

COMPASS iFDAQ Software

J. Novy

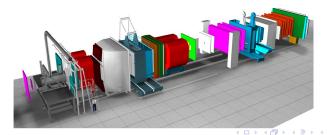
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague, Czech Republic & European Organization for Nuclear Research – CERN, Switzerland

CTU Prague, CERN

J. Novy COMPASS iFDAQ Software

Introduction ●○	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Refi o
Introduction							

- iFDAQ architecture
- I-P(Inter-Process) Communication
- iFDAQ Debugging
- iFDAQ Stability
- iFDAQ Future

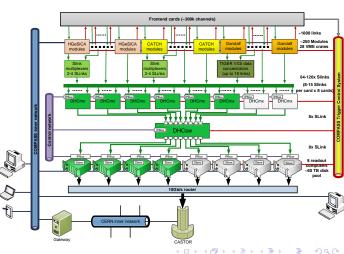

COMPASS iFDAQ Software

J. Novy

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Refi o
Instandu astinum							

COMPASS experiment

- Fixed target experiment at SPS accelerator at CERN
- Study of hadron structure and hadron spectroscopy with high intensity muon and hadron beams
- Data-taking started in 2002
- Trigger rate up to 40 kHz, average event size up to 50 kB
- In spill data rate 1.5 GB/s and sustained data rate 500 MB/s



J. Novy COMPASS iFDAQ Software

Introduction	iFDAQ Architecture ●○○○	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref o
iEDAO Archit	ecture						

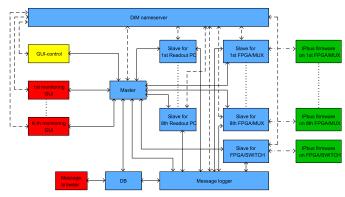
Hardware Structure

- Hardware based E.B.
- Data concentrated by 6 (up to 8) DAQ modules with multiplexer firmware
- Distribution to 4 (up to 8) readout computers by DAQ module switch firmware
- Full events received by servers
- Consistency check at many layers
- Events checked and transferred to DATE data format

CTU Prague, CERN

J. Novy

COMPASS iFDAQ Software


Used Software Technologies

- C++, Python
- Qt framework
- DIM (Distributed Information Management System)
- DIALOG library
- IPbus suite for communication with FPGA cards
- MySQL
- PHP, JavaScript
- Zabbix

Introduction	iFDAQ Architecture 00●0	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Refi o
iFDAQ Archit	ecture						

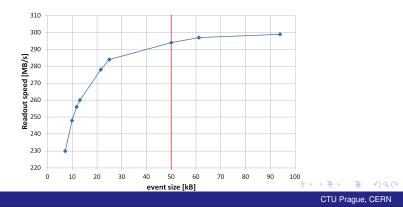
Software Structure

- Runcontrol GUI is a graphical user interface
- Master is a main control process
- Slave-readout readouts and verifies the data
- Slave-control monitors and controls the FPGA cards
- MessageLogger stores informative and error messages into the database
- MessageBrowser provides an intuitive access to messages stored in the database

- - - DIM services and commands registration and information

Direct communication between nodes

--- Communication without DIM through IPbus


CTU Prague, CERN

COMPASS iFDAQ Software

Introduction	iFDAQ Architecture 000●	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref o
iFDAQ Archit	ecture						

Maximum Data Readout Performance

- Currently limited by SWITCH firmware to 100 MB/s per RE if 4 RE connected
- If 2 RE connected to not-shared ports, readout speed of up to 150 MB/s per RE

J. Novy

COMPASS iFDAQ Software

Distributed Information Management System

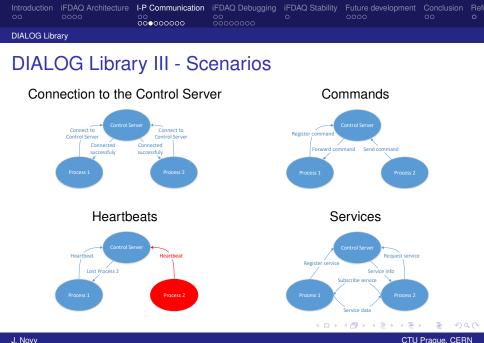
DIM I – Distributed Information Management System

