

Измерение светимости в эксперименте CMS

(обзор методов и подходов)

А. А. Бабаев

Томский политехнический университет

О докладчике

Антон Бабаев, к. ф.-м. н.

 Взаимодействие пучков заряженных частиц с периодическими полями кристаллов, каналирование в кристаллах.

Постдок LNF INFN & Roma Sapienza Univ.

 Моделирование каналирования в изогнутых кристаллах, электромагнитных полях и подобные вопросы.

Томский политехнический университет, н.с. & эксперимент CMS

- Светимость в эксперименте CMS
- > 2022-24: координатор группы LUM эксперимента CMS (анализ светимости)

Светимость

Наиболее общее определение светимости через интеграл перекрытия пучков

$$L = GN_1N_2 \int \rho_1(x, y, z, t)\rho_2(x, y, z, t)dxdydzdt$$

 N_1 , N_2 - число частиц в сталкивающихся пучках

 ρ_1 , ρ_2 - плотность распределения частиц в пучках (предполагается нормировка на 1)

G - кинематический фактор, зависящий от угла между скоростями пучков v_1, v_2

$$G = \frac{1}{c} \sqrt{c^2 (\vec{v}_1 - \vec{v}_2)^2 - (\vec{v}_1 \times \vec{v}_2)^2}$$

То есть, светимость:

- > является характеристикой интенсивности столкновений,
- > определяется свойствами пучков и геометрией столкновения,
- \succ если σ_{p} сечение процесса физики элементарных частиц, количество событий: $N = \sigma_{p} L$

Методы определения светимости

1. Прямое вычисление интеграла исходя из какой-то модели для распределения частиц в пучках ρ_1 , ρ_2 .

$$L = GN_1N_2 \int \rho_1(x, y, z, t) \rho_2(x, y, z, t) dx dy dz dt$$

- 2. Используя какой-то хорошо известный процесс физики элементарных частиц можно определить светимость из соотношения $N_{\rm p}$ = $\sigma_{\rm p} L$, где $N_{\rm p}$ число событий. Также есть методы, неявно использующие этот принцип.
- 3. Можно заметить, что с хорошей точностью должно существовать линейное соотношение между светимостью, числом столкновений (pile-up) и какой-то измеряемой величиной, характеризующей поток продуктов столкновения (напр. число треков вторичных частиц) => онлайн мониторинг светимости, ван-дер-мееровский метод и его вариации.

1. Вычисление светимости с использованием моделей плотности частиц в пучке

Простой пример: Гауссова модель

Два ультрарелятивистских сгустка одинаковой энергии, плотность частиц:

$$\rho_{1,2}(x, y, s, s_0) = \frac{1}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_s} \exp\left(-\frac{x^2}{2\sigma_x^2}\right) \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{(s - s_0)^2}{2\sigma_s^2}\right)$$

Светимость при лобовом столкновении, угол между скоростями 180°

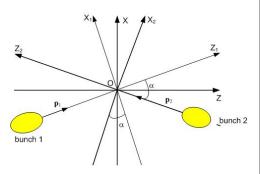
$$L = \frac{N_1 N_2}{2\pi \sum_{x} \sum_{y}}$$

Ширина перекрытия пучков (convolved beam size):

$$\Sigma_{u} = \sqrt{\sigma_{1,u}^{2} + \sigma_{2,u}^{2}}$$

Если известны эмиттанс ε и β -функция в точке столкновения (β^*):

$$\Sigma_{u}^{2} = \frac{\beta^{*}}{\gamma} \left(\varepsilon_{u,1} + \varepsilon_{u,2} \right)$$


Возможные усложнения

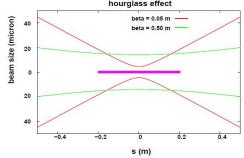
1. Угол между пучками (π -2 α):

$$L \to L_{\rm xing} = LS$$

где геометрический фактор

$$S = \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan \alpha\right)^2}}$$

2. Hour glass effect - изменение β -функции вблизи точки столкновения:


$$\beta(s) = \beta^* \left(1 + \left(\frac{s}{\beta^*} \right)^2 \right)$$

Если продольный размер пучка сравним или больше β^* для симметричных круглых гауссовых пучков:

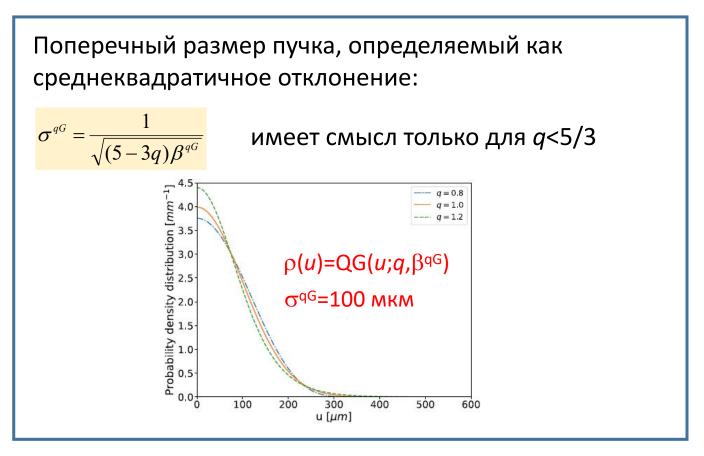
$$L \to L_{\text{\tiny H}} = LH$$

$$L \to L_{_{\mathrm{H}}} = LH$$
 где $H = \sqrt{\pi} h \cdot \exp(h^2) \cdot \operatorname{erfc}(h)$

$$\mathsf{M} \qquad h = \beta^* / \sigma_{s}$$

3. Численное моделирование динамики пучка

Q-гауссовы пучки


Q-гауссовы функции - функции более общего вида, позволяющие моделировать хвосты распределения, более тяжёлые или лёгкие чем хвосты гауссового распределения:

