

Kinetics of polarization and filtering

Sergey Salnikov

Budker Institute of Nuclear Physics Novosibirsk, Russia

International Workshop on Spin Physics at NICA (SPIN-Praha-2018)

July 9, 2018

- Motivation: possibilities to polarize antiproton beams.
- General form of a kinetic equation for spin observables.
- Spin evolution in scattering processes equations and solutions.
- Spin evolution for the case when some particles are scattered out of the beam equations and solutions.
- Kinetics of polarization in $p\bar{p}$ scattering predictions within different models.
- \bullet A possibility to improve theoretical predictions for $p\bar{p}$ scattering cross sections.

Polarizing antiproton beams

PAX Collaboration proposed experiments with polarized antiprotons and protons.

Lenisa P., Rathmann F., et. al., arXiv:hep-ex/0505054.

- The transversity distribution is directly accessible via the double transverse spin asymmetry A_{TT} in the Drell-Yan production of lepton pairs.
- The relative phase of the magnetic and electric form factors of the proton in the time-like region can only be measured in the annihilation $p\bar{p} \rightarrow e^+e^-$ on a transversely polarized target.
- And more.

How to polarize antiproton beam?

Polarizing antiproton beams

PAX Collaboration proposed experiments with polarized antiprotons and protons.

Lenisa P., Rathmann F., et. al., arXiv:hep-ex/0505054.

- The transversity distribution is directly accessible via the double transverse spin asymmetry A_{TT} in the Drell-Yan production of lepton pairs.
- The relative phase of the magnetic and electric form factors of the proton in the time-like region can only be measured in the annihilation $p\bar{p} \rightarrow e^+e^-$ on a transversely polarized target.
- And more.

There are two processes that result in polarization build-up: spin flip and spin filtering

However, spin flip cross sections are negligibly small to polarize antiprotons. Milstein A. I., Strakhovenko V. M., Phys. Rev. E 72, 66503 (2005). Milstein A. I., Salnikov S. G., Strakhovenko V. M., NIMB 266, 3453 (2008). Oellers D., et al., Phys. Lett. B 674, 269 (2009). (COSY experiment with protons)

Spin filtering

• Proposed in 1968 to polarize proton beams.

Csonka P. L., Nucl. Instruments Methods 63, 247 (1968).

- Was proved to be applicable to pp scattering at $T_{lab} = 49.3 \text{ MeV}$. Augustyniak W., et al., Phys. Lett. B 718, 64 (2012). (COSY experiment)
- No experiments with antiprotons have been carried out so far.

Kinetic equation

For arbitrary operator \mathcal{O} that doesn't depend on \boldsymbol{p} and \boldsymbol{r} : $\frac{d}{dt}\mathcal{O}_{H} = i[H,\mathcal{O}_{H}]$ Average over $\psi_{\boldsymbol{k}}(\boldsymbol{r}) \sim \sqrt{N} \left(e^{i\boldsymbol{k}\cdot\boldsymbol{r}} + \frac{e^{i\boldsymbol{k}\boldsymbol{r}}}{r}F(\boldsymbol{n},\boldsymbol{n}_{0}) \right) \chi_{1}\chi_{2}, \qquad \boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ $n_{0} = \boldsymbol{k}/\boldsymbol{k}$ $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ \boldsymbol{k} $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ \boldsymbol{k} $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ $\boldsymbol{n}_{0} = \boldsymbol{k}/\boldsymbol{k}$ $\boldsymbol{n}_{0} = \boldsymbol{k}$

- $ho(t)=
 ho_1(t)\cdot
 ho_2(t)$ is the density matrix of the system
- 1st particle belongs to the beam
- 2nd particle belongs to the target
- $F(\boldsymbol{n}, \boldsymbol{n}_0)$ is the scattering amplitude (matrix in the spin space)
- $\bullet \ N$ is the density of the target
- $\bullet \ v$ is the beam velocity

These equations are valid if the number of particles is conserved ($N_B = \text{const}$).

Kinetic equation

For arbitrary operator \mathcal{O} that doesn't depend on p and r: $\frac{d}{dt}\mathcal{O}_{H} = i[H,\mathcal{O}_{H}]$ Average over $\psi_{k}(r) \sim \sqrt{N} \left(e^{ik \cdot r} + \frac{e^{ikr}}{r}F(n,n_{0}) \right) \chi_{1}\chi_{2}, \qquad n_{0} = k/k$ $n_{0} = k/k$ n = r/r $\frac{d}{dt} \langle \mathcal{O} \rangle = vN \operatorname{Sp} \left\{ \rho(t) \left[\int d\Omega_{n}F^{+}\mathcal{O}F - \frac{2\pi i}{k} \left(F^{+}(0)\mathcal{O} - \mathcal{O}F(0) \right) \right] \right\}$ $\operatorname{Sp} \left\{ \rho(t) \left[\int d\Omega_{n}F^{+}F - \frac{2\pi i}{k} \left(F^{+}(0) - F(0) \right) \right] \right\} = 0 \quad - \text{unitarity relation}$

