
Software design of the COMPASS experiment in CERN
(solutions, which could be useful for SPD)

 2

Overview

 General structure of the software

 Monte Carlo

 Monte Carlo → Event Reconstruction Framework interface

 Event Reconstruction Framework

 Decoding
 Track reconstruction

 Kalman filter tree algorithm
 Reconstructed Data structure

 Analysis Framework

 Conclusions

 3

Analyzes Framework
DAQ

 Monte Carlo

General structure

Mass
storage

Event
Reconstruction

Framework

Online
Monitoring Raw data

Data summary trees
(reconstructed events)

MC data
Detectors’ geometry

Material maps

Data Bases

Magnetic field maps
Calibration constants

Physics results
(Histograms,
Ntuples)

data filtration

 4

Monte Carlo

 Geant3:

 Input:
 Physics processes generator’s data (text file)
 Geometry of detectors are defined by text file

 Output:
 Simulated tracks and vertices (Zebra binary)
 MC hits (see below)
 Detectors geometry description (text file)
 Maps of materials (self-made binary format)

 5

Monte Carlo

 Geant4:

 Input:
 Physics processes generator’s data (text file)
 Geometry of detectors are defines by code.

 Output:
 Simulated tracks and vertices (self-made format)
 MC hits (see below)
 Detectors geometry description (text file)
 Maps of materials (ROOT Geometry package)

 6

Monte Carlo

 Better solution would be:

 Virtual Monte-Carlo (ROOT’s TVirtualMC)
 Common interface for different “transport code”

(currently Geant3 and Geant4)
 Interface for “user-defined” physical processes
 Fully integrated with ROOT Geometry package

(TGeom)

 7

Monte Carlo.
Interface with reconstruction software.

 Information is needed to be passed into Event
Reconstruction Framework:

1) for every detector:

a) position, orientation, size

b) internal structure. E.g.
 number of wires/strips/straws/...
 pitch/step
 readout direction (1st wire position)
 dead zones

2) Materials map (to take into account multiple
scattering and energy losses).

3) Magnetic filed map

 8

Monte Carlo.
Interface with reconstruction software.

 ROOT geometry is a good solution for description of:

 Detectors’ position, orientation, size
 Materials (detectors’ materials and “passive materials”)

 For magnetic field map ROOT geometry has only an
interface (TVirtualMagField). i.e. implementation has to be
done by user.

In COMPASS:

 special interface (table) is used to pass information on detector’s
geometry (including internal structure)

 ROOT geometry is used for material map

 9

Event Reconstruction Framework
(main components)

 Decoding of the Raw Data

 Detectors’ response simulations in the case of MC data

 Track reconstruction

 Reconstruction of calorimeters’ data
 electromagnetic and hadronic calorimeters

 Particle identification (PID)
 RICH, muon ID, hadrons ID etc.

 Vertex finding

 Event display (for algorithms debugging)

 DST (data summary trees) creation and storage

 10

Decoding

 Decoding Library takes DAQ format data (Raw Data) as
an input and produce so called DAQdigits objects as an
output. (This is the 1-st step of decoding)

 DAQdigit contains 3 main data-members:

 Detectors’ unique ID
 Sensitive element number

(strip/pad/straw/wire/fiber/calorimeter cell ..) of this
detector where information had been produced

 Associated information (depends on front-end
electronics type). E.g.

 amplitudes for ADCs
 times for TDCs

 11

Decoding

 Correspondence between electronic addresses of
information sources and detectors’ sensitive elements
are defined in external, human readable files (so called
“mapping files”):

 Mapping files are XML format based, where
connection of electronics to wires/strips/pads/
calorimeter cells .. etc. are described.

 Mapping files may have time-dependent sections
(“validity periods”) what allows to support possible
different commutation of electronics and detectors
at different periods of data taking time.

 12

Decoding

 The same Decoding Library (and the same mapping files)
is used in Online Monitoring software and on the first
step of decoding (creation of DAQdigits) in Event
Reconstruction Framework.