$$QG(u;q,\beta^{qG}) = \frac{\sqrt{\beta^{qG}}}{C^{qG}} e_q \left(-\beta^{qG} u^2\right)$$

$$e_{q}(-\beta^{qG}u^{2}) = \begin{cases} \exp(-\beta^{qG}u^{2}) & \text{при } q=1\\ [1-(1-q)\beta^{qG}u^{2}]_{+}^{\frac{1}{1-q}} & \text{при } q\neq 1 \end{cases}$$

$$C^{q^{G}} = \begin{cases} \frac{2}{(3-q)\sqrt{1-q}} \mathbf{B} \left(\frac{1}{1-q}, \frac{1}{2}\right) & \text{при } q < 1 \\ \sqrt{\pi} & \text{при } q = 1 \\ \frac{1}{\sqrt{1-q}} \mathbf{B} \left(\frac{1}{q-1} - \frac{1}{2}, \frac{1}{2}\right) & \text{при } 1 < q < 3 \end{cases}$$

B(a,b) - бета-функция Эйлера

Q-гауссовы пучки: светимость

Лобовое столкновение двух одинаковых сгустков с поперечными плотностями

$$\rho(x,y) = QG(x;q,\beta^{qG})QG(y;q,\beta^{qG})$$

Светимость:

$$L^{qG} = rac{N_1 N_2}{4\pi \sigma_x^{qG} \sigma_y^{qG}} I_x^{qG} I_y^{qG}$$
 где $\sigma^{qG} = rac{1}{\sqrt{(5-3q)eta^{qG}}}$ - размер пучка $\int_{\sigma_{a}} \int_{\sigma_{a}} \left(-3+q_{x,y}\right)$

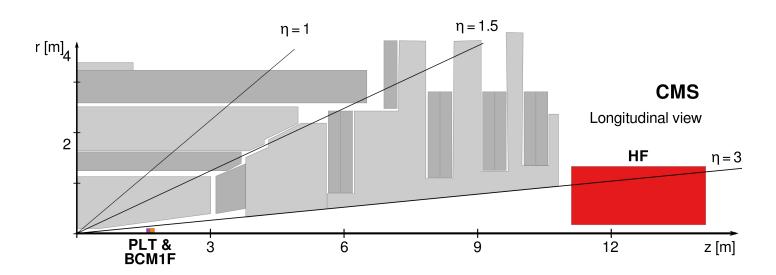
$$I_{x,y}^{qG} = \begin{cases} \frac{\beta_{x,y}^{qG}}{C_{q_{x,y}}^{Q}} \frac{\sqrt{\pi} \Gamma\left(\frac{-3 + q_{x,y}}{-1 + q_{x,y}}\right)}{\sqrt{\beta_{x,y}^{qG}} \left(1 - q_{x,y}\right)} \Gamma\left(\frac{3q_{x,y} - 7}{2(-1 + q_{x,y})}\right) \\ \frac{\beta_{x,y}^{qG}}{C_{q_{x,y}}^{Q}} \frac{\sqrt{\pi} \Gamma\left(\frac{-q_{x,y} + 5}{2(-1 + q_{x,y})}\right)}{\sqrt{\beta_{x,y}^{qG}} \left(-1 + q_{x,y}\right)} \Gamma\left(\frac{2}{-1 + q_{x,y}}\right) \end{cases}$$

 $\Gamma(a)$ - гамма-функция Эйлера

2. Измерение светимости с использованием специализированных детекторов

Люминометр, необходимость калибровки

- Специализированный детектор, люминометр, измеряет некоторую величину R, которая является откликом на интенсивность потока вторичных частиц.
- Для того, чтобы транслировать отклик в светимость, требуется калибровка.
- ▶ В идеальном случае L и R связаны линейно:

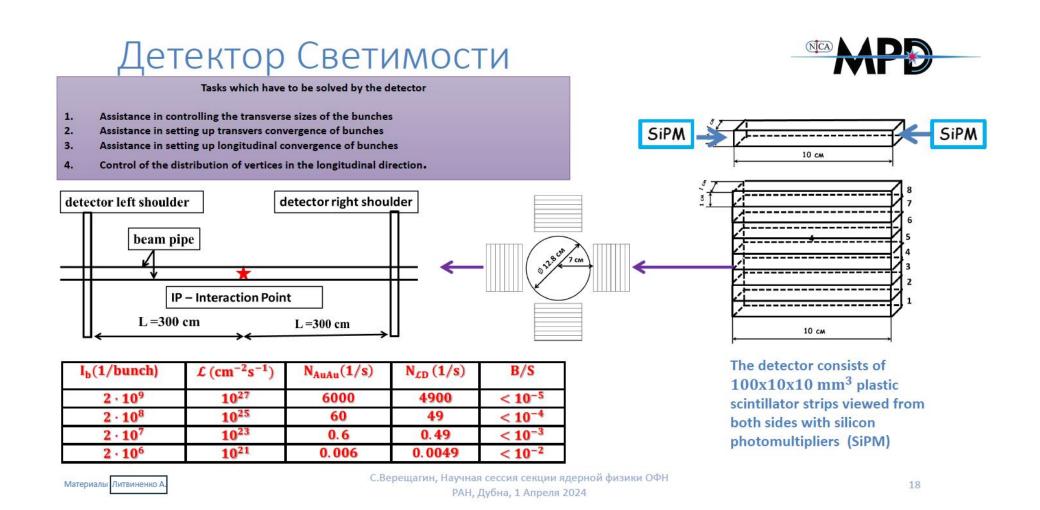

$$L = R / \sigma_{\text{vis}}$$

 σ_{vis} - калибровочная постоянная (visible cross-section)

Измеряемой величиной *R* может быть:

