
Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

COMPASS iFDAQ Software

J. Novy

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague, Czech Republic

&
European Organization for Nuclear Research – CERN, Switzerland

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Introduction

Outline

I iFDAQ architecture
I I-P(Inter-Process) Communication
I iFDAQ Debugging
I iFDAQ Stability
I iFDAQ Future

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Introduction

COMPASS experiment
I Fixed target experiment at SPS accelerator at CERN
I Study of hadron structure and hadron spectroscopy with

high intensity muon and hadron beams
I Data-taking started in 2002
I Trigger rate up to 40 kHz, average event size up to 50 kB
I In spill data rate 1.5 GB/s and sustained data rate 500 MB/s

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

iFDAQ Architecture

Hardware Structure

I Hardware based E.B.
I Data concentrated by

6 (up to 8) DAQ
modules with
multiplexer firmware

I Distribution to 4 (up to
8) readout computers
by DAQ module
switch firmware

I Full events received
by servers

I Consistency check at
many layers

I Events checked and
transferred to DATE
data format

CASTOR

HGeSiCA

modules

HGeSiCA

modules

DHCsw

64-120x Slinks

(8-15 Slinks

per card x 8 cards)

C
O

M
P

A
S

S
 i

n
n

e
r

n
e
tw

o
rk

CATCH

modules

CATCH

modules

Gandalf

modules

Gandalf

modules

......

8x SLink

8x SLink

~1000 links

C
o

n
tr

o
l
n

e
tw

o
rk

IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

DHCmx
IPBus

Gateway

IPBus

Slave Slave

IPBus

Slave

IPBusIPBus

SlaveSlave

IPBus

Slave Slave Slave

IPBus IPBus IPBus

10Gb/s router

Slink

multiplexers

2-4 SLinks

Slink

multiplexers

2-4 SLinks

TIGER VXS data

concentrators

 (up to 18 links)

~250 Modules

28 VME crates......
......

Frontend cards (~300k channels)

............

8 readout

computers

~60 TB disk

pool

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

iFDAQ Architecture

Used Software Technologies

I C++, Python
I Qt framework
I DIM (Distributed Information Management System)
I DIALOG library
I IPbus suite for communication with FPGA cards
I MySQL
I PHP, JavaScript
I Zabbix

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

iFDAQ Architecture

Software Structure

I Runcontrol GUI is a
graphical user
interface

I Master is a main
control process

I Slave-readout
readouts and verifies
the data

I Slave-control
monitors and controls
the FPGA cards

I MessageLogger
stores informative
and error messages
into the database

I MessageBrowser
provides an intuitive
access to messages
stored in the
database

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

iFDAQ Architecture

Maximum Data Readout Performance
I Currently limited by SWITCH firmware to 100 MB/s per RE if 4

RE connected
I If 2 RE connected to not-shared ports, readout speed of up

to 150 MB/s per RE

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Distributed Information Management System

DIM I – Distributed Information Management System

I Developed at CERN in 1993, still with support
I Design requirements

I Efficient communication mechanism – asynchronous behavior,
sending and receiving asap

I Uniformity – all processes use the same communication
mechanism

I Transparency – any running process should be able to
communicate with any other process

I Reliability and robustness – system recovery in a self-recoverable
manner from error situations

I It uses UDP protocol for message transmission

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Distributed Information Management System

DIM II – Usage in iFDAQ

I Fully incorporated to all processes for the runs 2014 and
2015

I DIM problems
I High probability of the message truncation or complete loss of the

message
I As a consequence of that, processes crashed without any obvious

reason (especially Master process)

I DIM library replaced by DIALOG library
I DIM library can not be completely avoided (still partially

present)
I VME computers have only 64 MB memory → we can not install Qt

framework there
I DIALOG library is implemented in Qt framework

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Library I

I Replacement of DIM Library
I It is implemented in Qt framework
I Dialog means conversation, talk or speech (D – distributed, I –

inter-process, A – asynchronous, L – library, O – open, G –
general)

I Design requirements similar to DIM Library
I Communication based on the publish/subscribe method
I It uses TCP/IP protocol for message transmission

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Library II
I Services

I A service is a set of data of any type and size with an unique name
I Server/Client mechanism – server publishes data to several clients