- Developed at CERN in 1993, still with support
- Design requirements
 - Efficient communication mechanism asynchronous behavior, sending and receiving asap
 - Uniformity all processes use the same communication mechanism
 - Transparency any running process should be able to communicate with any other process
 - Reliability and robustness system recovery in a self-recoverable manner from error situations
- It uses UDP protocol for message transmission

COMPASS iFDAQ Software

DIM II – Usage in iFDAQ

- Fully incorporated to all processes for the runs 2014 and 2015
- DIM problems
 - High probability of the message truncation or complete loss of the message
 - As a consequence of that, processes crashed without any obvious reason (especially Master process)
- DIM library replaced by DIALOG library
- DIM library can not be completely avoided (still partially present)
 - $\blacktriangleright\,$ VME computers have only 64 MB memory \rightarrow we can not install Qt framework there
 - DIALOG library is implemented in Qt framework

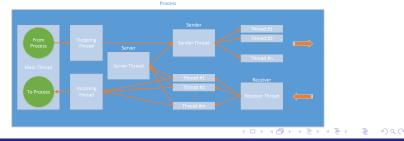

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Refi o
DIALOG Libr	ary						

- Replacement of DIM Library
- It is implemented in Qt framework
- Dialog means conversation, talk or speech (D distributed, I inter-process, A – asynchronous, L – library, O – open, G – general)
- Design requirements similar to DIM Library
- Communication based on the publish/subscribe method
- It uses TCP/IP protocol for message transmission

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref o
	251						

- Services
 - A service is a set of data of any type and size with an unique name
 - Server/Client mechanism server publishes data to several clients
- Commands
 - Process registers command with a non-unique name it is willing to accept
 - One process can control another one via command
- Implementation
 - The Control Server keeping an up-to-date list of all the processes, services and commands
 - Providers a process providing services and commands it is willing to accept
 - Subscribers a process specifying the service name it is interested in and requesting for it
 - Any process can be a provider and a subscriber at the same time

< □ > < 同

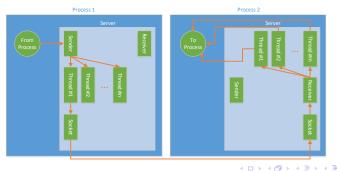

J. Novy

COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref o
DIALOG Libra	ary						

DIALOG Library IV - Process Threads

- Message types are distinguished by message header
- ▶ The Sender dispatches messages among $n \in \mathbb{N}$ threads
- n ∈ N threads are establishing connections to other processes, writing data to sockets and keeping sockets open until timeout
- ▶ Open socket, pointers to messages, sending as soon as possible → speed up the performance and reduce the latency significantly
- ▶ The Receiver dispatches a new socket descriptor to one of $m \in \mathbb{N}$ threads
- ▶ $m \in \mathbb{N}$ threads are responsible for reading data out from sockets
- The sockets are kept open until they are closed by sender process


CTU Prague, CERN

J. Novy COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref o
	onu						

DIALOG Library V - from Process 1 to Process 2

- If the connection is not yet established, the object socket is created and opened in Process 1
- The Receiver receives the socket descriptor trying to connect to Process 2
- Socket objects exist on both sides till timeout, process crash or process termination
- The open socket is used only for one direction connection

COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability	Future development	Conclusion	Ref
		00 000000000	00 00000000				