- энергия, выделяющаяся в калориметре
- количество и энергия черенковских фотонов в счётчиках
- количество прохождений частиц через сенсор

Пример: Люминометры CMS (проект BRIL)

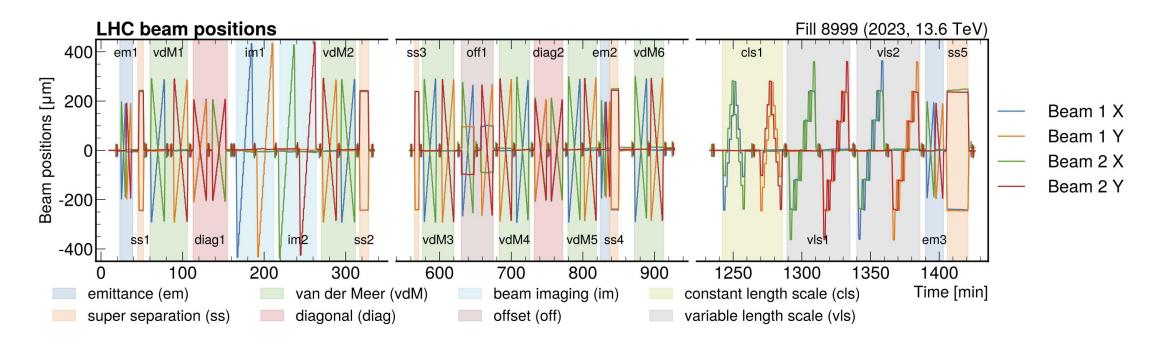


- разрез детектора CMS вдоль оси
- системы BRIL: HF, PLT, BCM1F

Несколько систем для онлайн-мониторинга светимости с 25 нс разрешением (соответствующим прохождению одного сгустка).

- НF (Hadron Calorimeter) энергия и поперечный импульс черенковских фотонов, генерируемых в кварцевых волокнах.
- > PLT (Pixel Luminosity Telescope) кремниевые сенсоры, регистрирующие прохождение частиц по схеме совпадений (три последовательных сенсора должны регистрировать частицу).
- > BCM1F (Fast Beam Conditions Monitor) кремниевые сенсоры, способен разделять собственно светимость и фон.

Люминометр MPD


Метод ван-дер-Меера

$$L = R / \sigma_{\text{vis}}$$

- \succ Калибровочная постоянная σ_{vis} характеристика люминометра (при заданных энергии, типе частиц), которую необходимо определить.
- ▶ В экспериментах БАК калибровочные постоянные систем онлайн-мониторинга светимости определяются по методу ван-дер-Меера.
- ightharpoonup Величина R измеряется в зависимости от расстояния ($\Delta_{\mathsf{x}}, \Delta_{\mathsf{y}}$) между орбитами пучков в двух ортогональных поперечных сканированиях (в X/Y плоскостях).
- \triangleright Ван-дер-мееровское сканирование проводится в специальных условиях, минимизирующих возможное отклонение пучка относительно номинального положения, а также нелинейные эффекты в отклике R.
- Относительно низкая интенсивность пучка (1Е9 протонов в сгустке вместо обычных 1Е11)
- Относительно широкий пучок (порядка 100 мкм вместо обычных порядка 10 мкм)

Ван-дер-Меер программа

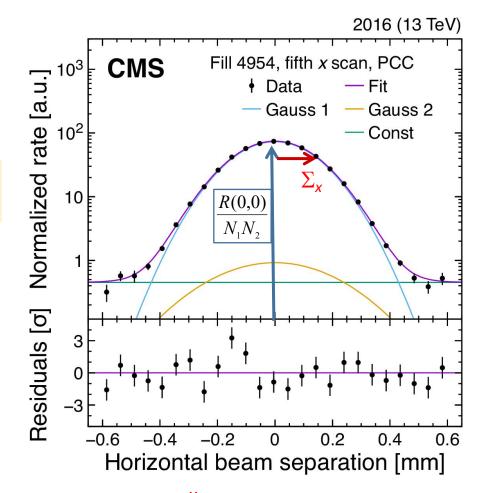
- Ван-дер-Мееровское сканирование проводится раз в год
- > Одновременно проводятся другие типы сканирований для сопутствующих исследований

Ван-дер-Мееровская программа для 13.6 ТэВ рр периода 2023:

- поперечные положения орбит пучков в зависимости от времени
- ван-дер-Мееровские сканы: vdM 6 X/Y пар сканов.

Определение калибровочной постоянной

- ightharpoonup Измеряемая величина как функция расстояния между орбитами: $R(\Delta_{\mathsf{x}},\Delta_{\mathsf{v}})$
- Ширина перекрытия пучков определяется площадью под кривой:


$$\Sigma_{x} = \frac{1}{\sqrt{2\pi}} \frac{1}{R(0,0)} \int R(\Delta_{x}, 0) d\Delta_{x}$$

$$\Sigma_{y} = \frac{1}{\sqrt{2\pi}} \frac{1}{R(0,0)} \int R(0,\Delta_{y}) d\Delta_{y}$$

Можно показать, что для поперечно факторизуемых пучков (ρ(x,y)=ρ(x)ρ(y)) и с гауссовым продольным распределением:

$$L(0,0) = \frac{N_1 N_2}{2\pi \sum_{x} \sum_{y}} = \sum_{z} \frac{R(0,0)}{L(0,0)} = 2\pi \frac{R(0,0)}{N_1 N_2} \sum_{x} \sum_{y} \frac{R(0,0)}{N_1 N_2} = \sum_{z} \frac{R(0,0)}{N_1 N_2} \sum_{x} \sum_{y} \frac{R(0,0)}{N_1 N_2} = \sum_{z} \frac{R(0,0)}{N_1 N_2} = \sum_{z$$

 Стоит отметить, что знание распределения частиц в пучках не требуется, однако важно предположение о факторизуемости.