I Commands
I Process registers command with a non-unique name it is willing to

accept
I One process can control another one via command

I Implementation
I The Control Server – keeping an up-to-date list of all the

processes, services and commands
I Providers – a process providing services and commands it is

willing to accept
I Subscribers – a process specifying the service name it is

interested in and requesting for it
I Any process can be a provider and a subscriber at the same time

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Library III - Scenarios
Connection to the Control Server

Control Server

Process 1 Process 2

Connect to
Control Server

Connect to
Control Server

Connected
successfuly

Connected
successfuly

Heartbeats

Control Server

Process 1 Process 2

Heartbeat Heartbeat

Lost Process 2

Commands

Control Server

Process 1 Process 2

Register command

Send commandForward command

Services

Control Server

Process 1 Process 2

Register service

Request service

Subscribe service

Service data

Service info

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Library IV - Process Threads
I Message types are distinguished by message header
I The Sender dispatches messages among n ∈ N threads
I n ∈ N threads are establishing connections to other processes, writing data to

sockets and keeping sockets open until timeout
I Open socket, pointers to messages, sending as soon as possible→ speed up

the performance and reduce the latency significantly
I The Receiver dispatches a new socket descriptor to one of m ∈ N threads
I m ∈ N threads are responsible for reading data out from sockets
I The sockets are kept open until they are closed by sender process

Main Thread Server Thread

Server

Process

From
Process

To Process

Outgoing
Thread

Incoming
Thread

Sender Thread

Sender
Thread #1

Thread #2

Thread #n

Receiver Thread

Receiver

...

Thread #1

Thread #2

Thread #m

...

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Library V - from Process 1 to Process 2
I If the connection is not yet established, the object socket is created and opened

in Process 1
I The Receiver receives the socket descriptor trying to connect to Process 2
I Socket objects exist on both sides till timeout, process crash or process

termination
I The open socket is used only for one direction connection

Se
n

d
er

R
e

ceive
r

So
cket

Server

Process 1 Process 2
Se

n
d

er

R
e

ceive
r

So
cket

Server

From
Process

To
Process

Th
re

ad
 #1

Th
re

ad
 #2

Th
re

ad
 #n

...

Th
re

ad
 #1

Th
re

ad
 #2

Th
re

ad
 #m

...

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

DIALOG Online Monitoring

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

Performance Test I – Test Setup
I DIALOG and DIM performance are measured and compared in two plots

I Number of messages – how many messages can be delivered to one
single process in 1 second

I Data flow – how many bytes can be delivered to one single process in 1
second

I 25 slaves (17 slave-control, 8 slave-readout) send status to Master process→
the iFDAQ full setup

I The test is conducted for different message sizes and for each message size is
conducted five times to obtain the sufficient statistics

I The network bandwidth is 10 Gbps for the test
I We can expect the maximum data rate ∼ 1.2 GB/s (throughput)
I The network bandwidth is not saturated by anything else during test

I Correct spreading of slaves among machines
I Message sent by process 1 to process 2 running on the same machine is

sent directly and it is not going through the network at all
I The test results would have been even above the network bandwidth

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

Performance Test II – Number of Messages

Message size [B]

210 310 410 510 610

M

es
sa

ge
s

410

510

610 DIALOG

DIM

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

iFDAQ
message
size area

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DIALOG Library

Performance Test III – Data Flow

Message size [B]

210 310 410 510 610

D
at

a
flo

w
 [k

B
/s

]

510

610

DIALOG

DIM

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

iFDAQ
message
size area

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Conventional Debugging

Conventional Debugging I

I Process of error detection within the program
I Reproduce the problem
I Isolating the source of the problem
I Fixing the problem
I Verification of the fix

I Problems of iFDAQ
I Master process crashed several times per day in run 2014

and 2015
I Slave-readout crashed many times per day in run 2014 and

2015
I Processes crashed without any obvious reason or

additional information

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Conventional Debugging

Conventional Debugging II

I Conventional debugging during the real data-taking
I It would waste the beam time during crash investigation
I The performance of debugged processes would be lower
I The conventional debugging process would increase load

on readout engine computers
I The iFDAQ expert would have to be present 24x7 on site

