на образец. При этом нестационарное решение уравнения теплопроводности после некоторого времени переходит к его стационарному решению даже при учете температурной зависимости тепло-физических параметров материала образца, в то время, когда аналитическое решение можно получить только при предполо-

↓
↓
Back
Close

жении независимости искомых параметров от температуры. Проведены сравнительный анализ полученных результатов с результатами аналитических решений. Динамики перехода к стационарному решению полученных аналитических решений выявляются только численным моделированием.

Введение

В последние годы импульсная лазерная абляция [1-3] (любой процесс лазерно-стимулированного удаления вещества, включая эмиссию электронов) различных материалов привлекает все больший интерес с точки зрения фундаментальных исследований процессов в веществе в экстремальных условиях сверхбыстрого подвода энергии: речь идет о построении новой физической теории, описывающей сильно нелинейные эффекты.

Для детального анализа процессов в эксперименте требуется измерять различные характеристики процессов абляции с пико- и фемтосекундным временным разрешением, что само по себе является достаточно сложной задачей. Поэтому задача математического моделирования физических явлений в этой области становится чрезвычайно актуальным.

44

Процесс испарения математически описывают в рамках краевой задачи теплопроводности для конденсированной среды в системе координат, связанной с подвижной межфазной границей твердое тело-пар или расплав-пар, на которой происходит испарение. Если не учитывать боковой отвод энергии лазерного излучения за счет теплопроводности, что справедливо при жестком условии $r_0 \gg \sqrt{a_T \tau}$, где τ -продолжительность воздействия лазерного луча на материал, a_T – температурапроводность, r_0 -радиус пятна нагрева, то задача о движении границы испарения может быть рассмотрена в рамках одномерной модели [3].

2. Постановка задачи

Численное моделирование лазерной абляции материалов в общем случае проводится на основе уравнения теплопроводности, написанном в движущейся системы координат, связанным с фронтом испарения с начальными и граничными условиями [2]:

$$T(z,0) = T_0; \ 0 \le z \le z_{max},$$
 (2)

$$\lambda(T) \frac{\partial T(z,t)}{\partial z} \Big|_{z=0} = v_{\varphi} L_{ev} \rho; \ T(z_{max},t) = T_0; \ h = \int_0^t v_{\varphi} dt, \qquad (3)$$
$$C(T) = \rho(T)c(T), \ v_{\varphi} = v(T_s), \ T_s = T(0,t),$$

где c(T), $\lambda(T)$, $\rho(T)$ -соответственно удельная теплоемкость, теплопроводность и плотность материала при температуре T(z,t), h(t)-глубина кратера на поверхности образца в момент времени t, z_m -максимальное расстояние, $v_{\varphi}(T_s)$ -скорость перемещения границы из-за испарения, L_{ev} -удельная теплота сублимации. Функция источника A(z,t) имеет вид [2]

 $A(z,t) = f_1(z)I_0f(t), \ f_1(z) = A_s \alpha e^{-\alpha z} e^{-\alpha_g h}, \ A_s = 1 - R(T_s). \ (4)$

Здесь I_0 -интенсивность лазера, $R(T_s)$ -коэффициент отражения лазера от поверхности образца, α , α_g -соответственно коэффициенты поглощения лазерного импульса в материале образца и в паре. Доза

облучения Φ , интенсивность источника I_0 и временная форма источника f(t) связаны соотношением: $\Phi = I_0 \int_0^\infty f(t) dt$. Здесь функция источника имеет факторизованный вид, как и в работе [4], когда на материал действует не лазерный импульс, а импульсный пучок заряженных частиц. В общем случае теплоемкость, теплопроводность, плотность материала зависят от температуры.

Временную форму источника f(t), температурную зависимость скорости перемещения границы из-за испарения $v_{\varphi}(T)$, удельную теплоемкость c(T) и теплопроводность $\lambda(T)$ взяты для маериала полиимида, как и в работе [2]:

$$f(t) = (t/t_1)exp(-t/t_1); \ c(T) = 2550 - 1590 \cdot exp[(300 - T)/460] \frac{J}{kgK},$$

$$\lambda(T) = 0,155 \cdot (T/300)^{0,28} \frac{W}{mK}, \ v_{\varphi} = v_0 e^{-T_a/T_s}, \ \Phi = I_0 t_1,$$

$$t_1 = 6,13 \ ns, \ v_0 = 3 \cdot 10^4 m/s; \ T_a = 15700 \ K.$$

На рис.1 приведены графики этих зависимостей.