Ван-дер-мееровский скан, CMS (плоскость X, 13 ТэВ, рр, 2016) Данные и подгоночная функция

Факторизуемость пучка

- ightharpoonupДля нефакторизуемых пучков $L(0,0) \neq \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_x}$
- Идеально факторизуемых пучков не существует. Соответственно, ван-дер-Мееровский метод всегда имеет некоторую ошибку, которую необходимо оценивать.
- > Методы:
- 1. Восстановить поперечную плотность частиц из распределения вертексов (beam imaging scan), затем интеграл перекрытия: $\Omega(\Delta_x, \Delta_y) = \int \rho_1(x,y) \rho(x + \Delta_x, y + \Delta_y) dx dy \propto L(\Delta_x, \Delta_y)$
- 2. Сравнивать различные пары ортогональных сканов (диагональные, смещённые)
- 3. Сканирование по сетке (2D scan)

Ошибка метода

> «Истинная» калибровочная постоянная:

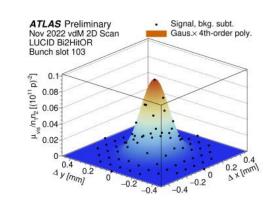
$$\sigma_{\text{vis,true}} = \frac{R(0,0)}{L(0,0)}$$

Калибровочная постоянная по методу ван-дер-Меера:

$$\sigma_{\text{vis,vdM}} = 2\pi \frac{R(0,0)}{N_1 N_2} \Sigma_x \Sigma_y$$

> Ошибка метода определяется отношением:

$$r = \frac{\sigma_{\text{vis,vdM}}}{\sigma_{\text{vis,true}}} = 2\pi \frac{L(0,0)}{N_1 N_2} \Sigma_x \Sigma_y$$

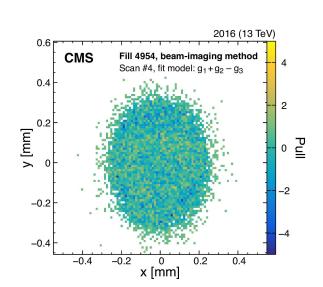

2D скан (сканирование по двумерной сетке)

➤ Можно показать, что

$$\frac{\int R(\Delta_x, \Delta_x) d\Delta_x d\Delta_y}{R(0,0)} = \frac{N_1 N_2}{L(0,0)}$$

 Таким образом, для нефакторизуемых пучков σ_{vis} может быть определена с помощью сканирования по двумерной сетке:

$$\sigma_{\text{vis}} = \frac{\int R(\Delta_x, \Delta_x) d\Delta_x d\Delta_y}{N_1 N_2}$$

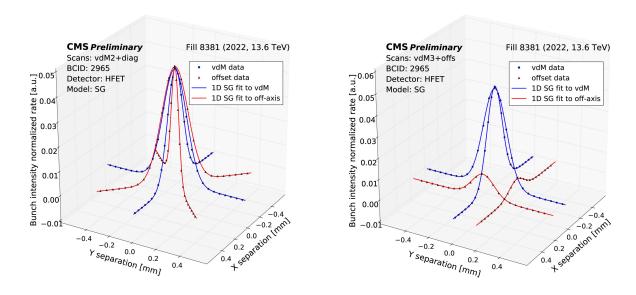


- > Ограничения:
- в циклических ускорителях деформация пучка при столкновении может передаваться на следующее столкновение, что нарушает условие $\int \Omega(\Delta_x, \Delta_x) d\Delta_x d\Delta_y = 1$, использованное при выводе выражения выше.
- 2D скан требует значительного времени, в течение которого пучок может измениться.

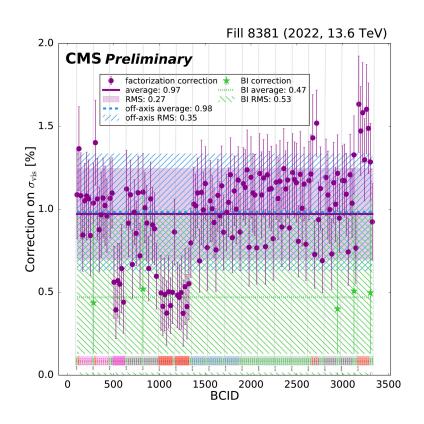
Beam imaging scans

- > Сканируется один пучок при неподвижном втором пучке.
- ightarrow Для каждого шага (Δ_x, Δ_y) реконструируется двумерное распределение вертексов $N^{\text{vtx}}(x,y;\Delta_x,\Delta_y)$.
- Можно показать что, например, при сканировании пучка 2 в направлении Y, зависимость от у суммы распределений на отдельных шагах: $\sum_{\Delta_y} N^{VTX}(x,y;\Delta_x,\Delta_y)$ определяется зависимостью от у распределения $\rho_2(x,y)$, т.е. только пучком 2.
- \succ Комбинируя 4 скана (X/Y, пучки 1,2), определяются параметры подгоночной модели для $\rho_{1,2}(x,y)$.
- Простейшая модель двумерный Гаусс с корреляцией:

$$\rho(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-k^2}} \exp\left[-\frac{1}{2(1-k^2)}\left(\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_x^2} - \frac{2kxy}{\sigma_x\sigma_y}\right)\right]$$



пример распределения $\sum_{\Delta_x} N^{v_{TX}}(x, y; \Delta_x, 0)$

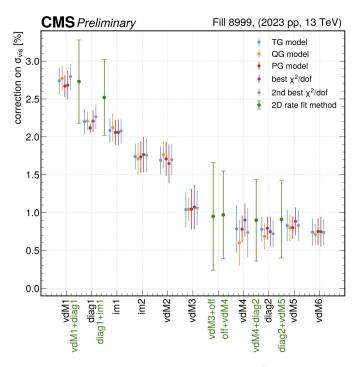

модель: комбинация трёх функций выше скан пучка 2 в направлении Y CMS, 13 ТэВ pp, 2016

Смещённые сканы

Идея: комбинировать «обычные» ван-дер-Мееровские сканы (вдоль осей X/Y) с диагональными или смещёнными сканами для восстановления двумерного интеграла перекрытия $\Omega(\Delta_x, \Delta_y)$ (с использованием подгоночной модели).