 Advantage: on the stage of commissioning and
running of experiment, detectors responsible
persons maintain and update mapping files of their
detectors and (rarely) code of Decoding Library to
be able to used Online Monitoring

→ offline software get it “for free”

 13

Decoding

 2-d step of decoding is creation of Digits out of DAQdigits:

 Digit contains also 3 data-members:
 Detectors’ unique ID
 Sensitive element number

(strip/pad/straw/wire/fiber/calorimeter cell/..)
 Measurement. E.g.:

 Amplitude with subtracted pedestals
 Time corrected on T0
 Energy deposited in calorimeter cells,

recalculated from amplitudes
 On this step various types of available calibrations are used

 14

Decoding

 3-d step of decoding is creation of Clusters (sometime
called also Hits) out of Digits.

 Typically Cluster is grouped Digits e.g. group of
adjacent wires / pixels /strips ... Or group of
calorimeter cells with non-zero energy deposition.

 Content of Clusters:
 Measured coordinate with errors
 Possible associated information:

 Amplitude or time for tracking detectors
 Energy for calorimeters

 Clusters created on this step are physics measurements
which are inputs for event reconstruction algorithms

 15

Decoding
in the case of Monte Carlo

 Monte Carlo do not simulate Raw Data format but produce
so called MChits.

 Contents of MChits:

 X,Y,Z of simulated particle on the entry to sensitive
volume (i.e. detector)

 Momentum Px,Py,Pz of simulated particle on the
entry to sensitive volume.

 X,Y,Z of simulated particle on the exit from sensitive
volume (if particle had traversed the detector)

 Momentum Px,Py,Pz of simulated particle on the exit
from sensitive volume (if particle had traversed the
detector) .

 16

Decoding
in the case of Monte Carlo

 Simulation of detector response was done in the Event
Reconstruction Framework.

 It is a software (usually functions of detectors’ classes),
different for different type of detectors.
 Typically it is developed and maintained by detectors’ experts.

 Those functions produce Digits out of MChits. i.e. simulate
detector response if particle traverse detector of this
type.

After this step (after creation of Digits) event
reconstruction software is identical for Real data and for
MC data (almost :-).

 17

Track reconstruction

 Important point is choice of track parametrization.
Requirements are:

 Minimal number of parameters
 Minimal correlation between parameters
 Preferably Gaussian distribution of parameters errors.

 We use following parametrization:

X = (x, y, dx/dz, dy/dz, q/P) at some surface (detector’s
surface or virtual one). x,y, are coordinates on the
surface, z is normal to the surface, dx/dz, dy/dz are
slopes, q is charge and P is momentum.

 18

Track reconstruction

 3 main steps of tracking:

 Track pieces finding in different detector groups
(“pattern recognition”)

 Joining track pieces to form “long” tracks (“bridging”)
 Track fit.

 19

Track reconstruction

 Pattern recognition:

 Classical combinatorics of tracking detectors’ clusters
in “projections”, i.e. in detectors measuring
coordinates at the same angle (2D track pieces)

 Making track pieces in space (3D track pieces) by
combining 2D track pieces

 Disadvantages of the method: it assumes certain model of
the track pieces (straight line in the case of COMPASS)

 Better solution: “Kalman filter tree” (see below)

 20

Track reconstruction

 Bridging:

 Combinatorial connection of track pieces in different
detector groups to form track candidate

 Attempt to fit track candidate (by Kalman fit) to find
best combination of track pieces in terms of number
of used clusters and chi2.

 21

Track reconstruction

 Track fit: Kalman fit technique was used.

 Kalman fit is iterative procedure:

 On every step track parameters vector X with it’s
covariance matrix are ...

(1) extrapolated to the surface of tracking detector.
Extrapolation procedure uses magnetic field map
and materials map (multiple scattering)

(2) updated by measurement M, where M is cluster
coordinates with covariance matrix (if any).

 At the end of iterations we have the best track parameters
estimator with it’s covariance matrix

 22

Track reconstruction

 Advantages of Kalman fit technique:

 Manipulation with matrices of maximal size NxN
where N is length of track parameters vector (in our
case it is 5) independent of number of used
measurements (number of clusters) on the track.