DIALOG Online Monitoring

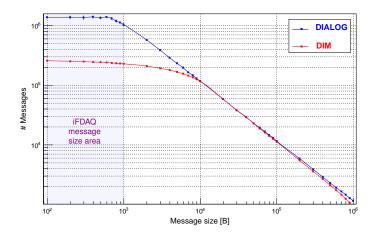
			DIALO	3 Communicat	ionGUI		-
Nan	ne of Process:	Address:	P	rovided service:		Command:	Search
PID:		Port:	s	ubscribed servic	e:		Reset
	Name of Process 🔻	Address	Port	PID	Provided services	Subscribed services	Commands
	GUI	pccorc31.cem.ch	5421	4 4961	Show	Show	Show
2	Master	pccore15.cem.ch	4876	4 1033	Show	Show	Show
3	MSGBrowser	pccorc21.cern.ch	3566	6 24233	Show	Show	Show
ŧ	MSGLogger	pccore15.cern.ch	5872	2 1034	Show	Show	Show
5	SC_RE11	pccore15.cern.ch	3564	7 1760	Show	Show	Show
5	SC_RE12	pccore15.cern.ch	3572	4 1900	Show	Show	Show
7	SC_RE13	pccore15.cern.ch	4641	0 2390	Show	Show	Show
в	SC_RE14	pccore15.cern.ch	4265	2 2320	Show	Show	Show
9	SMC01_RE11	pccore15.cern.ch	4263	0 1830	Show	Show	Show
10	SMC02_RE12	pccore15.cem.ch	4769	9 1970	Show	Show	Show
11	SMC03_RE13	pccore15.cern.ch	5285	1 2040	Show	Show	Show
12	SMC04_RE14	pccore15.cern.ch	4194	0 2110	Show	Show	Show
13	SMC05_RE15	pccore15.cem.ch	5173	0 2250	Show	Show	Show
14	SMC06_RE15	pccore15.cern.ch	5867	6 2460	Show	Show	Show
15	SR RE11	pccorel1.cern.ch	5810	3 22301	Show	Show	Show

CTU Prague, CERN

A D > A B >

J. Novy

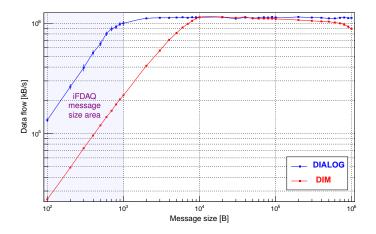
COMPASS iFDAQ Software


Introduction iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability	Future development	Conclusion	Ref
	00 000000000	00 00000000				

Performance Test I – Test Setup

- DIALOG and DIM performance are measured and compared in two plots
 - Number of messages how many messages can be delivered to one single process in 1 second
 - Data flow how many bytes can be delivered to one single process in 1 second
- $\blacktriangleright\,$ 25 slaves (17 slave-control, 8 slave-readout) send status to Master process $\rightarrow\,$ the iFDAQ full setup
- The test is conducted for different message sizes and for each message size is conducted five times to obtain the sufficient statistics
- The network bandwidth is 10 Gbps for the test
 - We can expect the maximum data rate ~ 1.2 GB/s (throughput)
 - The network bandwidth is not saturated by anything else during test
- Correct spreading of slaves among machines
 - Message sent by process 1 to process 2 running on the same machine is sent directly and it is not going through the network at all
 - > The test results would have been even above the network bandwidth

Performance Test II – Number of Messages


▲ロト 4 昂ト 4 高ト 高 - のへで CTU Prague, CERN

COMPASS iFDAQ Software

J. Novy

Performance Test III – Data Flow

ヘロト ヘヨト ヘヨト

CTU Prague, CERN

COMPASS iFDAQ Software

J. Novy

Conventional Debugging

Conventional Debugging I

- Process of error detection within the program
 - Reproduce the problem
 - Isolating the source of the problem
 - Fixing the problem
 - Verification of the fix
- Problems of iFDAQ
 - Master process crashed several times per day in run 2014 and 2015
 - Slave-readout crashed many times per day in run 2014 and 2015
 - Processes crashed without any obvious reason or additional information