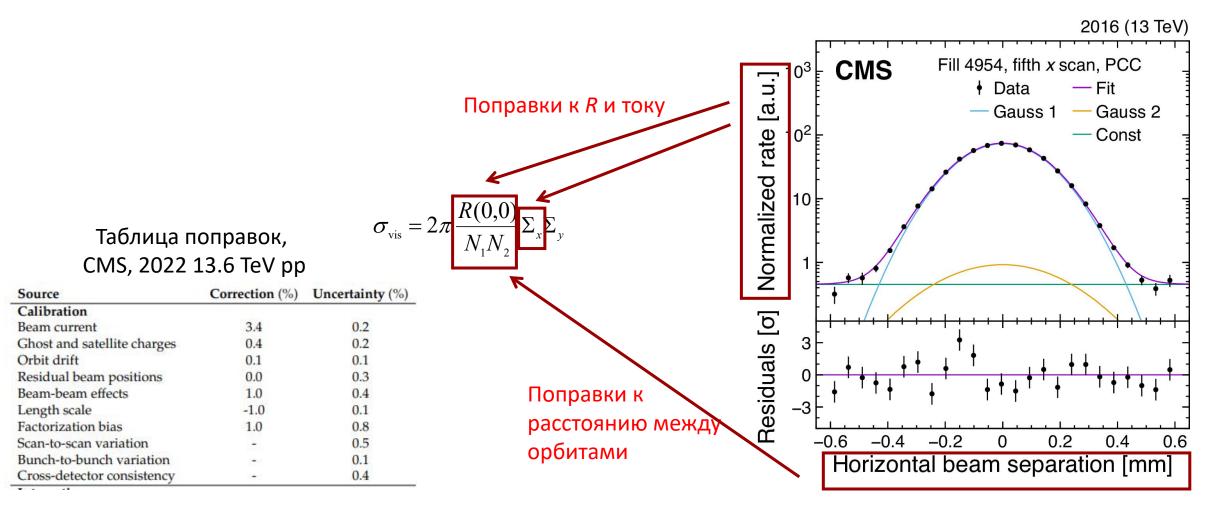
Синие - «обычные» сканы, красные - диагональные или смещённые; программа 2022, 13.6 ТэВ pp.

Коррекция к σ_{vis} , определённая в комбинации смещённых и обычных сканов (усреднённая по всем парам, фиолетовые) и в beam imaging (зелёные). Точка - одна пара сгустков. Программа 2022, 13.6 ТэВ, pp.

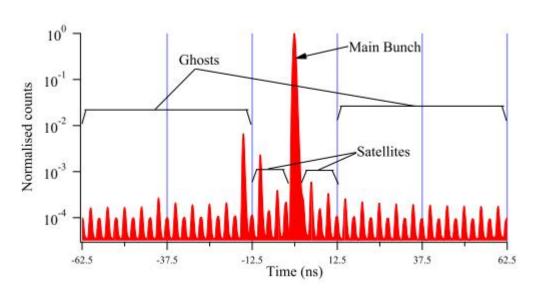

Luminous region метод

➤ По распределению вертексов на каждом скана шаге реконструируется 3D-эллипсоид (luminous region)

$$\int \rho_1(x,y,z,t)\rho_2(x,y,z,t)dt$$

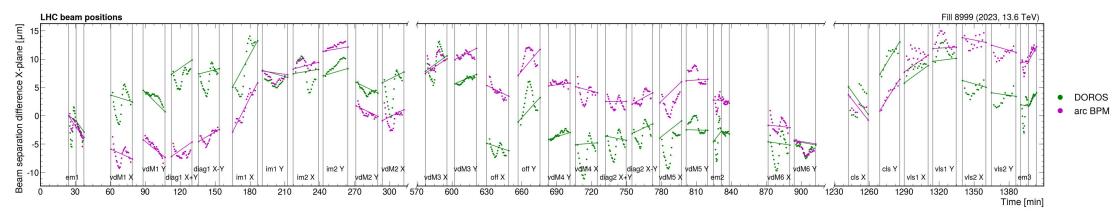

с использованием [нефакторизуемых] моделей для $\rho(x,y,z)$.

- Определение параметров моделей и 3D эллипсоида.
- Вычисление светимости, сравнение с измеренной светимостью.
- \triangleright Определение коррекции на σ_{vis} .


Коррекция к σ_{vis} , определённая в luminous region method (усреднённая по 9 парам сталкивающихся сгустков, 5 моделей, точка - одна пара X/Y сканов.) и в смещённых сканах (зелёные, одна точка - две пары совмещённых сканов). Программа 2023, 13.6 ТэВ, pp.

