COMPASS API

Matouš Jandek matous.jandek@cern.ch

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University

12th July, 2018

COMPASS Data Storage

COMPASS experiment utilizes two types of data storage.

COMPASS database

- MySQL database
- Designed by COMPASS members

Network folders and file servers

- Directories on COMPASS servers
- Services provided by CERN IT department

Example of usage

Example of typical database query:

```
MariaDB [(none)]> SELECT nbspill, nbevt, recordingfg, shiftid, title, comments, dag dt, veto dt, veto rdt,
    -> DATE FORMAT(starttime, '%Y-%M-%D %H:%i:%s') AS starttime,
    -> DATE_FORMAT(stoptime, '%Y-%M-%D %H:%i:%s') AS stoptime.
    -> rt.description AS rt description, rt.keyword AS rt keyword.
    -> t.pbtvpewd, t.errdetwd, bv.sml, bv.sm2, bv.ionmuon.
    -> DATE FORMAT(by.mestime, '%Y-%M-%D %H:%i:%s') AS by mestime.
    -> bv.t6current, t6.desc AS t6head, sf.name AS sps file, sf.mode AS sps mode,
    -> Sf.energy AS sps energy, tg.uppol. tg.centralpol. tg.downpol. tg.coil4, tg.solencur, tg.dipolcur.
    -> DATE FORMAT(tg.magtime, '%Y-%M-%D %H:%i:%s') AS magtime, DATE FORMAT(tg.mestime, %s) AS pol mestime.
    -> ar.ROBelems, ae.EBelems, fi.filtername, tr.trigelems, ed.runnb AS errorDump,
    -> coll1 jaw1, coll1 jaw2, coll2 jaw1, coll2 jaw2, coll3 jaw1, coll3 jaw2, coll4 jaw1, coll4 jaw2.
    -> DATE FORMAT(co.stamp, '%Y-%M-%D %H:%i:%s') AS coll stamp, root.filename AS root filename, t.period
    -> FROM th run t
    -> INNER JOIN tb runtype rt ON t.runtypeid = rt.runtypeid
    -> INNER JOIN (tb beamvalues by INNER JOIN tb t6heads t6 0N by.t6head = t6.t6headid)
    -> ON t.bvalueid = bv.bvalueid
    -> INNER JOIN to spsfiles of ON t.spsfileid = of.spsfileid
    -> INNER JOIN to target to ON t.targetid = tg.targetid
    -> INNER JOIN to actROB ar ON t.actROBid = ar.actROBid
    -> INNER JOIN to actEB ae ON t.actEBid = ae.actEBid
    -> INNER JOIN tb filterinfo fi ON t.filterid = fi.filterid
    -> INNER JOIN to trigger tr ON t.triggerid = tr.triggerid
    -> LEFT JOIN tb errorDump ed ON t.runnb = ed.runnb
    -> LEFT JOIN tb collimators co ON t.runnb = co.runnb
    -> LEFT JOIN tb rootfiles root ON t.runnb = root.runnb
    -> WHERE t.runnb = 222222:
```

Database Access Methods

- Database provides no views or procedures
- Manually written database queries are used by applications
- Each application uses individually written queries
- Results in repetitive code
 - More time required to develop new features
 - More difficult maintenance of existing software
 - Higher probability of errors
 - Inability to change database structure without adapting all applications

File Storage Directories

- Directory information is obtained from database
- This procedure is not unified
- Files are often bound to specific database records, but are stored separately
 - Risk of desynchronization between database and filesystem
 - File-related data SELECT SQL risk of retrieving incomplete data
 - File-related data INSERT SQL risk of storing incomplete data and loss of data integrity

COMPASS Data Storage

Possible Solution - Database Views

- Database problems may be solved by implementing SQL procedures and views
- Solves duplicity of code that is used to access database
- Drawbacks:
 - No control over file storage does not solve file-database synchronization
 - · Lack of ability to affect any other computer systems
- Advisable to implement, but complete solution should be universal

Possible solution – Application Programming Interface

- API acts as an abstraction layer between COMPASS data and applications
- Applications may use the API to operate on data
- Required data operations:
 - Create data
 - Modify existing data
 - Read data
 - Delete data

