Physics with prompt photons at SPD

Alexey Guskov, JINR

avg@jinr.ru

11.07.2018

Production of photons in hadron collisions

not important for pp or dd collisions

Please note, direct photons at MPD and SPD are different things!

Prompt photons

Measurement with prompt photons is direct access to gluon distributions in nucleon

Ways to access gluon structure of nucleon at low energies

prompt-photon production

The most direct way

Strong background

charmonia production

Nice signal

Model-dependent treatment

open-charm production

Rather simple treatment

Problematic signal

Gluon Compton Scattering (GCS)

Decay photons

Even at very high p_T signal will dominate over background!

Fragmentation photons

Relative contribution of fragmentation photons is below 15% even at much higher energies.

It can be calculated in LO and NLO

Previous studies at our energies

Beam and target	\sqrt{s} , GeV	y range	x_T range
p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
$p, \pi^+; C$	19.4	-0.75 - 0.2	0.22 - 0.52
p, π^{+} , π^{-} ; C	19.4	-0.4 - 1.2	0.26 - 0.62
$p, \pi^+, \pi^-; p$	23.75	-0.65 - 0.52	0.23 - 0.59
$p, \pi^+, \pi^-; p$	22.96	-0.9 - 1.1	0.35 - 0.61
$p, \pi^-; Be$	30.63	-0.7 - 0.7	0.20 - 0.65
p; p	19.4	< 0.74	0.26 - 0.39
$ar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50
	p; Be p, π^+ ; C p, π^+ , π^- ; C p, π^+ , π^- ; p p, π^+ , π^- ; p p, π^- ; Be p; p	p; Be 19.4, 23.75 p, π^+ ; C 19.4 p, π^+ , π^- ; C 19.4 p, π^+ , π^- ; p 23.75 p, π^+ , π^- ; p 22.96 p, π^- ; Be 30.63 p; p 19.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $x_T=2p_T/\sqrt{s}$

Low-energy measurements

Previous results: pA

J. Phys. G: Nucl. Part. Phys. 23 (1997) A1-A69.

NA3 (1987) $p C \rightarrow \gamma X$

Previous results: pA

E706 (1993)

$$p Be \rightarrow \gamma X$$

Prompt photons at low-energy colliders

ISR: √s=63 GeV R806 (1982), R110 (1989), R807(1990)

Particle	Mass (GeV)	Prod. σ/π^0	Decay	# of photons	Branching ratio (BR)	$\sigma \times \mathrm{B}\mathbf{R}/\pi^0$	% in sample
27 ⁽⁾	0.135	1.0	γγ	2	1.0	1.0	61.4
$\boldsymbol{\eta}^{\scriptscriptstyle (i)}$	0.549	0.55	γγ	2	0.38	0.209	12.8
$\eta^{\scriptscriptstyle \mathrm{D}}$	0.549	0.55	$\pi\pi\pi$	6	0.30	0.165	10.1
K_s^0 ω^0	0.498	0.40	$\pi\pi$	4	0.31	0.124	7.6
ω^0	0.783	0.50	πγ	3	0.09	0.045	2.8
η΄	0.957	1.0	ηππ	6	0.084	0.084	5.2

Also ar RHIC down to 62.4 GeV

Previous results: pp(pbar)

Nucleon PDFs

Gluon polarization

8 PDFs are needed if we want to take into account intrinsic transverse momentum k_T of quarks (LO)

DSA with longitudinally polarised beams

Double longitudinal spin asymmetry

G. Bunce et. al. Ann.Rev.Nucl.Part.Sci. 50:525-575,2000

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$

$$A_{LL}pprox \underbrace{\Delta g(x_1)}_{g(x_1)} \cdot \left[rac{\sum_q e_q^2 \left[\Delta q(x_2) + \Delta ar{q}(x_2)
ight]}{\sum_q e_q^2 \left[q(x_2) + ar{q}(x_2)
ight]}
ight]$$

gluon polarization
$$+(1 \leftrightarrow 2)$$

A_1^P - known from DIS

 $A_{LL} < 3-5\%$

Gluon Sivers function

 $\Delta^{N_f(1)}(x)$

Many theoretical models and just very rough estimation from experimental data

Some estimations from RHIC data (Q²=2 GeV²/c²)

SSA with prompt photons

$$\mathbf{A_N} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Single transverse spin asymmetry