Поправки в методе ван-дер-Меера

Структура пучка

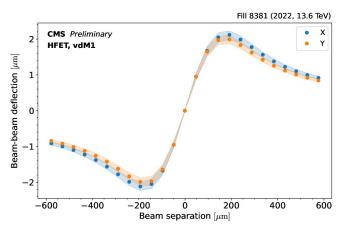

Схема пучка LHC, Схема: масштаб чисел не соответствует реальности

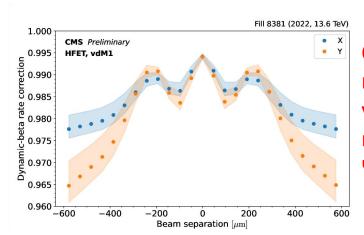
- номинально частицами заполнен только центральный 2.5 нс интервал (RF bucket)
- 25 нс окно вокруг центрального интервала временное окно, соответствующее прохождению одного сгустка
- однако, частицы могут быть вне центрального интервала
- не должны учитываться в расчётах

Дрейф орбиты, масштабирование длины

- Дрейф орбиты отклонение положения орбиты, измеренного мониторами положения пучка от номинального положения, в силу несовершенства магнитной системы, взаимодействия пучков, случайных факторов.
- Масштабирование длины (lengthscale) поправка, учитывающая несовершенство магнитной системы LHC, вследствие которой реальный поперечный сдвиг пучка при сканировании отличается от номинального (коэффициент порядка 1Е-4).

Разность измеренного (DOROS, arc BPM) и номинального расстояния в плоскости X между орбитами пучка в точке столкновения в течение ван-дер-Мееровской программы 2023, 13.6 ТэВ рр.


Электромагнитное взаимодействие пучков


Три основных эффекта:

- сдвиг частот бетатронных колебаний => при столкновениях пучков в точках А и В частоты в точке А отличаются от номинальных из-за сдвига при столкновении в точке В
- сдвиг орбиты пучка => формулы Бассетти-Эрскина
- изменение распределения частиц => изменение интеграла перекрытия

$$\Omega(\Delta_x, \Delta_y) = \int \rho_1(x, y) \rho_2(x + \Delta_x, y + \Delta_y) dx dy$$

Увеличение расстояния между орбитами (взять модуль от отрицательных чисел на графике). Формулы Бассетти-Эрскина.

Отношение перекрытия пучков, рассчитанных с учётом и без учёта взаимодействия пучков. Численный расчёт.

Эффекты электромагнитного взаимодействия пучков, влияющие на определение калибровочной постоянной σ_{vis} . Ван-дер-Мееровская программа 2022, 13.6 ТэВ pp.

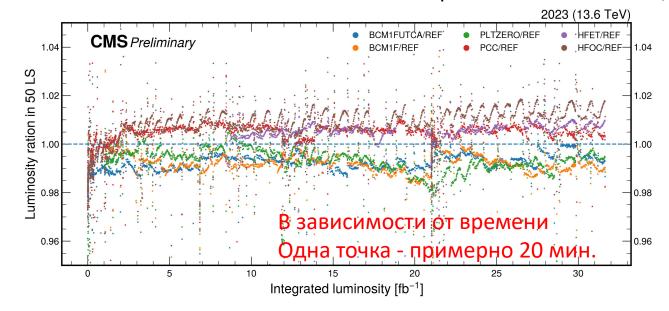
Больше об электромагнитном взаимодействии пучков БАК

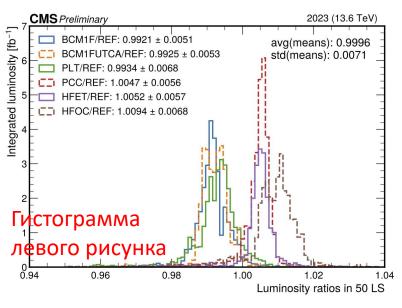
Impact of beam-beam effects on absolute luminosity calibrations at the CERN Large Hadron Collider, EPJC (2024) 84:17

- > Сдвиг орбиты и изменение перекрытия
- ightharpoonup Параметризация с использованием параметра взаимодействия $\xi_{x2} = \frac{N_1 r_0 \beta_{x2}^*}{2\pi \gamma_2 \sigma_{x1} (\sigma_{x1} + \sigma_{y1})}$
- > Негауссовы пучки
- > Эллиптичность и ненулевой угол пересечения
- Несколько точек столкновения
- Асимметрия пучков
- ▶ Модели и программы для численного моделирования: MAD-X, COMBI, B*B

Мониторинг светимости

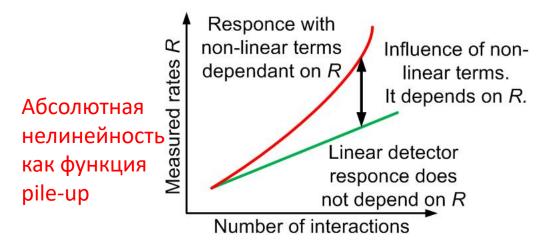
$$L = R / \sigma_{\text{vis}}$$

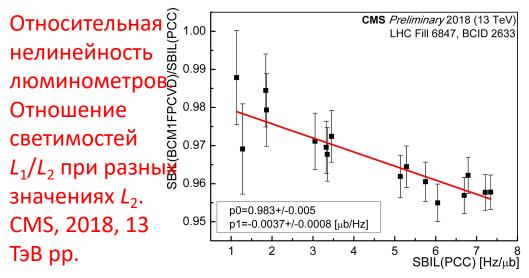

- Калибровочная постоянная определяется в специальных условиях ван-дер-Мееровской программы.
- Набор данных для физики высоких энергий производится при гораздо более высоких токах сгустков (1E11 протонов в сгустке), гораздо меньшем поперечном размере пучка (10 мкм).
- Все системы должны, в идеале, измерять одинаковую светимость.
- \triangleright Необходимо учитывать возможные нелинейные эффекты в отклике R при высоких интенсивностях столкновений.
- На больших временных интервалах (порядка года) может сказываться радиационная деградация детекторов.


Таблица поправок, CMS, 2022 13.6 TeV pp

CIUSS UCICCIOI CONSISICIICY	W-7
Integration	V78370
HFET OOT pileup corrections	0.2
Cross-detector stability	0.5
Cross-detector linearity	0.5
C-liles time	1.0

Стабильность и согласованность


Отношение светимости, измеренной разными люминометрами, к референсному значению REF на протяжении 2023. CMS, 13.6 ТэВ pp.