The kinetic equations can be generalized to the case of filtering ($N_B \neq \text{const}$):

$$\frac{d}{dt} \langle \mathcal{O} \rangle = vN \operatorname{Sp} \left\{ \rho(t) \left[\int_{\theta < \theta_{\operatorname{acc}}} d\Omega_{\boldsymbol{n}} F^{+} \left(\mathcal{O} - \langle \mathcal{O} \rangle \right) F - \frac{2\pi i}{k} \left(F^{+}(0) \left(\mathcal{O} - \langle \mathcal{O} \rangle \right) - \left(\mathcal{O} - \langle \mathcal{O} \rangle \right) F(0) \right) \right] \right\}$$

$$\frac{dn}{dt} = vN\operatorname{Sp}\left\{\rho(t)\left[\int_{\theta < \theta_{\operatorname{acc}}} d\Omega_{\boldsymbol{n}} F^{+}F - \frac{2\pi i}{k}\left(F^{+}(0) - F(0)\right)\right]\right\}, \quad n(t) = \frac{N_{B}(t)}{N_{B}(0)}$$

Spin evolution for $S_1 = \frac{1}{2}$, $S_2 = 0$ ($N_B = \text{const}$)

$$ho_1(t) = rac{1}{2} \left(1 + \boldsymbol{\zeta}_1(t) \cdot \boldsymbol{\sigma}_1
ight), \qquad
ho_2 = 1$$
 $F = f_0 + f_1 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\nu}, \qquad \boldsymbol{\nu} = \left[\boldsymbol{n} \times \boldsymbol{n}_0
ight], \qquad f_0, \ f_1 ext{ are scalar functions}$

• The unitarity relation reduces to the optical theorem:

$$\int d\Omega_{n} \left[\left| f_{0} \right|^{2} + \left| f_{1} \right|^{2} \nu^{2} \right] = \frac{4\pi}{k} \operatorname{Im} f_{0}(0)$$

• The spin relaxation is determined by the following equation:

ы

$$\frac{d}{dt}\boldsymbol{\zeta}_{1} = -\Omega\left[\boldsymbol{\zeta}_{1} + (\boldsymbol{\zeta}_{1} \cdot \boldsymbol{n}_{0})\boldsymbol{n}_{0}\right], \qquad \Omega = vN\int d\Omega_{\boldsymbol{n}}\nu^{2}|f_{1}|^{2}$$

The general solution of this equation is

$$\boldsymbol{\zeta}_{1}(t) = \underbrace{\left[\boldsymbol{\zeta}_{1}(0) - \boldsymbol{n}_{0}\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0}\right)\right] e^{-\Omega t}}_{\perp \text{ to } \boldsymbol{n}_{0}} + \underbrace{\boldsymbol{n}_{0}\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0}\right) e^{-2\Omega t}}_{\parallel \text{ to } \boldsymbol{n}_{0}}$$

During relaxation not only diminishing of $\zeta_1(t)$ takes place but also rotation of the direction of $\zeta_1(t)$.

Sergey Salnikov (BINP)

Spin evolution for $S_1 = \frac{1}{2}$, $S_2 = \frac{1}{2}$ ($N_B = \text{const}$)

$$\rho_1(t) = \frac{1}{2} (1 + \zeta_1(t) \cdot \boldsymbol{\sigma}_1), \qquad \rho_2 = \frac{1}{2} (1 + \zeta_2 \cdot \boldsymbol{\sigma}_2)$$

$$F = f_0 + (f_1 \sigma_1 + f_2 \sigma_2) \cdot \boldsymbol{\nu} + T^{ij} \sigma_1^i \sigma_2^j, \qquad \boldsymbol{\nu} = [\boldsymbol{n} \times \boldsymbol{n}_0]$$

$$T^{ij} = f_3 \delta^{ij} + f_4 \left(n_0^i n_0^j + n^i n^j \right) + f_5 \left(n_0^i n^j + n^i n_0^j \right)$$

• Unitarity relations:

$$\int d\Omega_{n} \left[|f_{0}|^{2} + \nu^{2} |f_{1}|^{2} + \nu^{2} |f_{2}|^{2} + T^{ab*} T^{ab} \right] = \frac{4\pi}{k} \operatorname{Im} f_{0}(0)$$
$$\int d\Omega_{n} \left[2 \operatorname{Re} \left(f_{0}^{*} T^{ab} \right) + 2 \operatorname{Re} (f_{1}^{*} f_{2}) \nu^{a} \nu^{b} - T^{ij*} T^{\alpha\beta} \epsilon^{i\alpha a} \epsilon^{j\beta b} \right] = \frac{4\pi}{k} \operatorname{Im} T^{ab}(0)$$

• Spin evolution is determined by the following equation:

$$\begin{aligned} \frac{d}{dt}\boldsymbol{\zeta}_1 &= A_1\boldsymbol{\zeta}_1 + B_1\left(\boldsymbol{\zeta}_1\cdot\boldsymbol{n}_0\right)\boldsymbol{n}_0 \\ &+ A_2\left[\boldsymbol{\zeta}_1\times\boldsymbol{\zeta}_2\right] + B_2\left(\boldsymbol{\zeta}_2\cdot\boldsymbol{n}_0\right)\left[\boldsymbol{\zeta}_1\times\boldsymbol{n}_0\right] \\ &+ A_3\boldsymbol{\zeta}_2 + B_3\left(\boldsymbol{\zeta}_2\cdot\boldsymbol{n}_0\right)\boldsymbol{n}_0 \end{aligned}$$

The coefficients A_i , B_i can be expressed via f_i .