I. Shmidt, J. Soffer, J.J. Yang, Phys. Lett. B 612 (2005)

gluon Sivers function

$$\sigma^{\uparrow} - \sigma^{\downarrow} = \sum_{i} \int_{x_{min}}^{1} dx_{a} \int d^{2}\mathbf{k}_{Ta} d^{2}\mathbf{k}_{Tb} \frac{x_{a}x_{b}}{x_{a} - (p_{T}/\sqrt{s}) \ e^{y}} \left[q_{i}(x_{a}, \mathbf{k}_{Ta}) \Delta_{N} G(x_{b}, \mathbf{k}_{Tb}) \right]$$

$$\times \frac{d\hat{\sigma}}{d\hat{t}} (q_{i}G \to q_{i}\gamma) + G(x_{a}, \mathbf{k}_{Ta}) \Delta_{N} q_{i}(x_{b}, \mathbf{k}_{Tb}) \frac{d\hat{\sigma}}{d\hat{t}} (Gq_{i} \to q_{i}\gamma)$$

where $q(x_{a,b}, k_{Ta,b})$ and $G(x_{a,b}, k_{Ta,b})$ are quark and gluon distribution functions and $\Delta_N q(x_{a,b}, k_{Ta,b})$

J. Phys. G: Nucl. Part. Phys. 24 991(1998)

J. Qui and G. Sterman, Phys. Rev. Lett. 67 (1991) 2264

Our backgrounds are also spin-dependent!

Leonard Gamberg, Zhong-Bo Kang

Phys.Lett.B696:109-118,2011

Phys.Rev. D90 (2014) no.1, 012006

But they also contain info about spin structure of nucleon!

Single spin asymmetries at √s=19.4 GeV

Polarized measurement at FNAL E704 Phys. Lett. B 345 (1995)

- •Fixed target.
- •Polarized proton beam from Λ decay
- •2.5 $GeV/c < p_T < 3.1 GeV/c$
- • π^0 mass resolution 10.5 MeV
- 473 prompt photon candidates (including 220+-22 background events)

Production of double photons

Much smaller cross section

Collaboration	\sqrt{s}	Beam	Target	Measurement
R806 [16]	63	p	p	$\mathrm{d}^2\sigma/\mathrm{d}y\mathrm{d}m_{\gamma\gamma}$
R807 [19]	63	p	p	${\rm d}^2\sigma/{\rm d}y{\rm d}m_{\gamma\gamma}$
UA2 [20]	630	p	p	$\mathrm{d}\sigma/\mathrm{d}p_T$
UA2 [21]	630	p	p	$\mathrm{d}^2\sigma/\mathrm{d}\eta_1/\mathrm{d}\eta_2$
UA1 [22]	630	p	p	σ $Ed^3\sigma/dp^3$
E741(CDF) [24]	1800	p	p	$\frac{\sigma}{\mathrm{d}\sigma/\mathrm{d}p_T}$
NA24 [6]	23.7	π^-	p	$Ed^3\sigma/dp^3$
WA70 [9]	22.96	π^-	p	σ d σ /d p_T
NA3 [4]	19.4	p	C	σ

Prompt photons and DY

Production of low-mass dimuon pairs is a process very similar to prompt photon production

- two orders of magnitude smaller cross section
 - possibility to achieve low-p_T region

This option is available only in the collider mode!

Phys.Lett. B209 (1988) 397-406 (1988)

Comparison of Drell-Yan and single photon cross sections

Associative production of prompt photons

One more mechanism to access gluon content of the proton: p p→γ J/ψ X

 $\sigma_{\gamma J/\psi} \sim 50 \ nb \ at \ LHC \ energy \ scale$

arXiv:1502.02263

PLB 672:51-55 (2009)

Nice signal definition!

How large is the cross section at our energy scale? ~100 pb?

Other processes?

Prompt photons at SPD

Ideal setup:

- 4π ECAL
- minimal tracking system (vertexing, charged/ neutral clusters separation)
- ECAL-based trigger

No need for magnetic field and muon system

Measurements with prompt photons could be performed at the first stage of SPD operation

Summary

- Unpolarized and polarized physics with prompt photons looks very attractive
- All the measurements at energy scale ~20 GeV were performed 20-30 years ago It is a good time to come back with new level of experimental techniques and theoretical understanding
- We have good chance to perform such kind of measurements at SPD detector
- Background conditions for studies with prompt photons are quite hard. So the SPD detector should be effectively optimized.
- Measurement with prompt photons could be the first stage of the SPD operation

Thank you for your attention!

