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Bunched Beam 
Stochastic Cooling 
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Schottky Noise of Bunched Beam 
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where k, l enumerate particles 
 For linear RF   ,z 2/ nJe bm

mi
nm   b = Lb/2R0 

 Number of synchrotron lines around n-th harmonic grows  n 
 Even very small tune spread will result in synchrotron band 

overlap for large m 
 For large n the shape of the spectrum corresponds to the actual 

particle distribution on the momentum (see the proof in “Accelerator 
Physics At Tevatron Collider”) 

 For Gaussian distribution the coherent term exponentially decays 
with increase of n and disappears for sufficiently large frequencies.  
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Optimal Cooling Rate of Transient-Time Cooling of 
Bunched Beam 
 For complete band overlap the diffusion does not depend on rel. 

momentum, x, but is dependent on the longitudinal position  
 for Gaussian distribution 
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 For rectangular band 
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 Bandwidth for Gaussian band:  
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Optical Stochastic 
Cooling  
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Optical Stochastic Cooling 
 Suggested by Zolotorev, Zholents and 

Mikhailichenko (1994) 
 OSC obeys the same principles as the microwave 

stochastic cooling, but exploits the superior 
bandwidth of optical amplifiers ~ 1014 Hz 

 Pickup and kicker must work in the optical range 
and support the same bandwidth as the amplifier 
 Microwave pickups cannot be scaled to m 

 Distance to the beam is 103-104   
 Undulators were suggested: both for pickup & 

kicker 

 
  cooling is due to coupling between different degrees of freedom  
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Optical Stochastic Cooling  
 OSC was experimentally tested 

at FNAL at IOTA (summer 2021) 
 100 MeV electrons in 40 m ring 
 Multipurpose ring  

(Integrable optics, high space 
charge, OSC, …)  
 reasonably small price for 

OSC 
 Cooling of hadrons requires a 

beyond “state of art” optical 
amplifier 
 Power? 
 Small signal delay? 
 Large duty-factor: 0.01 – 0.1  

 
 

 
  

Amplifier  [nm] f/f D.F. 
Ti-Sapphaire 800 0.2 CW 
Dye 300-900 0.2 CW 

Parametric 350-1500 0.2 
~10-6  

@10 W 

 

Schematic of the IOTA OSC system. a, Schematic of the IOTA 
ring and the location of the OSC insertion. b, Diagram of the 
OSC insertion including the undulators, chicane and light optics.
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Basics of OSC - Damping Rates 
 Pickup-to-Kicker Transfer Matrix  

 Vertical plane is uncoupled and we omit it  
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 Partial slip factor (pickup-to-kicker) 
describes a longitudinal particle displacement in the course of 
synchrotron motion   
      51 1 52 1 5656 M DM M D M     

 Linearized longitudinal kick in pickup wiggler   
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Mpk - pickup-to-kicker matrix 
Mkp - kicker-to-pickup matrix 
M = MpkMkp – ring matrix 
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Basics of OSC - Cooling Range  
 Cooling force depends on s nonlinearly   

          0 0 sin
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where    
and ax & ap are the amplitudes of longitudinal displacements in cooling 
chicane due to  and L motions measured in units of laser phase  

 Averaging yields the form-factors for damping rates  
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 Damping requires both lengthening 
 amplitudes (ax and ap) to be smaller 
than 2.405 
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Linear Sample Lengthening on the Travel through Chicane 

   

 
Sample lengthening due to momentum spread (top) and due to  
betatron motion (bottom, H. emittance for x-y coupled case) 

 Very large sample 
lengthening on the 
travel through 
chicane 

 High accuracy of 
dipole field is 
required to 
prevent 
uncontrolled 
lengthening, 
 (BL)/(BL)dipole<10-3 
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Compensation of Non Linear Sample Lengthening 

 
 Nonlinear lengthening  

 It mainly comes from the betatron angles,  2
, , / 2x y x yL ds   , and 

is larger for horizontal plane  
 It is large and has to be compensated 

 Compensation is achieved by two pairs of sextupoles located between 
dipoles of each dipole pair of the chicane (marked by green boxes) 
 Strengths of sextupoles are large: SdLy=-7.5 kG/cm, SdLx=1.37 kG/cm. 