I The conventional debugging is possible only during time
without beam

I The errors do not occur without the real data-taking
I Conventional debugging is not usable and effective for the

error detection

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger I

I Library for the iFDAQ error detection
I Fully incorporated to all processes during the run 2016 and

2017
I Design requirements

I The integration to running system requires interface for an
easy use

I It does not affect the process performance
I It does not increase load on readout engine computers
I It provides with reports in /tmp folder containing stack

trace of all threads and memory dump

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger II
I Main goal is to produce a report of the process crash
I Based on catching of system signals (SIGSEGV,

SIGABRT, etc.)
I The system signal is caught and forwarded to a signal

handler in the DAQ Debugger
I The memory dump is produced and stored
I The whole stack trace for each thread is generated with file

names and code line numbers
I The report containing the caught signal and stack trace for

each thread is created in /tmp folder
I The process is exiting with the caught signal

I Reports are investigated by iFDAQ experts
I Problem understanding→ the fix is released and tested

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger III – Implementation
I DAQDebugger::init(processName) to initialize
I Crash procedure

I The system signal is caught in the crashed thread
I All remaining threads are immediately suspended
I Store memory dump
I Get stack trace of the crashed thread
I Get stack traces of suspended threads
I The crashed thread (whole process) is exiting with the

caught signal
I Using POSIX defining a standard threading library API

(suspend/resume signals)
I Using backtrace, backtrace_symbols and
addr2line to create a report

I Using gcore for memory dump storage

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger IV – Thread Life Cycle

I The QThreadDAQDebugger object inheriting
from QThread object

I To control thread via POSIX, thread ID is
necessary to obtain using
QThreadDAQDebuggerHelper

I Registration of thread in DAQ Debbuger by
addThreadSlot(thread) method

I Standard thread execution with processing of
events until the thread finishes

I QThreadDAQDebugger object finishes its
execution

I Unregistration of thread in DAQ Debugger by
removeThreadSlot(thread) method

I For simplicity reasons, the thread crash is not
depicted in the diagram

QThreadDAQDebugger

Process events

Is QThreadDAQDebugger
running

Create and start
QThreadDAQDebugger

Event Loop

qThreadDAQDebuggerHelper
addThreadSlot()

Signal
QThreadDAQDebugger

started

DAQDebugger
addThreadSlot(thread)

addThreadSignal(thread)

QThreadDAQDebugger
removeThreadSlot()

Signal
QThreadDAQDebugger

finished

DAQDebugger
removeThreadSlot(thread)

removeThreadSignal(thread)

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger V – Before Process Crash

I DAQ Debugger is a part of a process and standing in the
background of a running process

I A process is running smoothly→ the DAQ Debugger does
not take any action→ no effect on the process
performance and no load increase on readout engines

I The system signals are registered, the process continues
its execution

I Once the crash of process occurs, the DAQ Debugger
handles it

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger VI – Process Crash

I Process crash→ the system signal is emitted
I It is caught by the signal handler of crashed thread in the

DAQ Debugger
I The crashed thread sends the suspend signal to all

remaining threads
I The memory dump is produced and stored
I The report file is created and open for writing
I The crashed thread writes its stack trace to the file

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger VI – Process Crash

I The crashed thread sends the resume signal to first
suspended thread and the crashed thread itself is
suspended

I The resumed thread writes its stack trace to the file, then
sends the resume signal to the crashed thread and is
suspended again

I The resumed crashed thread sends the resume signal to
second thread and it is again suspended

I The second resumed thread writes its stack trace to the
file, then sends the resume signal to the crashed thread
and is suspended again

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

DAQ Debugger

DAQ Debugger VI – Process Crash

I It continues in this way to the last suspended thread
I The resumed crashed thread (resumed by the resume

signal sent from (n − 1)-th thread) sends the resume
signal to n-th thread and it is again suspended

I The n-th resumed thread writes its stack trace to the file,
then sends the resume signal to the crashed thread and is
suspended again

I This suspend/resume procedure ensures the serial writing
to file and proper thread control

I The report file is closed and process is exiting with the
caught signal in the crashed thread

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

iFDAQ Stability

iFDAQ Stability
I iFDAQ Software is stable since October 2017
I Last observed iFDAQ Software crash is on 22nd September 2017
I DIALOG helped to increase stability of the iFDAQ
I DAQ Debugger detected all remaining software issues
I The iFDAQ UpTime – time when iFDAQ is able to take data