 $A_1 < 0, A_1 + B_1 < 0$

$$\begin{aligned} \boldsymbol{\zeta}_2 &= 0\\ \boldsymbol{\zeta}_1(t) &= \left[\boldsymbol{\zeta}_1(0) - \boldsymbol{n}_0 \left(\boldsymbol{\zeta}_1(0) \cdot \boldsymbol{n}_0 \right) \right] e^{A_1 t} + \boldsymbol{n}_0 \left(\boldsymbol{\zeta}_1(0) \cdot \boldsymbol{n}_0 \right) e^{(A_1 + B_1) t} \qquad (\text{as for } S_2 = 0) \end{aligned}$$

$$\begin{aligned} \boldsymbol{\zeta}_{2} &= 0\\ \boldsymbol{\zeta}_{1}(t) &= \left[\boldsymbol{\zeta}_{1}(0) - \boldsymbol{n}_{0} \left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0} \right) \right] e^{A_{1}t} + \boldsymbol{n}_{0} \left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0} \right) e^{(A_{1} + B_{1})t} & (\text{as for } S_{2} = 0) \end{aligned}$$
$$\begin{aligned} \boldsymbol{\zeta}_{2} \parallel \boldsymbol{n}_{0} \\ \boldsymbol{\zeta}_{1}(t) &= \left(e^{(A_{1} + B_{1})t} - 1 \right) \boxed{\frac{A_{3} + B_{3}}{A_{1} + B_{1}}} \boldsymbol{\zeta}_{2} + e^{A_{1}t} \left[\cos(\omega t) \boldsymbol{\zeta}_{1}(0) + \sin(\omega t) \left[\boldsymbol{\zeta}_{1}(0) \times \boldsymbol{n}_{0} \right] \right] \\ &+ \left[e^{(A_{1} + B_{1})t} - e^{A_{1}t} \cos(\omega t) \right] \boldsymbol{n}_{0} \left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0} \right), \qquad \omega = (A_{2} + B_{2}) \boldsymbol{\zeta}_{2} \end{aligned}$$

$$\zeta_{2} = 0$$

$$\zeta_{1}(t) = \left[\zeta_{1}(0) - \boldsymbol{n}_{0} \left(\zeta_{1}(0) \cdot \boldsymbol{n}_{0}\right)\right] e^{A_{1}t} + \boldsymbol{n}_{0} \left(\zeta_{1}(0) \cdot \boldsymbol{n}_{0}\right) e^{(A_{1}+B_{1})t} \qquad (\text{as for } S_{2} = 0)$$

 $oldsymbol{\zeta}_2 \parallel oldsymbol{n}_0$

$$\boldsymbol{\zeta}_{1}(t) = \left(e^{(A_{1}+B_{1})t} - 1\right) \left[\frac{A_{3}+B_{3}}{A_{1}+B_{1}} \boldsymbol{\zeta}_{2} \right] + e^{A_{1}t} \left[\cos(\omega t) \boldsymbol{\zeta}_{1}(0) + \sin(\omega t) \left[\boldsymbol{\zeta}_{1}(0) \times \boldsymbol{n}_{0} \right] \right] \\ + \left[e^{(A_{1}+B_{1})t} - e^{A_{1}t} \cos(\omega t) \right] \boldsymbol{n}_{0} \left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0} \right), \qquad \omega = (A_{2}+B_{2}) \boldsymbol{\zeta}_{2}$$

 $oldsymbol{\zeta}_2 \perp oldsymbol{n}_0$

$$\begin{aligned} \boldsymbol{\zeta}_{1}(t) &= \left(e^{A_{1}t} - 1\right) \left[\frac{A_{3}}{A_{1}} \boldsymbol{\zeta}_{2}\right] + e^{(A_{1} + B_{1}/2)t} \cos(\Omega t) \boldsymbol{\zeta}_{1}(0) + e^{(A_{1} + B_{1}/2)t} \sin(\Omega t) \times \\ &\times \left\{\frac{A_{2}}{\Omega} \left[\boldsymbol{\zeta}_{1}(0) \times \boldsymbol{\zeta}_{2}\right] + \frac{B_{1}}{2\Omega} \left[\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0}\right) \boldsymbol{n}_{0} - \frac{\left(\boldsymbol{\zeta}_{1}(0) \cdot \left[\boldsymbol{\zeta}_{2} \times \boldsymbol{n}_{0}\right]\right)}{\boldsymbol{\zeta}_{2}^{2}} \left[\boldsymbol{\zeta}_{2} \times \boldsymbol{n}_{0}\right]\right]\right\} \\ &+ \left(e^{A_{1}t} - e^{(A_{1} + B_{1}/2)t} \cos(\Omega t)\right) \frac{\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{\zeta}_{2}\right)}{\boldsymbol{\zeta}_{2}^{2}} \boldsymbol{\zeta}_{2}, \qquad \Omega = \sqrt{A_{2}^{2} \boldsymbol{\zeta}_{2}^{2} - B_{1}^{2}/4} \end{aligned}$$

