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Introduction

Shortly after Einstein proposed his famous theory of gravity,
Weyl (1918) in an attempt to unify gravitation and
electromagnetic field, introduced a generalization of Riemannian
Geometry. Weyl theory was not taken seriously as it
contradicted some well-known observational result. Lyra (1951)
proposed a modification of Riemannian geometry which bears a
close resemblance of Weyl geometry. But unlike Weyl geometry,
in Lyra’s geometry the connection is metric preserving as in
Riemannian geometry. In doing so he introduced a gauge
function into the structureless manifold. This theory was further
developed by Schibe (1952), Sen (1957, 1960), Halford (1970),
Sen and Dunn (1971), Manoukian (1972), Send and Vanstone
(1972), Hudgin (1973). Recently Casana and coauthors (2005),
Shchigolev (2012) and many others have considered Lyra’s
geometry is cosmology.
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Introduction: Aim and scope

In a number of papers (Saha) it was shown that spinor field is
very sensitive to the gravitational one. In most cases there exist
nontrivial non-diagonal components of energy-momentum tensor
(EMT) which leads to the different types of restrictions both on
the geometry of space-time and the spinor field itself. The aim
for considering Lyra’s geometry is to clarify whether it can
remove or weaken the restrictions those occur in usual cases.
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Introduction: Weyl’s geometry

There exist a geodesic gauge in which length of a vector does
not change under parallel transform, but in an arbitrary gauge
it is assumed to change

dξ = −ξϕµdxµ, (1)

where ϕ is a vector function characterizing the manifold. Thus
the metrical connection of a Weyl manifold is characterized by
two independent quantities gµν and ϕµ. If one makes a gauge
transformation ξ → ξ̄ = λξ, λ = λ(x) then

gµν → ḡµν = λgµν , ϕ̄µ = ϕµ − λµ/λ, λµ = ∂λ/∂xµ. (2)

Γ̄αµν = Γαµν +
1
2
(
δαµϕν + δαν ϕµ − gµνϕ

α
)
, ϕµ = gµνϕν . (3)
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Introduction: Lyra’s geometry
Lyra suggested a modification of Riemannian geometry which is
also a modification of Weyl geometry. The metrical concept of
gauge in Weyl geometry was modified by a structureless gauge
function. The displacement vector between two neighboring
points now has the components ξµ = x0dxµ where x0 is a
nonzero gauge function. A general transformation is given by

xµ → xµ′
= xµ′

(xλ), (x0; xµ) = (x0′
; xµ′

) (4)

Aµ′
µ = ∂xµ′

/∂xµ, det Aµ′
µ ̸= 0. (5)

A vector in Lyra’s geometry transforms as

ξµ
′
= λAµ′

µ ξ
µ, δξµ = −Γ̃µαβξ

αx0dxβ, λ = x̄0/x0, (6)

Γ̃µαβ = Γµαβ − 1
2
δµαϕβ, Γ̃µαβ ̸= Γ̃µβα, Γµαβ = Γµβα. (7)
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Introduction: Lyra’s geometry

The transformation formulae for Γµαβ and ϕα are

Γταβ =
∂xτ

∂x̄ρ

∂x̄µ

∂xα

∂x̄ν

∂xβ
Γ̄ρµν +

1
x0
∂xτ

∂x̄ρ

∂x̄ρ

∂xα∂xβ
, (8a)

ϕα =
∂x̄β

∂x̄α
ϕ̄β, (8b)

under coordinate transformation and

Γ̄ταβ = λ−1Γρµν , λ = x̄0/x0 (9a)

ϕ̄α = λ−1
(
ϕα +

1
x0
∂lnλ2

∂xα

)
, (9b)

under gauge transformation.
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Introduction: Lyra’s geometry

The interval in this case is given by

ds2 = gµνx0dxµx0dxν . (10)

The parallel transport of length in Lyra geometry is integrable,
i.e., δ(gµνξ

µξν) = 0 and the connection takes the form

Γ̄αµν =
1
x0Γ

α
µν +

1
2
(
δαµϕν + δαν ϕµ − gµνϕ

α
)
, (11)

which is similar to that of Weyl geometry except 1/x0.
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Basic equations: Lyra’s Geometry

The parallel transfer, hence the equation of motion

1
x0
∂ξα

∂β
+ Γ̃ανβξ

ν = 0, (12)

is integrable if the components of the tensor

K λ
µαβ =

1
(x0)2

[
∂(x0Γ̃λµβ)

∂xα
−
∂(x0Γ̃λµα)

∂xβ
+ x0Γ̃λραx0Γ̃ρµβ − x0Γ̃λρβx0Γ̃ρµα

]
,

(13)

vanish.
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Basic equations: Lyra’s Geometry

The foregoing expression can be expressed as follows

K λ
µαβ = ⋆Rλ

µαβ +
1
2
δλµΦαβ, (14)

where

⋆Rλ
µαβ =

1
x0

[
∂Γλµβ
∂xα

−
∂Γλµα
∂xβ

]
+ ΓλραΓ

ρ
µβ − ΓλρβΓ

ρ
µα

+
1
2

(
ϕ̆αΓ

λ
µβ − ϕ̆βΓ

λ
µα

)
, (15)