2015/8 2015/9 2015/10 2016/5 2016/6 2016/7 2016/8 2016/9 2016/10 2017/5 2017/6 2017/7 2017/8 2017/9 2017/10
0

5

10

15

20

25

30

35

40

45

Month

H
ou

rs

95.39%

94.44%

97.84%

94.42%

95.77%

97.66%

98.55%

97.16%

98.42%

96.22%

98.72%
98.48%

99.55% 99.63%
99.88%

PCI/DMA error
Event Builder desynchronization
Software errors

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Software structure

Overall data flow
I Readout process

I Recieve events
I Prefilter

I Scheduler process
I Organize

workload
I Data share process

I Provides remote
access to
events in
memory

I Filter process
I High level

trigger

PCCOFTXX

Filter process
 Highlevel

triggersRAM HDD

PCCORE01
Readout process
 Split event to

subwindows
 Prefilter

Filter process
 Highlevel

triggers

Scheduler
Based on several
parameters decides who
will process which event
subwindow

RAM HDD
Spillbuffer
memory

Permanent
storage

PCCORE15
Readout process
 Split event to

subwindows
 Prefilter

Filter process
 Highlevel

triggersRAM HDD
Spillbuffer
memory

...

...

...

What should be

processed

Data share process
 Provides access to processes

from other servers

Data share process
 Provides access to processes

from other servers

Experiment.
setup

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Software structure

Detailed data flow - Readout process

I Gets data to
inner memory
as fast as
possible

I Inner buffer
for super
events

I Several fast
filter threads

I Info about
event to
scheduler

Filter process 1

Datashare processReadout process

Readout Thread Processing
thread

Prefiltering
thread 1

Prefiltering
thread n

Spillbuffer
driver

Circular
buffer

for super
events

Shared
circular
buffer

for events

Processing
thread

Filtering thread
1

Interface thread

File output
thread

Filter process N

Processing
thread

Filtering thread
N File output

thread

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Software structure

Detailed data flow - Datashare process

I Direct access
to buffer of
events in
memory

I Exchange of
info between
filter process
and scheduler

I Shares events
from memory
to requester

Filter process 1

Datashare processReadout process

Readout Thread Processing
thread

Prefiltering
thread 1

Prefiltering
thread n

Spillbuffer
driver

Circular
buffer

for super
events

Shared
circular
buffer

for events

Processing
thread

Filtering thread
1

Interface thread

File output
thread

Filter process N

Processing
thread

Filtering thread
N File output

thread

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Software structure

Detailed data flow - Filter process

I Gets
commands
from
scheduler

I Gets events
either directly
from local
memory or
from
Datashare
process on
different
computer

I High level
processing

I Stores filtered
events on
HDD

Filter process 1

Datashare processReadout process

Readout Thread Processing
thread

Prefiltering
thread 1

Prefiltering
thread n

Spillbuffer
driver

Circular
buffer

for super
events

Shared
circular
buffer

for events

Processing
thread

Filtering thread
1

Interface thread

File output
thread

Filter process N

Processing
thread

Filtering thread
N File output

thread

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Conclusion

Conclusion

I Own library DIALOG
I Internal DAQ Debugger
I iFDAQ Software is stable since October 2017
I iFDAQ UpTime is around 99.88% ' 1 hour loss / month of

data-taking
I Continuously running DAQ

I iFDAQ is running without starts and stops
I It takes more data

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

Conclusion

The End

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

References

P. Abbon, et al.(the COMPASS collaboration): The COMPASS experiment at CERN. In: Nucl. Instrum. Methods Phys. Res., A 577, 3 (2007) pp.

455–518.

V. Y. Alexakhin, et al. (the COMPASS Collaboration): COMPASS-II Proposal. CERN-SPSC-2010-014, SPSC-P-340. May 2010.

M. Nakao , S. Y. Suzuki: Network shared memory framework for the Belle data acquisition control system. Real Time Conference, 1999. Santa

Fe 1999. 11th IEEE NPSS.

C. Gaspar, M. Dönszelmann, Ph. Charpentier: DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and Inter-process

Communication. International Conference on Computing in High Energy and Nuclear Physics, Padova, Italy, 1-11th February 2000.