Close

7/21

цы образца из-за испарения, скорости перемещения этой границы и температуры образца на движущей границе x = h(t), при воздействии флюенса энергии $\Phi = 10^3 J/m^2$. 44

••

Back

Close

Рис.3. Зависимости максимума температуры на поверхности образца $T_{max}(h(t),t)$ и глубина кратера h(t) от доза облучения Φ для четырех вариантов значений A_s , α .

Рис.4. Временные зависимости скорости абляции, толщины слоя абляции, координаты максимума температуры внутри образца, температуры на поверхности и максимума температуры внутри образца при постоянной интенсивности лазера $I_0 = 10^{11} \text{ Br/m}^2$.

11/21

44

>>

Рис.5. Динамика профилей температуры образца при воздействии на него лазерного излучения постоянной интенсивности $I_0 = 10^{11} \text{ Br/m}^2$ при временах $t_j = 0.1 \cdot t_0 \cdot j$, $j = 1, 2, \cdots, 10$ (рис.5а), с учетом (рис.5а) и без учета (рис. 5b) температурной зависимости тепло-физических параметров материала образца.

↓
↓
Back
Close

Рис.6. Динамика стационарных профилей температур при разных интенсивностях лазерного излучения $I_0 = k \cdot 2 \cdot 10^{10} \text{ Br/m}^2$, $k = 1, 2, \cdots, 5$ с учетом (рис.6а) без учета (рис.6b) температурной зависимости тепло-физических параметров материала образца.

↓
↓
Back
Close

Обсуждение численных результатов

На рис.2 приведены профили температуры образца полиимида при разных времен: $t_j = j \cdot 5 ns; \ j = 1, 10$, динамики перемещения границы образца из-за испарения, скорости перемещения этой границы и температуры образца на движущей границе x = h(t), при воздействии флюенса энергии $\Phi = 10^3 J/m^2$ с параметрами $A_s = 0.93, \ \alpha = 4.25 \cdot 10^7 \text{ m}^{-1} \ (\alpha_g = 0.45\alpha), \ L_{ev} = 5 \cdot 10^5 J/kg, \ \rho = 1420 \ kg/m^3$.

На рис.3 приведены зависимости максимума температуры на поверхности образца $T_{max}(h(t),t)$ и глубина кратера h(t) от дозы излучения Φ для четырех вариантов значений параметров A_s и α : 1) $A_s = 0.93$, $\alpha = 4.25 \cdot 10^7 \text{ m}^{-1}$; 2) $A_s = 0.88$, $\alpha = 3.1 \cdot 10^7 \text{ m}^{-1}$; 3) $A_s = 0.89$, $\alpha = 10^7 \text{ m}^{-1}$; 4) $A_s = 0.9$, $\alpha = 0.32 \cdot 10^7 \text{ m}^{-1}$. Интенсивность источника I_0 при этом меняется от $3 \cdot 10^6 \text{ W/cm}^2$ до $3 \cdot 10^7 \text{ W/cm}^2$. Во всех графиках здесь и потом $T_0 = 300 \text{ K}$, $z_0 = 100 \text{ нм}$, $t_0 = 100 \text{ нс}$.

Полученные результаты согласуются с результатами работы [2]. Все эти результаты получены, когда временные формы источника выбирали в виде короткодействующими по времени. Если эту

функцию выбираем в виде f(t) = 1, и предполагаем $\alpha_q = 0$, то это означает, что на образец действует лазер постоянной интенсивности и затухание лазерного излучения в слое пара пренебрегается. Тогда численное моделирование показывает, что по истечению некоторого времени, наше нестационарное решение переходит к стационарному решению. Рис.4 подтверждает этому, в котором приведены временные зависимости скорости абляции, толщины слоя абляции, координаты максимума температуры внутри образца, температуры на поверхности и максимума температуры внутри образца при постоянной интенсивности лазера $I_0 = 10^{11} \text{ Вт/m}^2$. Как видно скорость абляции, температура на поверхности материала при больших временах почти не меняются. Это является признаком перехода к волновому стационарному решению задачи абляции.

На рисунке 5 приведены динамики профилей температуры образца при воздействии на него лазерного излучения постоянной интенсивности $I_0 = 10^{11} \text{ Br/m}^2$ при временах $t_j = 0.1 \cdot t_0 \cdot j$, $j = 1, 2, \cdots, 10$ и На рис. 6 получены динамика стационарных профилей температур при разных интенсивностях лазерного излучения $I_0 = k \cdot 2 \cdot 10^{10} \text{ Br/m}^2$, $k = 1, 2, \cdots, 5$ с учетом (рис. 6а) и без

44

••

учета(рис.бб) температурной зависимости тепло-физических параметров материала образца.