It results in considerable limitation of the ring dynamic aperture.   
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Compensation of Non Linear Sample Lengthening 

     
Phase space distortion for the cases of uncompensated (left)  

and compensated (right) sample lengthening (reference emittance is equal to the horizontal 
emittance of x-y uncoupled case) 
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Dependence of Cooling Efficiency on Undulator 
Parameter 

 
 Particle motion in undulator becomes comparable to the size of the 

focused radiation 
 It reduces cooling efficiency 

 An increase of the undulator parameter also increases undulator 
magnetic field and, consequently, the equilibrium emittance and 
undulator focusing 

 Chosen undulator parameter K=1.038 corresponds to the 7 period 
undulator with B0=1 kG. It results in moderate increase of 
equilibrium emittance of ~5%.   
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The Depth of Field for Focusing of Radiation 
 Two possibilities 

 Four lens system 
with complete 
suppression of 
depth of field 

 

 
 Lenses are manufactured from barium 

fluoride  
 Antireflection coating protects from 

humidity damage  
 Excellent material with very small 

second order dispersion 
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First Order Dispersion Effects in Optical Lenses 
 The first order dispersion, dn/d, results in 1.5% difference 

between phase and group velocities in the lens material  
 It has to be accounted in the total lens thickness 
 Significant separation of radiation of the first and higher 

harmonics 

 
Overlap of radiation for the second and third harmonics of undulator radiation 

 Dependence of focusing strength on wave length makes reasonably 
small reduction of the damping rates 
 Accurate numbers will be obtained soon 
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Second Order Dispersion Effects in Optical Lenses 

 

 
The second order dispersion, d2n/d, results in lengthening of the light 
packet and, consequently, 6% loss of cooling rates 
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 Effect of Beams Overlap on Cooling Rates 
 Transfer matrix for the light is equal to the negative identity matrix 
 Transfer matrices for particles are close to the negative identity 

matrix. It compensates separation of light and particles due to 
betatron motion 

 
 
  



From Microwave Stochastic Cooling to Optical Stochastic Cooling, Valeri Lebedev, Cool-2016 18 

Bandwidth of Optical Stochastic Cooling 
 In the absence of 

dispersion in the 
lenses and OA the 
bandwidth is 
determined by 
 Number of wiggles 

in the undulators 
 Radiation focused back to the kicker wiggler has “correct” freq. 

for resonant particle interaction   
 frequency dependence of SR  does not directly affect the 

bandwidth 
 It is desirable to have the bandwidth of optical amplifier larger than 

the bandwidth of radiation (both forward and at the aperture of 
optical system) 

 Total rms bandwidth for Fermilab OSC test is ~3% (~10% effective); 
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Can Parametric Optical Amplifier help? 
 POA looks as a good choice 

 Large amplification & small delay 
 However, there are problems 

 typical duty factor <~10-5 
 Amplification duration (pump length) ~30 fs (10 m) 

 100 J*50 MHz=5 kW 
 Looks to be impossible to obtain reasonable duty factor (1-10%) 

with reasonable pumping power 
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We will lose orders of magnitude in the damping rate due to small 
gain length, g 
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OSC in IOTA 

|Projected beam distributions for a delay scan in the 3D OSC configuration. a, 
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OSC in IOTA  

 The non-Gaussian tails in the transverse distribution appear due to 
scattering on the residual gas 

 Very small electron beam current (~1 A) reduces the IBS. Multiple 
IBS reduces the difference in the beam size with cooling on and off. 
Touschek does not create considerable tails. 

  

Fast toggle of the OSC system 
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Coherent Electron Cooling 
 Idea proposed by Derbenev in 1980 
 First realistic proposal by Derbenev and Litvinenko in 2007 

 
 Based on the amplification in FEL 

 Gain in frequency by ~104 relative to microwave SC 
 Loss ~100 due to bandwidth: 50% -> 0.5% 
 Loss due to short length of FEL electron bunch ~100 

 Two proposals address the bandwidth problem (0.5%->~50%).  
They use: (1) plasma cascade instability, and  

         (2) micro-bunching in a chicane (first observed in SLAC SASE FEL 
 Major problems with CEC 

 Saturation of amplifier n/n ~1/2 
 Noise in electron beam  
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Problems 
1. Using electrostatic analogy find the maximum longitudinal force in electron 

cooling for pan cake distribution (vx=vy, vz=0). Assume that the 
transverse velocity of a proton is equal to zero and non-magnetized 
electron cooling.   

2. In the shortwave approximation (ktr>>1) find the maximum cooling force in 
the coherent electron cooling. Assume Gaussian beam in the transverse 
direction with equal rms transverse sizes, and neglect plasma oscillations.  

 Prove the rate-sum theorem. Let the revolution symplectic matrix M  
be perturbed: 0( ) M I P M , where the perturbation P  is small, but not 
necessarily symplectic. Then in the first order of perturbation 
theory, the complex tune shifts are: 1 †/ (2 ) (4 )l l l      v U P v  and the 
sum of all growth rates is independent on the eigenvectors so that

1Im Tr( ) / 2
l

 
  

 
 P . Here l changes from 1 to the number of 

degrees of freedom (3 - for 3-dimensional motion).                        