Conventional Debugging

Conventional Debugging II

- Conventional debugging during the real data-taking
 - It would waste the beam time during crash investigation
 - The performance of debugged processes would be lower
 - The conventional debugging process would increase load on readout engine computers
 - The iFDAQ expert would have to be present 24x7 on site
- The conventional debugging is possible only during time without beam
- The errors do not occur without the real data-taking
- Conventional debugging is not usable and effective for the error detection

DAQ Debugger I

- Library for the iFDAQ error detection
- Fully incorporated to all processes during the run 2016 and 2017
- Design requirements
 - The integration to running system requires interface for an easy use
 - It does not affect the process performance
 - It does not increase load on readout engine computers
 - It provides with reports in /tmp folder containing stack trace of all threads and memory dump

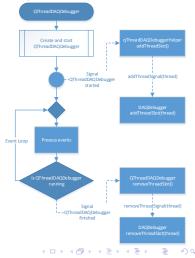
DAQ Debugger II

- Main goal is to produce a report of the process crash
- Based on catching of system signals (SIGSEGV, SIGABRT, etc.)
 - The system signal is caught and forwarded to a signal handler in the DAQ Debugger
 - The memory dump is produced and stored
 - The whole stack trace for each thread is generated with file names and code line numbers
 - The report containing the caught signal and stack trace for each thread is created in /tmp folder
 - The process is exiting with the caught signal
- Reports are investigated by iFDAQ experts
- > Problem understanding \rightarrow the fix is released and tested

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability	Future development	Conclusion	Ref
		00 000000000	00 00●00000				

DAQ Debugger

DAQ Debugger III – Implementation


- DAQDebugger::init (processName) to initialize
- Crash procedure
 - The system signal is caught in the crashed thread
 - All remaining threads are immediately suspended
 - Store memory dump
 - Get stack trace of the crashed thread
 - Get stack traces of suspended threads
 - The crashed thread (whole process) is exiting with the caught signal
- Using POSIX defining a standard threading library API (suspend/resume signals)
- Using backtrace, backtrace_symbols and addr2line to create a report
- Using gcore for memory dump storage

DAQ Debugger

DAQ Debugger IV – Thread Life Cycle

- The QThreadDAQDebugger object inheriting from QThread object
- To control thread via POSIX, thread ID is necessary to obtain using QThreadDAQDebuggerHelper
- Registration of thread in DAQ Debbuger by addThreadSlot(thread) method
- Standard thread execution with processing of events until the thread finishes
- QThreadDAQDebugger object finishes its execution
- Unregistration of thread in DAQ Debugger by removeThreadSlot (thread) method
- For simplicity reasons, the thread crash is not depicted in the diagram

CTU Prague, CERN

DAQ Debugger V – Before Process Crash

- DAQ Debugger is a part of a process and standing in the background of a running process
- A process is running smoothly → the DAQ Debugger does not take any action → no effect on the process performance and no load increase on readout engines
- The system signals are registered, the process continues its execution
- Once the crash of process occurs, the DAQ Debugger handles it

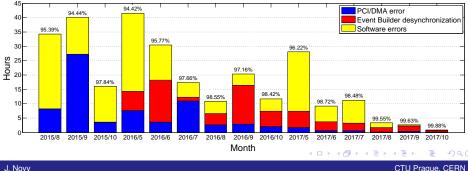
DAQ Debugger VI – Process Crash

- \blacktriangleright Process crash \rightarrow the system signal is emitted
- It is caught by the signal handler of crashed thread in the DAQ Debugger
- The crashed thread sends the suspend signal to all remaining threads
- The memory dump is produced and stored
- The report file is created and open for writing
- The crashed thread writes its stack trace to the file

COMPASS iFDAQ Software

DAQ Debugger VI – Process Crash

- The crashed thread sends the resume signal to first suspended thread and the crashed thread itself is suspended
- The resumed thread writes its stack trace to the file, then sends the resume signal to the crashed thread and is suspended again
- The resumed crashed thread sends the resume signal to second thread and it is again suspended
- The second resumed thread writes its stack trace to the file, then sends the resume signal to the crashed thread and is suspended again