На рис. 6 каждому стационарному профилю соответствует своя температура на поверхности образца T_s , и скорости движения границ V_{φ} ($T_0 = 300 \ K$, нм). К этим интенсивностям соответствуют еще максимальные температуры внутри образца и их координаты: \bar{T}_{max} , \bar{z}_{max} . Из графика видно, что на границе z = 0 существует перегрев образца, т.е. температура внутри образца около границы выше чем на самой границе.

В таблицах 1, 2 приведены значения данных величин при разных интенсивностях источника соответствующими графику б.

raomiga 1							
$I_0 \; Bt/m^2$	$\bar{T}_s = T_s/T_0$	v_{arphi} м/с	$\bar{T}_{max} = T_{max}/T_0$	$\bar{z}_{max} = z/z_0$			
$2 \cdot 10^{10}$	7.147	19.82	9.10950	0.295			
$4 \cdot 10^{10}$	8.005	43.445	12.639	0.36			
$6 \cdot 10^{10}$	8.581	67.3569	15.8248	0.385			
$8 \cdot 10^{10}$	9.0334	91.4364	18.8144	0.405			
$10 \cdot 10^{10}$	9.4149	115.6312	21.6672	0.415			

	-
гаолица	

16/21

Таблица 2

I_0 Вт/м 2	$\bar{T}_s = T_s/T_0$	v_{arphi} м/с	$\bar{T}_{max} = T_{max}/T_0$	$\bar{z}_{max} = z/z_0$
$2 \cdot 10^{10}$	7.2713	22.460	12.1117	0.385
$4 \cdot 10^{10}$	8.1005	46.923	19.0005	0.43
$6 \cdot 10^{10}$	8.665	71.465	25.7272	0.45
$8 \cdot 10^{10}$	9.1108	96.0457	32.3777	0.46
$10 \cdot 10^{10}$	9.4874	120.6494	38.983	0.47

Для получения решений стационарных волн лазерной абляции материалов в уравнениях (1)-(4) сделаем следующие упрощающие предположения:

$$f(t) = 1, \ \alpha_g = 0, \ \frac{\partial T}{\partial t} = 0$$

В результате получим следующую нелинейную краевую задачу для распределения стационарной температуры T(z):

$$C(T)v_{\varphi}\frac{\partial T}{\partial z} + \frac{\partial}{\partial z}\left(\lambda(T)\frac{\partial T}{\partial z}\right) + I_0\alpha e^{-\alpha z} = 0,$$

(5)

$$\lambda(T)\frac{\partial T}{\partial z}\Big|_{z=0} = v_{\varphi}L_{ev}\rho, \ T(\infty) = T_0.$$
(6)

Данная нелинейная краевая задача не решается аналитически. Ее можно решить только численно, например, непрерывным аналогом метода Ньютона.

Заключение

При предположении постоянной интенсивности источника лазерного излучения и пренебрежения затухания его в слое пара материала, численным моделированием после решения нестационарной задачи уравнения теплопроводности для лазерной абляции материалов, получены стационарные волновые решения с учетом и без учета температурной зависимости тепло-физических параметров материала, которые качественно совпадают, но количественно сильно отличаются. Эти стационарные решения получаются при больших временах (t = 100 нс, когда нестационарные решения переходят к стационарным решениям.

Получения стационарных волн лазерной абляции материалов в полу-ограниченных образцах, можно привести к нелинейной краевой задаче для стационарной температуры образца с нелинейным ↓
↓
Back
Close

18/21

граничным условием на первой границе. Данная задача решается численно непрерывным аналогом метода Ньютона. Однако при этом, динамики переходов нестационарных решений к стационарным остаются в тени.

Список литературы

- [1] Фокин В.Б. Континуально-атоматическая модель и ее применение для численного расчета воздействия одиночного и двойного фемтосекундного лазерного импулься на металлы. Диссертация кандитата физико-математических наук, Москва-2017г.
- [2] Анисимов С.И., Лукьянчук Б.С. Избранные задачи теории лазерной абляции. УФН, 2002г., т. 172, №3, стр. 301-333.
- [3] Вейко В.П., Либенсон М.Н., Червяков Г.Г., Яковлев Е.Б. Взаимодействие лазерного излучения с веществом. Силовая оптика. /Под ре. В.И. Конова. – М.: ФИЗМАТЛИТ, 2008. –312с. – ISNB 978-5-9221-0934-5.
- [4] Амирханов И.В., Саркер Н.Р., Сархадов И. Численное моделирование лазерной абляции материалов. Discrete and Continuous Models and Applied Computational Science., ISSN:2658-4670,

↓
↓
Back

Изд:Российский университет дружбы народов. Vol. 28, N4, 2020у., ps. 398-405.

СПАСИБО ЗА ВНИМАНИЕ