Implementation

- COMPASS API is designed as RESTful API
- REST is a system architecture principle
- Properties of RESTful API-based systems
 - REST is centererd around "resource" single piece of information
 - Client-server structure
 - Request-response communication
 - Clients request resource from server
 - Server sends back resource representation in response

Implementation – HTTP

- Typical RESTful API implementation uses HTTP protocol
- HTTP request contains "method" keyword

```
GET http://www.compass.cern.ch/
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.5
Cache-Control: max-age=0
Connection: keep-alive
Host: www.compass.cern.ch
If-Modified-Since: Tue, 06 Mar 2018 06:49:23 GMT
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0
```

HTTP methods may be mapped to request types

Implementation - URI

Identification of resources done by URI

- example: http://www.jinr.ru
- Resource is identified by "path" section of URI
- examples:

```
http://apiserver/resource,
http://apiserver/other_resource
```


Implementation

- COMPASS API is a RESTful API server
- Server implemented in C++ with the use of Qt framework same technologies as COMPASS iFDAQ software
- Modular structure request type definitions are loaded at runtime from plugin modules
- Server routes all requests to routines in corresponding plugin
- Plugin is then responsible for executing necessary database queries and file operations, and constructs the response to the client

COMPASS data storage with API

Advantages

- Unification of data interaction procedures
 - Background logic in single program
 - Easier to maintain and implement new features
- The design allows to extend the functionality of COMPASS API to execute variety of tasks

Example of usage

• Example of database query:

```
MariaDB [(none)]> SELECT nbspill, nbevt, recordingfg, shiftid, title, comments, dag dt, veto dt, veto rdt,
    -> DATE FORMAT(starttime, '%Y-%M-%D %H:%i:%s') AS starttime,
    -> DATE_FORMAT(stoptime, '%Y-%M-%D %H:%i:%s') AS stoptime.
    -> rt.description AS rt description, rt.keyword AS rt keyword.
    -> t.pbtvpewd, t.errdetwd, bv.sml, bv.sm2, bv.ionmuon.
    -> DATE FORMAT(by.mestime, '%Y-%M-%D %H:%i:%s') AS by mestime.
    -> bv.t6current, t6.desc AS t6head, sf.name AS sps file, sf.mode AS sps mode,
    -> Sf.energy AS sps energy, tg.uppol. tg.centralpol. tg.downpol. tg.coil4, tg.solencur, tg.dipolcur.
    -> DATE FORMAT(tg.magtime, '%Y-%M-%D %H:%i:%s') AS magtime, DATE FORMAT(tg.mestime, %s) AS pol mestime.
    -> ar.ROBelems, ae.EBelems, fi.filtername, tr.trigelems, ed.runnb AS errorDump,
    -> coll1 jaw1, coll1 jaw2, coll2 jaw1, coll2 jaw2, coll3 jaw1, coll3 jaw2, coll4 jaw1, coll4 jaw2.
    -> DATE FORMAT(co.stamp, '%Y-%M-%D %H:%i:%s') AS coll stamp, root.filename AS root filename, t.period
    -> FROM th run t
    -> INNER JOIN tb runtype rt ON t.runtypeid = rt.runtypeid
    -> INNER JOIN (tb beamvalues by INNER JOIN tb t6heads t6 0N by.t6head = t6.t6headid)
    -> ON t.bvalueid = bv.bvalueid
    -> INNER JOIN to spsfiles of ON t.spsfileid = of.spsfileid
    -> INNER JOIN to target to ON t.targetid = tg.targetid
    -> INNER JOIN to actROB ar ON t.actROBid = ar.actROBid
    -> INNER JOIN to actEB ae ON t.actEBid = ae.actEBid
    -> INNER JOIN tb filterinfo fi ON t.filterid = fi.filterid
    -> INNER JOIN to trigger tr ON t.triggerid = tr.triggerid
    -> LEFT JOIN tb errorDump ed ON t.runnb = ed.runnb
    -> LEFT JOIN tb collimators co ON t.runnb = co.runnb
    -> LEFT JOIN tb rootfiles root ON t.runnb = root.runnb
    -> WHERE t.runnb = 222222:
```

Example of usage

- Solution:
 - Move the SQL query to COMPASS API
 - In the computer program, send an HTTP request
 - Example using C++ and Qt

Thank you for your attention