Sergey Salnikov (BINP)

 $\boldsymbol{\zeta}_{1}(t) = \left[\zeta_{1}(0) - n_{0}\left(\zeta_{1}(0) \cdot n_{0}\right)\right] e^{A_{1}t} + n_{0}\left(\zeta_{1}(0) \cdot n_{0}\right) e^{(A_{1}+B_{1})}$

t
$$(as for S_2 = 0)$$

$oldsymbol{\zeta}_2 \parallel oldsymbol{n}_0$

 $\boldsymbol{\zeta}_2 = 0$

$$\boldsymbol{\zeta}_{1}(t) = \left(e^{(A_{1}+B_{1})t} - 1\right) \left[\frac{A_{3}+B_{3}}{A_{1}+B_{1}} \boldsymbol{\zeta}_{2} \right] + e^{A_{1}t} \left[\cos(\omega t) \boldsymbol{\zeta}_{1}(0) + \sin(\omega t) \left[\boldsymbol{\zeta}_{1}(0) \times \boldsymbol{n}_{0} \right] \right] \\ + \left[e^{(A_{1}+B_{1})t} - e^{A_{1}t} \cos(\omega t) \right] \boldsymbol{n}_{0} \left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0} \right), \qquad \omega = (A_{2}+B_{2}) \boldsymbol{\zeta}_{2}$$

 $oldsymbol{\zeta}_2 \perp oldsymbol{n}_0$

$$\begin{aligned} \boldsymbol{\zeta}_{1}(t) &= \left(e^{A_{1}t} - 1\right) \left[\frac{A_{3}}{A_{1}} \boldsymbol{\zeta}_{2}\right] + e^{(A_{1} + B_{1}/2)t} \cos(\Omega t) \boldsymbol{\zeta}_{1}(0) + e^{(A_{1} + B_{1}/2)t} \sin(\Omega t) \times \\ &\times \left\{\frac{A_{2}}{\Omega} \left[\boldsymbol{\zeta}_{1}(0) \times \boldsymbol{\zeta}_{2}\right] + \frac{B_{1}}{2\Omega} \left[\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{n}_{0}\right) \boldsymbol{n}_{0} - \frac{\left(\boldsymbol{\zeta}_{1}(0) \cdot \left[\boldsymbol{\zeta}_{2} \times \boldsymbol{n}_{0}\right]\right)}{\boldsymbol{\zeta}_{2}^{2}} \left[\boldsymbol{\zeta}_{2} \times \boldsymbol{n}_{0}\right]\right]\right\} \\ &+ \left(e^{A_{1}t} - e^{(A_{1} + B_{1}/2)t} \cos(\Omega t)\right) \frac{\left(\boldsymbol{\zeta}_{1}(0) \cdot \boldsymbol{\zeta}_{2}\right)}{\boldsymbol{\zeta}_{2}^{2}} \boldsymbol{\zeta}_{2}, \qquad \Omega = \sqrt{A_{2}^{2} \boldsymbol{\zeta}_{2}^{2} - B_{1}^{2}/4} \end{aligned}$$

Sergey Salnikov (BINP)

Kinetics of polarization in $e^+\bar{p}$ scattering

• All of the coefficients were calculated analytically. For the most interesting case $\xi=-\frac{\alpha}{v}\to-\infty$:

$$A_{1} = -2\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \left(\pi^{2} \xi^{2} \left(\frac{25}{3} - 6\ln 2\right) + \ln \frac{l_{\max}}{|\xi|}\right), \quad A_{3} = 4\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \pi^{2} \xi^{2} \left(\frac{1}{3} + 2\ln 2\right)$$
$$B_{1} = -2\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \left(\pi^{2} \xi^{2} \left(2\ln 2 - 1\right) + \ln \frac{l_{\max}}{|\xi|}\right), \qquad B_{3} = 4\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \pi^{2} \xi^{2} \left(7 - 10\ln 2\right)$$

$$\boldsymbol{\zeta}_{1}(t) = \boldsymbol{P}_{0}\boldsymbol{\zeta}_{2}\left(1 - e^{-\Omega t}\right), \qquad \qquad \Omega = vNlf\frac{\gamma_{B}^{2}}{V_{B}}\cdot\boldsymbol{\sigma}$$