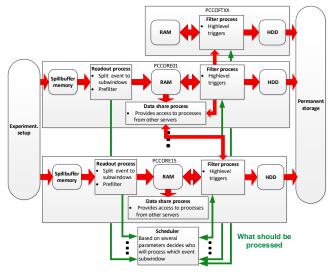

DAQ Debugger VI – Process Crash

- It continues in this way to the last suspended thread
- ► The resumed crashed thread (resumed by the resume signal sent from (n 1)-th thread) sends the resume signal to *n*-th thread and it is again suspended
- The *n*-th resumed thread writes its stack trace to the file, then sends the resume signal to the crashed thread and is suspended again
- This suspend/resume procedure ensures the serial writing to file and proper thread control
- The report file is closed and process is exiting with the caught signal in the crashed thread

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability ●	Future development	Conclusion	Ref o
iFDAQ Stabili	tv						

iFDAQ Stability

- iFDAQ Software is stable since October 2017
- Last observed iFDAQ Software crash is on 22nd September 2017
- DIALOG helped to increase stability of the iFDAQ
- DAQ Debugger detected all remaining software issues
- The iFDAQ UpTime time when iFDAQ is able to take data


CTU Prague, CERN

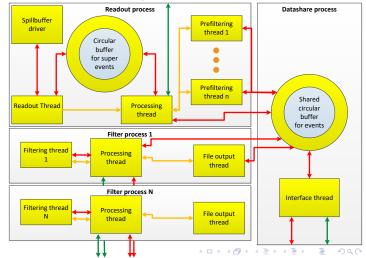
COMPASS iFDAQ Software

Overall data flow

- Readout process
 - Recieve events
 - Prefilter
- Scheduler process
 - Organize workload
- Data share process
 - Provides remote access to events in memory
- Filter process
 - High level trigger

* ヨト * ヨ

COMPASS iFDAQ Software


CTU Prague, CERN

Introduction	iFDAQ Architecture	iFDAQ Debugging	iFDAQ Stability o	Future development o●oo	Conclusion	Ref o

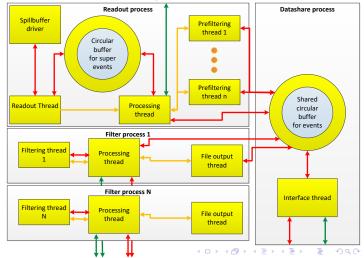
Software structure

Detailed data flow - Readout process

- Gets data to inner memory as fast as possible
- Inner buffer for super events
- Several fast filter threads
- Info about event to scheduler

CTU Prague, CERN

COMPASS iFDAQ Software


J. Novy

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Refi o

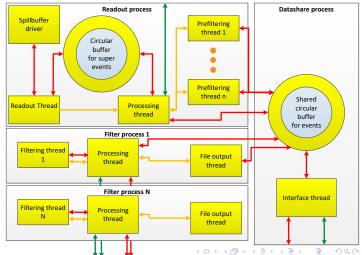
Software structure

Detailed data flow - Datashare process

- Direct access to buffer of events in memory
- Exchange of info between filter process and scheduler
- Shares events from memory to requester

CTU Prague, CERN

COMPASS iFDAQ Software


J. Novy

Introduction	iFDAQ Architecture		iFDAQ Debugging	iFDAQ Stability	Future development	Conclusion	Refi o
		000000000	00000000				

Software structure

Detailed data flow - Filter process

- Gets commands from scheduler
- Gets events either directly from local memory or from Datashare process on different computer
- High level processing
- Stores filtered events on HDD

CTU Prague, CERN

COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion ●○	Refi o
Conclusion							

- Own library DIALOG
- Internal DAQ Debugger
- iFDAQ Software is stable since October 2017
- ► iFDAQ UpTime is around 99.88% ≃ 1 hour loss / month of data-taking
- Continuously running DAQ
 - iFDAQ is running without starts and stops
 - It takes more data