 Before “update” step, contribution of measurement M
to final tracks’ Chi2 could be calculated → we can
decide to include this measurements to the track or
not (i.e. to do filtering).

 This allows to build pattern recognition
algorithm based on Kalman filter (Kalman filter
tree).

 23

Extrapolate X and it’s covariance matrix to detector’s surface

Measurement with errors (Cluster)

Check Chi2 increment. No “update” if it’s too big.

Update X by measurement M

Kalman filter tree
(simultaneous pattern recognition and fit)

Stop track following (“dead branch of the tree”)

 24

Track reconstruction

 Usually Kalman fit has 2 passes.

 Forward direction (to get best estimator of track
parameters at the end)

 Backward direction (to get best estimator of track
parameters at interaction vertex)

 It is possible to get best estimator of track parameters at
any point of trajectory (e.g. on detector’s surface) using
so called “Kalman smoothing” procedure

 25

Data summary tree (DST) structure

 DST structure is based on ROOT package trees and
contains:

 Reconstructed events tree (multiple event-type objects
with possibility of random access)

 Event independent information (tree with 1 object):
 Detectors geometry descriptions
 Magnetic field maps
 Materials map …
 ...etc. I.e. everything which is not changed from

event to event but could be needed for analysis

 26

Data summary tree (DST) structure

 Reconstructed events contain:

 Reconstructed tracks
 Tracks refitted in the vertex (if associated to some

vertex)
 Vertices
 Calorimeters’ clusters
 Clusters of tracking detectors (optional)
 DAQdigits (optional)

 27

Data summary tree (DST) structure

 Reconstructed events may also contain (in the case if input
is Monte Carlo):

 MC tracks
 MC vertices
 MC hits
 Original MC generator information

 28

Data summary tree (DST) structure

 It is data hierarchy, organized “by containment”

 I.e. “reconstructed event” have containers (STL vectors) of
lower level objects (e.g. “reconstructed tracks”,
“reconstructed vertices”, MCtracks etc.) each of them
may have containers with other objects (e.g. MCtrack
may have vector of MChits) etc.

 So, structure of the code represents naturally logical
structure of HEP event and MC data.

 Flexible enough to be changed during experiment lifetime

 29

Analysis Framework ...

 provides simple access to reconstructed events (for
physicists who are not experts in C++ and ROOT)

 is an environment for physics analysis code
development

 is a tool for DST ...
 processing of events (may add info to events)
 filtering of events’ sub-samples (reduction in

number of events)
 discarding of information not needed (reduction

in size of events)
 also provides DST output data stream module in the

Event Reconstruction Framework.

 30

Analysis Framework ...

 was designed to have minimal dependencies on other
software (only ROOT is needed)

 provides encapsulated place for user’s analysis code
and executable build tools for different platforms

 allows to change DST content without loss of
backward compatibility (due to ROOT’s “schema
evolution” mechanism)

 31

Conclusions

 Some of software design solutions successfully used in
COMPASS during many years could be taken into
consideration in SPD at software design and
development stage.

 32

 33

Decoding
 Fragment of typical mapping file:

<Map>

 <ChipAPV
 options = ""
 runs = "255235-265099"
 year = "2015"
 version = "1"
 detector = "GEM detectors"
 maintainer = "John Smith">

<!-- Station GM01 -->

 <!-- name srcID adcID chipID chanF chanS chanN wireF wireL wireS -->

 <!-- TGEM23 -->
 0 GM01U1__ 736 1 1 0 1 128 127 0 -1
 0 GM01U1__ 736 1 2 0 1 128 255 128 -1
 0 GM01U1__ 736 1 3 0 1 128 383 256 -1
 0 GM01U1__ 736 1 4 0 1 128 511 384 -1
 0 GM01U1__ 736 1 5 0 1 128 639 512 -1
 0 GM01U1__ 736 1 6 0 1 128 767 640 -1