- Референсное значение REF определяется для каждой точки как светимость, измеренная системой DT в данном интервале (только в 2023).
- DT (Drift Tubes) часть времяпролётной моюнной системы CMS, используемая для мониторинга светимости посредством подсчёта треков мюонов, не имеет независимой калибровки, не обеспечивает светимости для отдельных столкновений сгустков, однако обладает хорошей стабильностью и линейностью.

Нелинейность

- «Идеальный люминометр»: для точного измерения светимости зависимость между числом столкновений и R должна быть линейной.
- Нелинейные эффекты должны быть оценены
- Относительная нелинейность: отклик двух люминометров неколлинеарен при изменении pile-up.
- ightharpoonup Мера: отношение измеренных светимостей $L_1/L_2 \neq 1$ как функция L_2 .
- Сравнивая разные пары люминометров можно получить верхнюю оценку абсолютной нелинейности (относительно pile-up)

[12,22]

Результаты, CMS, pp, максимальная энергия

Source	2015 (%)	2016 (%)	Con
Normalization uncertainty			
Bunch population			
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	1.0	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in avis	0.6	0.3	No
Integration uncertainty			
Out-of-time pileup corrections			
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	< 0.1	No
Total normalization uncertainty	1.3	1.0	2
Total integration uncertainty	1.0	0.7	-
Total uncertainty	1.6	1.2	\simeq

Source	2022	Correction (%)	Uncertainty (%)
Calibration	ı	Q#Wh	
Beam curre	nt	3.4	0.2
Ghost and s	satellite charges	0.4	0.2
Orbit drift		0.1	0.1
Residual be	am positions	0.0	0.3
Beam-beam		1.0	0.4
Length scal	e	-1.0	0.1
Factorizatio		1.0	0.8
Scan-to-scar	n variation	8 . 8	0.5
Bunch-to-bi	unch variation	99 5 8	0.1
Cross-detec	tor consistency	99 7 8	0.4
Integration			
HFET OOT pileup corrections			0.2
Cross-detector stability			0.5
	tor linearity		0.5
Calibration			1.2
Integration			0.8
Total			1.4

Source	2023	Uncertainty (%)
Calibratio	on	
Beam curi	rent	0.20
Ghosts &	satellites	0.10
Orbit drift	t	0.02
Residual b	peam positions	0.16
Beam-bea		0.34
Length sca	ale	0.20
Factorizat	ion bias	0.67
Scan-to-sc	an variation	0.28
Bunch-to-bunch variation		0.06
Cross-detector consistency		0.16
Integratio	n	
Cross-dete	ector stability	0.71
Cross-detector linearity		0.59
Calibratio	n	0.89
Integratio	n	0.92
Total		1.28

	Светимость, фб-1	Погрешность, %
2015 (13 T ₃ B)	3.86	1.6
2016 (13 ТэВ)	38.25	1.2
2017 (13 ТэВ)	44.99	2.3 (предварительно)
2018 (13 ТэВ)	63.67	2.5 (предварительно)
2022 (13.6 ТэВ)	41.47	1.4
2023 (13.6 ТэВ)	30.12	1.3

Светимость при столкновениях ядер

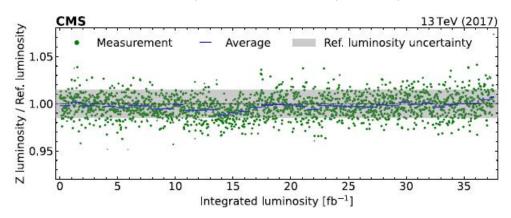
- ➤ От 2 недель до 2 месяцев в год: PbPb, pPb, XeXe.
- ightharpoonup По возможности, проводится ван-дер-Меер программа (свой σ_{vis} для каждого типа пучков).
- Ток пучка гораздо ниже тока в рр период, сравним с током в рр ван-дер-мееровской программе.
- Ван-дер-мееровская программа проводится при тех же условиях, при которых проводится набор данных для физики.
- Особенное значение имеет качество заполнения пучка (ghosts, satellites).

CMS, 5.02 T₃B, PbPb, 2015,18

Светимость, результаты

	Recorded	Uncertainty		Total	
year	luminosity [nb ⁻¹]	correlated	uncorrelated	uncertainty [%]	
2015	0.43 ± 0.01	0.7%	2.9%	3	
2018	1.7 ± 0.1	0.8%	1.5%	1.7	
Combined Run 2	2.132	0.003 nb ⁻¹ (2015) 0.014 nb ⁻¹ (2018)	0.028 nb ⁻¹	1.6	

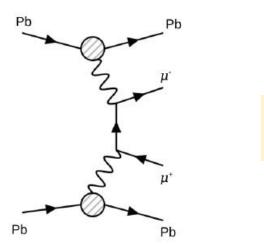
CMS, 5.02 T₃B, PbPb, 2015,18


Источники погрешности-

Source	2015 [%]	2018 [%]	Con
Normalization unc	ertainty		
Bunch population			
Ghost and satellite charge	0.3	0.5	Yes
Beam current calibration	0.2	0.2	Yes
Noncolliding bunches			
Noncollision rate	0.5	0.2	No
Beam position monitoring			
Random orbit drift	0.5	0.1	No
Systematic orbit drift	0.2	0.2	Yes
Beam overlap description			
Length scale calibration	0.5	0.5	Yes
Beam-beam effects	0.2	0.3	Yes
Transverse factorizability	1.1	1.1	No
Result consistency			
Cross-detector consistency	2.5	0.4	No
Scan-to-scan variation	_	0.5	No
Statistical uncertainty	0.2	0.1	No
Integration uncer	tainty		
Detector performance			
Cross-detector stability	0.7	0.8	No
Noncolliding bunches			
Noncollision rate	0.1	0.1	Yes
Total normalization uncertainty	2.9	1.5	1.3.1.0
Total integration uncertainty	0.7	0.8	_
Total uncertainty	3.0	1.7	_