Kinetics of polarization in $e^+\bar{p}$ scattering

• All of the coefficients were calculated analytically. For the most interesting case $\xi = -\frac{\alpha}{v} \to -\infty$:

$$A_{1} = -2\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \left(\pi^{2} \xi^{2} \left(\frac{25}{3} - 6\ln 2\right) + \ln \frac{l_{\max}}{|\xi|}\right), \quad A_{3} = 4\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \pi^{2} \xi^{2} \left(\frac{1}{3} + 2\ln 2\right)$$
$$B_{1} = -2\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \left(\pi^{2} \xi^{2} \left(2\ln 2 - 1\right) + \ln \frac{l_{\max}}{|\xi|}\right), \qquad B_{3} = 4\pi N v \left(\frac{\alpha \mu_{0}}{m_{p}}\right)^{2} \pi^{2} \xi^{2} \left(7 - 10\ln 2\right)$$

$$\boldsymbol{\zeta}_{1}(t) = \boldsymbol{P}_{0}\boldsymbol{\zeta}_{2}\left(1 - e^{-\Omega t}\right), \qquad \qquad \Omega = vNlf\frac{\gamma_{B}^{2}}{V_{B}}\cdot\boldsymbol{\sigma}$$

 $\begin{array}{ll} P_0 = 0.75\,, & \sigma = 0.8\,{\rm mb}\,, & \mbox{if } \pmb{\zeta}_2 \parallel \pmb{n}_0 \\ P_0 = 0.8\,, & \sigma = 0.72\,{\rm mb}\,, & \mbox{if } \pmb{\zeta}_2 \perp \pmb{n}_0 \end{array}$

Time of polarization is about 10^9 years

 $v/c = 0.0019\,, \quad V_b/c = 0.95\,, \quad N = 1.4 \cdot 10^4 \, {\rm cm}^{-3}\,, \quad l = 2 \, {\rm m}\,, \quad \rho = 2 \, {\rm mm}\,, \quad f = 0.71 {\rm MHz}$

Milstein A. I., Salnikov S. G., Strakhovenko V. M., NIMB 266, 3453 (2008).

Sergey Salnikov (BINP)

Spin evolution in $pp (p\bar{p})$ scattering $(N_B \neq \text{const})$

Particles are scattered out of the beam if the scattering angle $\theta > \theta_{acc} \ (\theta_{acc} \ll 1)$.

$$\rho_{1}(t) = \frac{1}{2} (1 + \zeta_{1}(t) \cdot \sigma_{1}), \qquad \rho_{2} = \frac{1}{2} (1 + \zeta_{2} \cdot \sigma_{2})$$

$$F = \underbrace{f_{C}}_{\text{singular}} + \underbrace{f_{0} + f_{1}}_{S} \underbrace{(\sigma_{1} + \sigma_{2}) \cdot \nu + T^{ij} \sigma_{1}^{i} \sigma_{2}^{j}}_{S}, \qquad \nu = [n \times n_{0}]$$

$$\frac{dn}{dt} = -vN\sigma \cdot n$$

$$\sigma = \sigma_{0} + \sigma_{1} (\zeta_{1} \cdot \zeta_{2}) + (\sigma_{2} - \sigma_{1}) (\zeta_{1} \cdot n_{0}) (\zeta_{2} \cdot n_{0}), \qquad \sigma_{i} = \sigma_{i}^{C} + \sigma_{i}^{h} + \sigma_{i}^{\text{int}}$$

Kinetic equation

$$\frac{d}{dt}\boldsymbol{\zeta}_{1} = A_{1}\left[\left(\boldsymbol{\zeta}_{1}\cdot\boldsymbol{\zeta}_{2}\right)\boldsymbol{\zeta}_{1}-\boldsymbol{\zeta}_{2}\right] + B_{1}\left(\boldsymbol{n}_{0}\cdot\boldsymbol{\zeta}_{2}\right)\left[\left(\boldsymbol{\zeta}_{1}\cdot\boldsymbol{n}_{0}\right)\boldsymbol{\zeta}_{1}-\boldsymbol{n}_{0}\right] \\ + A_{2}\left[\boldsymbol{\zeta}_{1}\times\boldsymbol{\zeta}_{2}\right] + B_{2}\left(\boldsymbol{n}_{0}\cdot\boldsymbol{\zeta}_{2}\right)\left[\boldsymbol{\zeta}_{1}\times\boldsymbol{n}_{0}\right]$$

$$A_1 = vN \cdot \sigma_1, \qquad A_2 = vN \cdot \mathcal{R}_1 B_1 = vN \cdot (\sigma_2 - \sigma_1), \qquad B_2 = vN \cdot (\mathcal{R}_2 - \mathcal{R}_1)$$

Spin evolution in pp ($p\bar{p}$) scattering (special solutions)

