

Preliminary Test Beam Results for the Muon Range System Prototype

Alexander Verkheev (DLNP, JINR)
for the SPD Muon System Group

Outline

- PANDA experiment and Muon System Detector
- SPD Muon System Design
- Results for the Muon System Prototype at CERN

PANDA/FAIR Setup

Topics of research: hadron structure and spectroscopy, strange and charm physics, hypernuclear physics with anti-proton beams.

- ppbar, pbarA collisions
 $p=1.5-15 \mathrm{GeV} / \mathrm{c}$, ($\sqrt{ }$ s from 2.25 up to 5.46 GeV)
- Luminosity up to $2 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Nearly 4 m solid angle for large acceptance
- Tracking : ~50 $\mu \mathrm{m}$ vertex resolution
- Different PID techniques for $\pi \pm, \mathrm{K} \pm, \mathrm{e} \pm, \mu \pm, \mathrm{Y}$ identification, good momentum resolution

PANDA/FAIR Setup

Muon System as PID

- PANDA/FAIR (SPD/NICA) Muon System based on range system technique is a good PID system for muon-to-hadron separation.
- It works in full energy range of secondary particles at PANDA ($0.5 \div 10 \mathrm{GeV}$).
- It resolves muons and hadrons with $\sim 100 \%$ efficiency (zero hadron contamination) above $\sim 1 \mathrm{GeV}$ by obviously different response pattern.
- Separation of muons vs pions (the main rival) below 1 GeV is less efficient and requires test beam measurements for calibration.
- Important feature of range system is possibility to be used as coarse sampling (30 mm to 60 mm of Fe in our case) hadron calorimeter - > very important for neutron registration!

Mini-Drift Tube (MDT) Detector as Basis for the Muon System

SPD/NICA Range System

Barrel, 8 modules

End Cap

SPD Barrel Structure (Cross Section)

2 layers x $60 \mathrm{~mm}+19$ layers x $30 \mathrm{~mm}=>$ Nuclear interaction length $\left(4.1 \lambda_{l}\right)$

SPD End Cap Structure (Cross Section)

35 mm - gaps for MDT detectors
12 layers x $60 \mathrm{~mm}=>$ Nuclear interaction length (4.3 λ_{l})

PANDA Range System Prototype

The absorber structure in horizontal position

PANDA Muon System Prototype @ PS/T9/CERN Beam Line

Event Examples (Run 822, P = $1 \mathrm{GeV} / \mathrm{c}$)

Event Examples (Run 829, P = $5 \mathrm{GeV} / \mathrm{c}$)

Event Examples (Run 835, P = $10 \mathrm{GeV} / \mathrm{c}$)

Selection Criteria for protons and antiprotons

For Calorimetry we estimate the energy of protons (antiprotons) by measuring the number of hits in event

1) Two scintillation counters of the TOF system (up to $5 \mathrm{GeV} / \mathrm{c}$)
2) Cherenkoff counters (>5 GeV/c)

Cher(A): 2 bar of CO_{2} <-> reject electron/pion/muon
3) Beam entrance spot

Calorimetry: PANDA FRS Structure

Sampling: $60 \mathrm{~mm} / \mathrm{Fe}$
Nuclear interaction length $\lambda_{l} \approx 5.2$

Calorimetry: PANDA MF+EC Structure

Sampling: $60 \mathrm{~mm} / \mathrm{Fe}$
Nuclear interaction length $\lambda_{l} \approx 3.4$

Calorimetry: PANDA Barrel Structure

Sampling: $30 \mathrm{~mm} / \mathrm{Fe}$
Nuclear interaction length $\lambda_{l} \approx 2.3$

Protons vs Antiprotons

PANDA FRS Structure, $\mathrm{T}=3.1 \mathrm{GeV}$

Summary and Plans

- SPD Muon system design is suggested.
- Calorimetry of PANDA Muon System Prototype for protons is performed using test beam data.

Plans:

- Developing 3D mechanical model of Muon System (detector geometry).
- Transferring the detector geometry from Computer-Aided Design system to particle transport Monte Carlo code like GEANT4 / ROOT.
- Digitization / pattern recognition of hadrons and muons.
- Calibration of the SPD system's response to the different particles and energies.
- Test of algorithms for μ / π separation (at low energies $\sim 0.5 \mathrm{GeV}$).

Backup Slides

SPD/NICA Range System

Barrel/Fe: End Caps/Fe :
Air gaps:
L/barrel:
$W=997.3+2 \times 326.6=1650.5$ ton
Version : 06.2018

G10 Fiberglass Strip Board

1 cm wide strips

RS Prototype for Beam Test

Fe volume $\sim 1 \mathrm{~m}^{3}(\sim 10 \mathrm{t}), 288$ MDTs 1 m long 2000 channels of wire R/O +2000 channels of strip R/O

Strip R/O from RS Prototype

Event Examples (Run 829, P = $5 \mathrm{GeV} / \mathrm{c}$)

Event Examples (Run 835, P = $10 \mathrm{GeV} / \mathrm{c}$)

Prototype Data (μ vs π)

Run 605
$\mathrm{P}=0.5 \mathrm{GeV} / \mathrm{c}$

Prev	4826	Next	4500	Set	04-06-2017 22:44:19
$\begin{array}{lll} \text { 04-06-2017 21:34:17 <>> 05-06-2017 08:50:54 } & 11.16 .37 \\ \Gamma \text { Profile } \Gamma \text { 「 Bistrip } & \text { Wires } \end{array}$					
	μ				1
					2
					3
					4
					5
					6
					7
					8
					10

Test Beam Results (Preliminary)

EPJ WoC, Volume 177 (2018) 04001

$$
\text { Run 605, autumn } 2017
$$ momentum $=0.5 \mathrm{GeV} / \mathrm{c}$

Selection -> after layer \#7:

22% - pion contamination and
93\% - muon efficiency

FairBoxGenerator, PandaROOT $\mathrm{P}=0.5 \mathrm{GeV} / \mathrm{c}$

Selection -> after layer \#7:
27% - pion contamination and
99\% - muon efficiency

Estimated maximum flux in beam @ T9

Estimated maximum flux in positive beam

Estimated maximum flux in negative beam