3. Определение светимости по процессам физики элементарных частиц

Пример: рождение и распад Z-бозонов (CMS)


- Распад Z-бозона на 2 мюона обладает большим сечением, известным с точностью 3% (в 13 ТэВ рр столкновениях)
- \triangleright CMS регистрирует большое количество таких событий N^z (300 млн. в 2015-18)
- Хороший кандидат для определения светимости
- ightharpoonup В специальных условиях, при низком pile-up, светимость L_{lowPU} измеряется онлайнлюминометрами с хорошей точностью.
- > Светимость при высоком pile-up может быть определена как

- отношение светимости L_{highPU} , определённой по формуле выше к светимости, определенной онлайнлюминометрами; CMS, 13 TeV pp, 2017.
- зелёные точки = 20 pb⁻¹.
- Основной фактор, определяющий точность метода: эффективность триггера.
- > Сечение процесса не используется.
- У Итоговая погрешность светимости 0.4%, что заметно меньше погрешности обеспечиваемой онлайн-люминометрами.

Пример: периферийные взаимодействия ядер

- > Перспективная модель для светимости в столкновениях пучков ядер.
- Рождение мюонов в периферических столкновениях ядер:

$$L = \frac{N_{\text{signal}}}{\sigma_{\text{fiducial}}}$$

CMS, 5.02 ТэВ PbPb, 2018 N_{signal} =26123 - полное число событий σ_{fiducial} =15.7·10³ нб

- > 5.02 Tab 2018 PbPb:
- светимость по модели =1.7 нб⁻¹
- светимость по онлайн-люминометрам =1.6 нб-1

4. Остаточный газ

Beam Gas Imaging метод

- \triangleright Восстановление плотности распределения $\rho(x,y,z)$ по вертексам взаимодействия частиц пучка с атомами остаточного газа (LHCb).
- Определение параметров luminous region.
- \triangleright Определение σ_{vis} .
- Сканирование не требуется, но требуется хорошее разрешение для определения вертексов.

Источники

- [1] Handbook of Accelerator Physics and Engineering, 2nd ed, World Scientific Publishing Co. Pte. Ltd, 2013.
- [2] M. Hostettler, LHC Luminosity Performance, CERN-THESIS-2018-051, https://cds.cern.ch/record/2319396
- [3] M.A. Furman, The Moller Luminosity Factor, LBNL-53553
- [4] W. Herr, Particle Colliders and Concept of Luminosity, https://indico.cern.ch/event/173359/contributions/275970/attachments/218796/306434/luminosity slides.pdf
- [5] S. Papadopoulou et al, PRAB 23, 101004 (2020)
- [6] Mohamed A. Abed et al, Eur. Phys. J. C, 84:122 (2024)
- [7] CMS, Eur. Phys. J. C, 81:800 (2021)
- [8] CMS BRIL, Eur. Phys. J. C, 83:673 (2023)
- [9] ATLAS, Eur. Phys. J. C, 83:982 (2023)
- [10] CMS, CMS luminosity measurement for nucleus-nucleus collisions at 5.02 TeV in Run 2, CMS-PAS-LUM-20-002, https://cds.cern.ch/record/2905093
- [11] С. Верещагин, по поручению коллаборации MPD, MPD- Mногоцелевой Детектор коллайдера NICA, https://indico.jinr.ru/event/4174/contributions/25609/attachments/18636/31911/MPD%20-%20Mногоцелевой%20Детектор%20коллайдера%20NICA.pdf
- [12] CMS, Measurement of the offline integrated luminosity for the CMS proton-proton collision dataset recorded in 2023, CMS-DP-2024-068, https://cds.cern.ch/record/2904808
- [13] A.A. Babaev, W. Kozanecki, Impact of non-gaussian tails on beam-beam and non-factorization corrections, presented at LLCMWG, 02.05.2022
- [14] C. Rubbia, Measurement of the luminosity of p\overline{p} collider with a (generalized) Van der Meer Method, CERN p\overline{p} Note 38, 1977
- [15] C. A. Hugli on behalf of the ATLAS collaboration, PoS (EPS-HEP2023) 235
- [16] M. Klute et al, JINST 12, P03018 (2017)
- [17] CMS, Luminosity measurement in proton-proton collisions at 13.6 TeV in 2022 at CMS, CMS-PAS-LUM-22-001, https://cds.cern.ch/record/2890833
- [18] CERN ATS department, Study of the LHC ghost charge and satellite bunches for luminosity calibration, CERN-ATS-Note-2012-029 PERF, https://cds.cern.ch/record/1427728
- [19] A. Babaev, Coherent deflection of elliptic bunches colliding at crossing angle, https://arxiv.org/abs/2104.02595
- [20] A. Babaev et al, Eur. Phys. J. C, 84:17 (2024)
- [21] V. Balagura, Eur. Phys. J. C, 81:26 (2021)
- [22] A. Babaev on behalf of the CMS Collaboration, PoS (LHCP2019) 042
- [23] CMS Luminosity Public Results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults
- [24] CMS, CMS luminosity measurement for the 2017 data-taking period at \sqrt{s}=13 TeV, CMS-PAS-LUM-17-004, https://cds.cern.ch/record/2621960
- [25] CMS, CMS luminosity measurement for the 2018 data-taking period at \sqrt{s}=13 TeV, CMS-PAS-LUM-18-002, https://cds.cern.ch/record/2676164
- [26] CMS, Eur. Phys. J. C, 84:26 (2024)
- [27] G. R. Coombs, Beam-Gas Imaging at the LHCb Experiment, CERN-THESIS-2021-058, https://cds.cern.ch/record/2767576