- $\zeta_2 = 0 \implies \zeta_1 = \text{const}$
- $\pmb{\zeta}_2 \parallel \pmb{n}_0$ or $\pmb{\zeta}_2 \perp \pmb{n}_0$

$$\begin{aligned} \frac{d}{dt}\boldsymbol{\zeta}_{1} &= \lambda \left((\boldsymbol{\zeta}_{1} \cdot \hat{\boldsymbol{\zeta}}_{2}) \boldsymbol{\zeta}_{1} - \hat{\boldsymbol{\zeta}}_{2} \right) + \omega \begin{bmatrix} \boldsymbol{\zeta}_{1} \times \hat{\boldsymbol{\zeta}}_{2} \end{bmatrix}, & \hat{\boldsymbol{\zeta}}_{2} &= \boldsymbol{\zeta}_{2}/\boldsymbol{\zeta}_{2} \\ \lambda &= vN\boldsymbol{\zeta}_{2} \cdot \boldsymbol{\sigma}_{1}, & \omega &= vN\boldsymbol{\zeta}_{2} \cdot \boldsymbol{\mathcal{R}}_{1}, & \text{if } \boldsymbol{\zeta}_{2} \perp \boldsymbol{n}_{0} \\ \lambda &= vN\boldsymbol{\zeta}_{2} \cdot \boldsymbol{\sigma}_{2}, & \omega &= vN\boldsymbol{\zeta}_{2} \cdot \boldsymbol{\mathcal{R}}_{2}, & \text{if } \boldsymbol{\zeta}_{2} \parallel \boldsymbol{n}_{0} \end{aligned}$$

Spin evolution in pp ($p\bar{p}$) scattering (special solutions)

•
$$\zeta_2 = 0 \implies \zeta_1 = \text{const}$$

• $\zeta_2 \parallel \mathbf{n}_0 \text{ or } \zeta_2 \perp \mathbf{n}_0$

$$\frac{d}{dt} \boldsymbol{\zeta}_1 = \lambda \left((\boldsymbol{\zeta}_1 \cdot \hat{\boldsymbol{\zeta}}_2) \boldsymbol{\zeta}_1 - \hat{\boldsymbol{\zeta}}_2 \right) + \omega \begin{bmatrix} \boldsymbol{\zeta}_1 \times \hat{\boldsymbol{\zeta}}_2 \end{bmatrix}, \qquad \hat{\boldsymbol{\zeta}}_2 = \boldsymbol{\zeta}_2 / \boldsymbol{\zeta}_2$$

$$\lambda = vN \boldsymbol{\zeta}_2 \cdot \boldsymbol{\sigma}_1, \qquad \omega = vN \boldsymbol{\zeta}_2 \cdot \boldsymbol{\mathcal{R}}_1, \qquad \text{if } \boldsymbol{\zeta}_2 \perp \mathbf{n}_0$$

$$\lambda = vN \boldsymbol{\zeta}_2 \cdot \boldsymbol{\sigma}_2, \qquad \omega = vN \boldsymbol{\zeta}_2 \cdot \boldsymbol{\mathcal{R}}_2, \qquad \text{if } \boldsymbol{\zeta}_2 \parallel \mathbf{n}_0$$

 $\begin{aligned} \boldsymbol{\zeta}_1(0) &= 0 \text{ or } \boldsymbol{\zeta}_1(0) \parallel \boldsymbol{\zeta}_2 \\ \frac{d}{dt} \boldsymbol{\zeta}_1 &= \lambda \left(\boldsymbol{\zeta}_1^2 - 1 \right) \qquad \Longrightarrow \qquad \boldsymbol{\zeta}_1(t) = -\tanh\left(\lambda t - \operatorname{artanh} \boldsymbol{\zeta}_1(0)\right) \end{aligned}$

$\boldsymbol{\zeta}_1(0) \not\parallel \boldsymbol{\zeta}_2$

$$\begin{aligned} \boldsymbol{\zeta}_{1}(t) &= -\mathrm{tanh}\left(\lambda t - \mathrm{artanh}\big(\boldsymbol{\zeta}_{1}(0) \cdot \hat{\boldsymbol{\zeta}}_{2}\big)\right) \cdot \hat{\boldsymbol{\zeta}}_{2} \\ &- \frac{\sin\left(\omega t\right) \cdot \left[\hat{\boldsymbol{\zeta}}_{2} \times \boldsymbol{\zeta}_{1}(0)\right] + \cos\left(\omega t\right) \cdot \left[\hat{\boldsymbol{\zeta}}_{2} \times \left[\hat{\boldsymbol{\zeta}}_{2} \times \boldsymbol{\zeta}_{1}(0)\right]\right]}{\cosh\left(\lambda t - \mathrm{artanh}\big(\boldsymbol{\zeta}_{1}(0) \cdot \hat{\boldsymbol{\zeta}}_{2}\big)\right) \sqrt{1 - \big(\boldsymbol{\zeta}_{1}(0) \cdot \hat{\boldsymbol{\zeta}}_{2}\big)^{2}}} \end{aligned}$$

Kinetics of polarization in $p\bar{p}$ scattering

$$\begin{split} \boldsymbol{\zeta}_{1}(t) &= -\tanh\left(\lambda t\right) \cdot \boldsymbol{\hat{\zeta}}_{2} \\ \lambda &= \begin{cases} N_{a} f \boldsymbol{\zeta}_{2} \cdot \boldsymbol{\sigma}_{1} \,, & \text{if } \boldsymbol{\zeta}_{2} \perp \boldsymbol{n}_{0} \\ N_{a} f \boldsymbol{\zeta}_{2} \cdot \boldsymbol{\sigma}_{2} \,, & \text{if } \boldsymbol{\zeta}_{2} \parallel \boldsymbol{n}_{0} \end{cases} \\ n(t) &= n(0) \cdot e^{-t/\tau_{B}} \\ \tau_{B} &\approx 1/\left(N_{a} f \boldsymbol{\sigma}_{0}\right) \end{split}$$

 N_a is the areal density of the target, f is the beam revolving frequency.