J. Novy

COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion ○●	Refi o
Conclusion							
		Tł	ne Er	nd			

・ロ・・ 日本・ ・ 田 ・ ・ 田

9 Q (?

J. Novy COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion	Ref			
References										
	P. Abbon, et al.(the COMP 455–518.	ASS collaboration): The CO	MPASS experiment at CER	RN. In: Nucl. Instrum. M	ethods Phys. Res., A 577, 3 (2	2007) pp.				
	V. Y. Alexakhin, et al. (the	COMPASS Collaboration): C	COMPASS-II Proposal. CEF	RN-SPSC-2010-014, SF	PSC-P-340. May 2010.					
	M. Nakao , S. Y. Suzuki: A Fe 1999. 11th IEEE NPSS	Nakao, S. Y. Suzuki: Network shared memory framework for the Belle data acquisition control system. Real Time Conterence, 1999. Santa 1999. 11th IEEE NPSS.								
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Gaspar, M. Dönszelmann, Ph. Charpentier: DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and Inter-process ommunication. International Conference on Computing in High Energy and Nuclear Physics, Padova, Italy, 1-11th February 2000.								
		nn: <i>DIM – A Distributed Info</i> Computer applications in N			eriment at CERN. Proceedings anada, June 1993.	s of the 8th				
	and the second	A Highly Distributed Control 95, Toulouse, France, 27-29		Experiment. 13th IFAC	workshop on Distributed Comp	puter				
	International Conference of	ment of new data acquisition on High Energy Physics (ICF 0.1016/j.nuclphysbps.	IEP). April-June 2016, vol.		article Physics Proceedings, 3 Available at:	37th				
		ased data acquisition system 10.1088/1742-6596/513/1/01		t. Journal of Physics: C	onference Series. 2014-06-11	, vol. 513,				
	http://stacks.iop.o	rg/1742-6596/513/i=1/	a=012029?key=crossre	ef.78788d23de2b4a6	a34d127c361123b8c.					
		a acquisition system for the 1088/1748-0221/8/02/C020	1	Irnal of Instrumentation	. 2013-02-01, vol. 8, issue 02,					
	http://stacks.iop.o	rg/1748-0221/8/i=02/a	=C02009?key=crossref	.a76044facdf29d0f	b21f9eefe3305aa5.					
				< □ >		E の	Q (?*			

J. Novy COMPASS iFDAQ Software

Introduction	iFDAQ Architecture	I-P Communication	iFDAQ Debugging	iFDAQ Stability o	Future development	Conclusion 00	Ref •

References

M. Bodlak, et al.: Developing Control and Monitoring Software for the Data Acquisition System of the COMPASS Experiment at CERN. Acta polytechnica: Scientific Journal of the Czech Technical University in Prague. Prague, CTU, 2013, issue 4. Available at: http://ctn.cvut.cz/ap/.

T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User's Guide CERN, EDMS 616039, January 2006.

C. Ghabrous Larrea, et al.: IPbus: a flexible Ethernet-based control system for xTCA hardware, 2015 JINST 10 C02019. doi:10.1088/1748-0221/10/02/C02019.

CASTOR - CERN Advanced Storage manager. Available at: http://castor.web.cern.ch. (Accessed: 2017-05-01).

Electronic developments for COMPASS at Freiburg. Available at:

http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html. (Accessed: 2017-05-01).

The GANDALF Module. (online). Available at:

http://hpfr03.physik.uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN. (Accessed: 2017-05-01).

iMUX/HGESICA module. (online). Available at:

https://twiki.cern.ch/twiki/pub/Compass/Detectors/FrontEndElectronics/imux_manual.pdf. (Accessed: 2017-05-01).

Linux at CERN. (online). Available at: http://linux.web.cern.ch/linux/scientific6/. (Accessed: 2017-05-01).

J. Novv

S-Link - High Speed Interconnect. (online). Available at: http://hsi.web.cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

CTU Prague, CERN

COMPASS iFDAQ Software