 0 GM01V1__ 736 2 6 0 1 128 127 0 -1
 0 GM01V1__ 736 2 5 0 1 128 255 128 -1
 0 GM01V1__ 736 2 4 0 1 128 383 256 -1
 0 GM01V1__ 736 2 3 0 1 128 511 384 -1
 0 GM01V1__ 736 2 2 0 1 128 639 512 -1
 0 GM01V1__ 736 2 1 0 1 128 767 640 -1

 <!-- TGEM24 -->
 0 GM01X1__ 736 3 6 0 1 128 0 127 1
 0 GM01X1__ 736 3 5 0 1 128 128 255 1
 0 GM01X1__ 736 3 4 0 1 128 256 383 1
 0 GM01X1__ 736 3 3 0 1 128 384 511 1
 0 GM01X1__ 736 3 2 0 1 128 512 639 1
 0 GM01X1__ 736 3 1 0 1 128 640 767 1

 0 GM01Y1__ 736 4 1 0 1 128 0 127 1
 0 GM01Y1__ 736 4 2 0 1 128 128 255 1
 0 GM01Y1__ 736 4 3 0 1 128 256 383 1
 0 GM01Y1__ 736 4 4 0 1 128 384 511 1
 0 GM01Y1__ 736 4 5 0 1 128 512 639 1
 0 GM01Y1__ 736 4 6 0 1 128 640 767 1

 </ChipAPV>

 34

Data summary tree (DST) structure

 “Reconstructed event” class (only container data-members):
 vector<UInt_t> vecHeader; // header info

 vector<UInt_t> vecScaler; // scalers info

 vector<PaTrack> vecTrack; // Charged tracks

 vector<PaVertex> vecVertex; // Vertices

 vector<PaParticle> vecParticle; // Particles

 vector<PaCaloClus> vecCaloClus; // Calorimeter clusters

 vector<PaMCtrack> vecMCtrk; // MC tracks

 vector<PaMCvertex> vecMCvtx; // MC vertices

 vector<PaMCgen> vecMCgen; // MC generator's info

 vector<PaHit> vecHit; // Hits

 vector<PaDigit> vecVIPdigit; // Digits important for analysis

 vector<PaMChit> vecMChit; // MC Hits

 vector<Float_t> vecAux; // Auxiliary information

 vector<Float_t> vecMisc; // Auxiliary information

 vector<UInt_t> vecOnlFlt; // Online filter information

 vector<UInt_t> vecRawBuffer; // Event's raw buffer

 vector<UInt_t> vecDaqDecoErr; // DAQ decoding errors

 vector<Float_t> vecCEDAR; // CEDAR information

 35

Data summary tree (DST) structure

 “Reconstructed track” class (fragment)
 Float_t chi2tot; // total Chi2

 Float_t meanTime; // mean track time relative to trigger time

 Float_t sigmaTime; // mean track time error

 Float_t chi2Time; // time chi2

 Float_t xx0; // X/X0 - radiation length of materials track passed

 UInt_t expected[HIT_MAP_SIZE]; // bitmap of passed detectors

 UInt_t found[HIT_MAP_SIZE]; // bitmap of found hits

 vector<PaTPar> vecTPar; // track parameters

 vector<Float_t> vecRich; // RICH identification

 vector<Float_t> vecAux; // Auxiliary information

 int nmeas; // Number of measurements on track (as given CsTrack::_ndf)

 int nhits; //!(-) number of hits counter from hitpattern (Hit = Cluster)

 int ind; //!(-) this track's index (position in vector)

 int indPart; //!(-) reference to corresponding particle

 int indMC; //!(-) reference to MC track (MC track # in vMCtrack or -1)

 vector<Int_t> vecHitRef; //!(-) references to hits

 36

Data summary tree (DST) structure

 “Track parameters” class (fragment)

 // persistent data members ("float" to decrease mDST volume)

 Float_t Par[6]; // Track parameters: x0(fixed), x1, x2, dx1/dx0, dx2/dx0, q/P

 Float_t Cov[15]; // Cov matrix lower triangle (15 elements)

 // non-persistent data members (filled if Extrapolate() method was used)

 double path; //!(-) trajectory length in extrapolation

 double radLenFr; //!(-) X/X0 along path

 double Eloss; //!(-) energy loss along the path