The optimum ratio between the beam polarization and the number of particles at $t = t_0 \approx 2\tau_B$.

$$\zeta_1(t_0) \approx \begin{cases} -2\zeta_2 \frac{\sigma_1}{\sigma_0} \,, & \text{if } \boldsymbol{\zeta}_2 \perp \boldsymbol{n}_0 \\ \\ -2\zeta_2 \frac{\sigma_2}{\sigma_0} \,, & \text{if } \boldsymbol{\zeta}_2 \parallel \boldsymbol{n}_0 \end{cases}$$
$$n(t_0) \approx 0.14 \cdot n(0)$$

Jülich A, D models ($\theta_{\rm acc} = 10 \, {\rm mrad}$)

Uzikov Y., Haidenbauer J., Phys. Rev. C 79, 24617 (2009).

Sergey Salnikov (BINP)

Paris model (2009)

Dmitriev V. F., Milstein A. I., Strakhovenko V. M., NIMB 266, 1122 (2008).

Sergey Salnikov (BINP)

Nijmegen model (1994)

Dmitriev V. F., Milstein A. I., Salnikov S. G., Phys. Lett. B 690, 427 (2010).

Sergey Salnikov (BINP)

Nijmegen model (2012)

Zhou D., Timmermans R. G. E., Phys. Rev. C 87, 54005 (2013).

Sergey Salnikov (BINP)

How to improve the theoretical predictions?

- There are several optical potential models describing $N\bar{N}$ interaction at low energies.
- The parameters of these models were obtained by fitting the experimental data mainly for scattering of unpolarized particles and some single-spin observables.
- The predictions for some spin-dependent observables are essentially different.
- No experiments with polarized antiprotons have been carried out so far.

How to improve the theoretical predictions?

- There are several optical potential models describing $N\bar{N}$ interaction at low energies.
- The parameters of these models were obtained by fitting the experimental data mainly for scattering of unpolarized particles and some single-spin observables.
- The predictions for some spin-dependent observables are essentially different.
- No experiments with polarized antiprotons have been carried out so far.

$N\bar{N}$ production near the threshold

 $N\bar{N}$ production at small distance $N\bar{N}$ interaction at large distance (QCD) (optical potential)

Possible states of $N\bar{N}$ pair: ${}^{3}S_{1} - {}^{3}D_{1}$, coupled by the tensor forces $\implies u_{1}^{I}(r), u_{2}^{I}(r)$

(

$$\begin{split} G_{M}^{I} &= G_{s}^{I} \left[u_{1}^{I}(0) + \frac{1}{\sqrt{2}} u_{2}^{I}(0) \right] \\ \frac{2M}{Q} G_{E}^{I} &= G_{s}^{I} \left[u_{1}^{I}(0) - \sqrt{2} u_{2}^{I}(0) \right] \\ \sigma_{\text{el}}^{I} &= \frac{2\pi\beta\alpha^{2}}{Q^{2}} \left| G_{s}^{I} \right|^{2} \left[\left| u_{1}^{I}(0) \right|^{2} + \left| u_{2}^{I}(0) \right|^{2} \right] \qquad - \text{``elastic''} \end{split}$$

$N\bar{N}$ production near the threshold

 $N\bar{N}$ production at small distance (QCD) $\implies N\bar{N}$ interaction at large distance (optical potential)

Possible states of $N\bar{N}$ pair: ${}^{3}S_{1} - {}^{3}D_{1}$, coupled by the tensor forces $\Longrightarrow u_{1}^{I}(r), u_{2}^{I}(r)$

 $N\bar{N}$ contribution to the total hadronic cross section $\sigma_{\text{tot}}^{I} = -\frac{2\pi\alpha^{2}}{M^{2}Q^{2}} \left|G_{s}^{I}\right|^{2} \operatorname{Sp}\left[\operatorname{Im}\mathcal{D}(0,0|E)\right]$ - "total"

 \bullet Valid also below the $N\bar{N}$ threshold

Sergey Salnikov (BINP)

 J/ψ decays

$$\begin{split} J/\psi \to p\bar{p}\pi^0(\eta): \ {}^3S_1 - {}^3D_1 \ N\bar{N} \text{ states dominate near} \\ \text{ the threshold of } p\bar{p} \text{ production} \\ \frac{d\Gamma}{dM_{p\bar{p}}} = \frac{\mathcal{G}_I^2 p k^3}{2^5 \, 3\pi^3 m_{J/\psi}^4} \left(\left| u_1^I(0) \right|^2 + \left| u_2^I(0) \right|^2 \right) \end{split}$$