C. Gaspar, M. Dönszelmann: DIM – A Distributed Information Management System for the DELPHI Experiment at CERN. Proceedings of the 8th

Conference on Real-Time Computer applications in Nuclear, Particle and Plasma Physics, Vancouver, Canada, June 1993.

C. Gaspar, J. J. Schwarz: A Highly Distributed Control System for a Large Scale Experiment. 13th IFAC workshop on Distributed Computer

Control Systems – DCCS’95, Toulouse, France, 27-29th September 1995.

M. Bodlak, et al.: Development of new data acquisition system for COMPASS experiment. Nuclear and Particle Physics Proceedings, 37th

International Conference on High Energy Physics (ICHEP). April–June 2016, vol. 273–275, pp. 976–981. Available at:

http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.153.

M. Bodlak, et al.: FPGA based data acquisition system for COMPASS experiment. Journal of Physics: Conference Series. 2014-06-11, vol. 513,

issue 1, s. 012029-. DOI: 10.1088/1742-6596/513/1/012029. Available at:

http://stacks.iop.org/1742-6596/513/i=1/a=012029?key=crossref.78788d23de2b4a6a34d127c361123b8c.

M. Bodlak, et al.: New data acquisition system for the COMPASS experiment. Journal of Instrumentation. 2013-02-01, vol. 8, issue 02,

C02009-C02009. DOI: 10.1088/1748-0221/8/02/C02009. Available at:

http://stacks.iop.org/1748-0221/8/i=02/a=C02009?key=crossref.a76044facdf29d0fb21f9eefe3305aa5.

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.153.
http://stacks.iop.org/1742-6596/513/i=1/a=012029?key=crossref.78788d23de2b4a6a34d127c361123b8c.
http://stacks.iop.org/1748-0221/8/i=02/a=C02009?key=crossref.a76044facdf29d0fb21f9eefe3305aa5.

Introduction iFDAQ Architecture I-P Communication iFDAQ Debugging iFDAQ Stability Future development Conclusion References

References

M. Bodlak, et al.: Developing Control and Monitoring Software for the Data Acquisition System of the COMPASS Experiment at CERN. Acta

polytechnica: Scientific Journal of the Czech Technical University in Prague. Prague, CTU, 2013, issue 4. Available at:

http://ctn.cvut.cz/ap/.

T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User’s Guide CERN, EDMS 616039, January 2006.

C. Ghabrous Larrea, et al.: IPbus: a flexible Ethernet-based control system for xTCA hardware, 2015 JINST 10 C02019.

doi:10.1088/1748-0221/10/02/C02019.

CASTOR – CERN Advanced Storage manager. Available at: http://castor.web.cern.ch. (Accessed: 2017-05-01).

Electronic developments for COMPASS at Freiburg. Available at:

http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html. (Accessed: 2017-05-01).

The GANDALF Module. (online). Available at:

http://hpfr03.physik.uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN. (Accessed:

2017-05-01).

iMUX/HGESICA module. (online). Available at:

https://twiki.cern.ch/twiki/pub/Compass/Detectors/FrontEndElectronics/imux_manual.pdf. (Accessed: 2017-05-01).

Linux at CERN. (online). Available at: http://linux.web.cern.ch/linux/scientific6/. (Accessed: 2017-05-01).

S-Link – High Speed Interconnect. (online). Available at: http://hsi.web.cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

J. Novy CTU Prague, CERN

COMPASS iFDAQ Software

http://ctn.cvut.cz/ap/.
http://castor.web.cern.ch
http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html
http://hpfr03.physik.uni-freiburg.de/gandalf/pages/information/about-gandalf.php?lang=EN
https://twiki.cern.ch/twiki/pub/Compass/Detectors/FrontEndElectronics/imux_manual.pdf
http://linux.web.cern.ch/linux/scientific6/
http://hsi.web.cern.ch/HSI/s-link/

	Introduction
	Introduction

	iFDAQ Architecture
	iFDAQ Architecture

	I-P Communication
	Distributed Information Management System
	DIALOG Library

	iFDAQ Debugging
	Conventional Debugging
	DAQ Debugger

	iFDAQ Stability
	iFDAQ Stability

	Future development
	Software structure

	Conclusion
	Conclusion

	References
	References

