Photons in SPD detector

Aierke Rymbekova (JINR DLNP, Dubna)

July 12, 2018

Direct photons program on SPD detector

Photons produced in the hard scattering, named the <u>direct photons</u>, provide information about gluon component of the proton.

two main sources of direct photons:

pho	photons in 10 ⁶ -pp collisions		
π^0	$8.7 * 10^{6}$		
η	400000		
ω	59500		
η'	46200		
Σ^0	34500		
Δ^+	1610		
Δ^0	1130		
ρ^0	743		
K*() 600		
$ ho^{+0}$	570		
ϕ	540		
Λ	470		
K^{*-}	370		
γ_{dire}	<i>ct</i> 30		

Background subrtaction

Transverse momentum threshold

10¹²

 p_{T0} From previous experiments is in the range [2-4] GeV/c

Threshold on transverse momentum to get an error less than 100 %

Two types of magnet system will be discuss in this contest

• Toroidal magnet system

• Solenoidal magnet system

Pythia 6 Monte Carlo generator, SPDROOT Geometry: Beryllium pipe, magnet coils, electromagnetic calorimeter (ECAL). The calorimeter response is not simulated

Geometry with toroidal magnet

TOROIDAL ELECTROMAGNETIC CALORIMETER BARREL

Barrel length = 510 cm

Barrel internal R = 205 cm

Barrel width = 60 cm

TOROIDAL ELECTROMAGNETIC CALORIMETER ENDCAPS

Caps R = 340 cm

Caps width = 58 cm

Internal R = 6 cm

TOROIDAL MAGNET SYSTEM

Mag field ≈ 1 T

BEAM PIPE (Be)

Thickness = 2.8 % of radiational lenght

7

Reconstruction efficiency

Reconstuction efficiency as function of angles for single γ from π^{0} decays (left) and when both photons from π^{0} decay reached ECAL (right)

Single photon	π^{0}
83.1 %	68.9 %

Orbital and asimutal angle distributions

Bottom - the ratio of produced photons to photons in ECAL for γ from π^0 decays

The efficiency on azimutal angle falls because of interaction of photons with magnets coils

Energy and transerve momentum distributions

Bottom - the ratio of vertex photons to photons in ECAL for γ from π° decays

Direct photons distributions

Scaled to Integral

Blue line – photons from π^{0} **minimus bias**

XY distribution in barrel

Particles energy loss in barrel

Sources for all particles in different parts of calorimeter

Reconstruction efficiency

	Solenoid		Toroid	
	all	pT>2 GeV/c	all	pT>2 GeV/c
Single photon			83.1	88.7
π^{0}			68.9	78.8
Direct photon			86.6	88.9

Geometry with solenoidal magnet

SOLENOIDAL ELECTROMAGNETIC CALORIMETER BARREL

Barrel length = 510 cm

Barrel internal R = 132 cm

Barrel width = 60 cm

SOLENOIDAL ELECTROMAGNETIC CALORIMETER ENDCAPS

Caps R = 332 cm

Caps width = 58 cm

Internal R = 6 cm

SOLENOIDAL MAGNET SYSTEM

Mag field = 1 T

BEAM PIPE (Be)

Thickness = 2.8 % of radiation lenght

Reconstruction efficiency

Reconstuction efficiency as function of angles for single γ from π^{0} decays (left) and when two photons from π^{0} decay goes to ECAL (right)

Single photon	π^{0}
94.3 %	88.2 %

Angle distributions

Bottom - the ratio of vertex photons to photons in ECAL for γ from π^0 decays

The efficiency on azimutal is uniform due to symmetrical setup

Energy and transerve momentum distributions

Bottom - the ratio of vertex photons to photons in ECAL for γ from π^0 decays

Direct photons distributions

Scaled to Integral

Red line – direct photons from quark gluon Compton scattering Blue line – photons from π^0 minimus bias

XY distribution in barrel

Particles energy loss in barrel

Comparison of reconstruction efficiency for toroid and solenoid **TOROID SOL** R reconstruction efficiency 0.9 0.90.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 p_T 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 00 0 2.5 3.5 0.5 1.5 2 З 3 5 6 8 9 p_T, GeV/c Energy, GeV reconstruction efficiency гесонзітисної енісіелсу 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0¹0 00 2 2.5 З 0.5 1 1.5 2 3 5 6 θ , rad

22

Comparison of reconstruction efficiency of direct photons for toroid and solenoid

Reconstruction efficiency

	Solenoid		Toroid	
	all	pT>2 GeV/c	all	pT>2 GeV/c
Single photon	94.3	97.1	83.1	88.7
π^{0}	88.2	92.9	68.9	78.8
Direct photon	95.5	96.9	86.4	88.9
k	0.1338	0.0764	0.4514	0.2690

$$\sigma \sim N_{\text{direct}} = N_{\text{single }\gamma} - 2 \times N_{\pi^0} \times k$$

$$k = \frac{1}{reconstruction efficiency} - 1$$

Hybrid magnetic system

Photons from charmonium See the talk by I. Dinesenko

Name	Mass, MeV	Decay modes	Probability, %
$\chi_{c0}(1P)$	3414.75 ± 0.31	$\gamma J/\psi(1S)$	1.27 ± 0.06
$\chi_{c1}(1P)$	3510.66 ± 0.07	$\gamma J/\psi(1S)$	33.9 ± 1.2
$\chi_{c2}(1P)$	3556.20 ± 0.09	$\gamma J/\psi(1S)$	19.2 ± 0.7

Summary

1. Direct photons provide information about gluon component of the proton

2. The main source of background photons (almost 99%) in protonproton collision is the production and decay of π^0 and η mesons

3. The main way to suppress the background is effective reconstruction of π^0 decays and an accurate simulation of setup behaviour.

4. For the direct photon studies the solenoidal system is much better (inefficiency is 3 times smaller, k = 0.0764 for solenoid and k = 0.2690 for toroid)

5. The possibility of using a hybrid system is considering