 J/ψ decays

$$\begin{split} J/\psi \to p\bar{p}\pi^0(\eta): \ {}^3S_1 - {}^3D_1 \ N\bar{N} \text{ states dominate near} \\ \text{the threshold of } p\bar{p} \text{ production} \\ \frac{d\Gamma}{dM_{p\bar{p}}} = \frac{\mathcal{G}_I^2 p k^3}{2^5 \, 3\pi^3 m_{J/\psi}^4} \left(\left| u_1^I(0) \right|^2 + \left| u_2^I(0) \right|^2 \right) \end{split}$$

 $J/\psi \to p\bar{p}\gamma(
ho,\omega)$: $^1S_0~N\bar{N}$ state dominates near the threshold of $p\bar{p}$ production

$$\frac{d\Gamma}{dM_{p\bar{p}}} = \frac{\mathcal{G}_I^2 p k^3}{2^4 \, 3\pi^3 m_{J/\psi}^4} \left| u^I(0) \right|^2$$

Simple optical potential model of $N\bar{N}$ interaction

- Long-range pion-exchange potential, short-range potential well for each partial wave.
- Experimental data taken into account include:
 - ▶ $N\bar{N}$ scattering cross sections (elastic, charge-exchange $p\bar{p} \leftrightarrow n\bar{n}$ and annihilation)
 - ▶ $p\bar{p}$ and $n\bar{n}$ production in e^+e^- annihilation
 - ▶ ratio of electromagnetic form factors of the proton $\left|G_{E}^{p}/G_{M}^{p}\right|$
 - $p\bar{p}$ invariant mass spectra of the decays $J/\psi \rightarrow p\bar{p}\pi^0(\eta)$ and $J/\psi \rightarrow p\bar{p}\gamma(\omega)$

Dmitriev V. F., Milstein A. I., Salnikov S. G., Phys. Rev. D 93, 34033 (2016).

$par{p}$ invariant mass spectra of ψ decays $({}^3S_1 - {}^3D_1)$

Dmitriev V. F., Milstein A. I., Salnikov S. G., Phys. Lett. B 760, 139 (2016).

Sergey Salnikov (BINP)

$par{p}$ invariant mass spectra of ψ decays $({}^1S_0)$

Milstein A. I., Salnikov S. G., Nucl. Phys. A 966, 54 (2017).

Sergey Salnikov (BINP)

Conclusions

- An approach was demonstrated how to obtain kinetic equations for any spin observables.
- The equations for spin evolution in different scattering processes were obtained and the solutions of these equations were discussed.
- Kinetics of polarization in $p\bar{p}$ scattering was studied within several optical potential models. The predictions obtained are very different!
- An idea is proposed how to improve the models of $N\bar{N}$ interaction. Further investigations are required.

Conclusions

- An approach was demonstrated how to obtain kinetic equations for any spin observables.
- The equations for spin evolution in different scattering processes were obtained and the solutions of these equations were discussed.
- Kinetics of polarization in $p\bar{p}$ scattering was studied within several optical potential models. The predictions obtained are very different!
- An idea is proposed how to improve the models of $N\bar{N}$ interaction. Further investigations are required.

THANK YOU FOR ATTENTION

Let us decompose the polarization into orthogonal components:

$$\boldsymbol{\zeta}_{1}(t) = \boldsymbol{\alpha} \left(\boldsymbol{\zeta}_{2} \cdot \boldsymbol{n}_{0}\right) \boldsymbol{n}_{0} + \boldsymbol{\beta} \left(\boldsymbol{\zeta}_{2} \cdot \boldsymbol{n}_{0}\right) \left[\boldsymbol{n}_{0} \times \boldsymbol{\zeta}_{2}\right] + \boldsymbol{\gamma} \left[\boldsymbol{n}_{0} \times \left[\boldsymbol{n}_{0} \times \boldsymbol{\zeta}_{2}\right]\right]$$

The kinetic equation can be written as

$$rac{d}{dt}\psi(t) = U\psi + \xi$$

$$\psi = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}, \quad U = \begin{pmatrix} A_1 + B_1 & -A_2 \left[\boldsymbol{\zeta}_2 \times \boldsymbol{n}_0 \right]^2 & 0 \\ A_2 & A_1 & A_2 + B_2 \\ 0 & -(A_2 + B_2) \left(\boldsymbol{\zeta}_2 \cdot \boldsymbol{n}_0 \right)^2 & A_1 \end{pmatrix}, \quad \xi = \begin{pmatrix} A_3 + B_3 \\ 0 \\ -A_3 \end{pmatrix}$$

$$\psi(t) = e^{Ut} \left[\psi(0) + U^{-1} \xi \right] - \frac{U^{-1} \xi}{U^{-1} \xi}$$

Eigenvalues of U have negative real part: $\operatorname{Re} \lambda_i < 0$