Φαβ =
1
x0

[
∂ϕα
∂xβ

−
∂ϕβ
∂xα

]
+

1
2

(
ϕ̆αϕβ − ϕ̆βϕα

)
. (16)
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Basic equations: Lyra’s Geometry

Einstein’s field equation in Lyra’s geometry in normal gauge,
i.e., x0 = 1 was found by Sen and can be written as

Gν
µ +

3
2
ϕµϕ

ν − 3
4
δνµϕαϕ

α = κT ν
µ , (17)

where ϕµ is the displacement vector. Let us consider ϕµ as a
time-like vector field of displacement. Here

Gν
µ = Rν

µ − 1
2
δνµR. (18)
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Basic equations: Spinor field
Given the role that spinor field can play in the evolution of the
Universe, question that naturally pops up is, if the spinor field
can redraw the picture of evolution caused by perfect fluid and
dark energy, is it possible to simulate perfect fluid and dark
energy by means of a spinor field? Affirmative answer to this
question was given in the a number of papers. We consider the
spinor field Lagrangian given by

Lsp =
ı

2

[
ψ̄γµ∇µψ −∇µψ̄γ

µψ

]
− mspψ̄ψ − F , (19)

where the nonlinear term F describes the self-interaction of a
spinor field and can be presented as some arbitrary functions of
invariants K that takes one of the following values
{I, J, I + J, I − J} generated from the real bilinear forms of a
spinor field. We also consider the case ψ = ψ(t) so that
I = S2 = (ψ̄ψ)2, & J = P2 = (ıψ̄γ5ψ)2.
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Basic equations: Spinor field

The spinor field equations take the form

ıγµ∇µψ − mspψ −Dψ − ıGγ5ψ = 0, (20)

ı∇µψ̄γ
µ + mspψ̄ +Dψ̄ + ıGψ̄γ5 = 0. (21)

where we denote D = 2SFK KI and G = 2PFK KJ with
FK = dF/dK , KI = dK/dI and KJ = dK/dJ. In the Lagrangian
(19) and spinor field equations (20) and (21) ∇µ is the covariant
covariant derivative of the spinor field so that ∇µψ = ∂µ − Ωµψ
and ∇µψ̄ = ∂ψ̄ + ψ̄Ωµ where

Ωµ =
1
4
γ̄aγ

ν∂µe(a)
ν − 1

4
γργ

ν Γ̃ρµν . (22)
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Basic equations: Spinor field
The energy momentum tensor of the spinor field is given by

T ρ
µ =

ıgρν

4
(
ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ

)
− δρµLsp

=
ı

4
gρν

(
ψ̄γµ∂νψ + ψ̄γν∂µψ − ∂µψ̄γνψ − ∂νψ̄γµψ

)
− ı

4
gρνψ̄

(
γµΩν +Ωνγµ + γνΩµ +Ωµγν

)
ψ

− δρµ
(
2KFK − F (K )

)
. (23)

On account of spinor field equations (20) and (21) the spinor
field Lagrangian takes the form Lsp = 2KFK − F (K ). The term
in red is responsible for non-diagonal components. Thanks to
spinor field equations the conservation of energy holds, i.e.,

Tµ
ν;µ = 0. (24)
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Basic equations: Bianchi type-I model
The Bianchi type-I we take in the form

ds2 = dt2 − a2
1dx2

1 − a2
2dx2

2 − a2
3dx2

3 , (25)

with a1, a2, a3 being the functions of time only. Introducing
the displacement vector ϕµ = {β(t), 0, 0, 0} we find

Ω0 =
1
8
β, (26a)

Ω1 =
1
2

(
ȧ1 −

βa1

4

)
γ̄1γ̄0, (26b)

Ω2 =
1
2

(
ȧ2 −

βa2

4

)
γ̄2γ̄0, (26c)

Ω3 =
1
2

(
ȧ3 −

βa3

4

)
γ̄3γ̄0. (26d)
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Basic equations: Spinor field equation

The spinor field equations in this case take the form

1
x0 ψ̇ +

V̇
2V

ψ − ıβ

2
ψ + ıγ̄0 (msp +D

)
ψ − Gγ̄0γ̄5ψ = 0, (27a)

1
x0

˙̄ψ +
V̇
2V

ψ̄ − ıβ

4
ψ̄ − ı

(
msp +D

)
ψ̄γ̄0 − Gψ̄γ̄0γ̄5 = 0. (27b)

Note that in Lyra’s geometry the differential operator ∂/∂xµ is
substituted by (1/x0)∂/∂xµ. But in natural gauge with x0 = 1
there is no need to write it. Since we will work in natural gauge,
we omit it in out further calculations. Here we also define
volume scale

V = a1a2a3. (28)
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Basic equations: Spinor field equation
For the invariants we find

Ṡ0 −
3
4
βS0 + 2GA0

0 = 0, (29a)

Ṗ0 −
3
4
βP0 + 2

(
msp +D

)
A0

0 = 0, (29b)

Ȧ0
0 −

3
4
βA0

0 + 2
(
msp +D

)
P0 − 2GS0 = 0, (29c)

with the solution

S2
0 − P2

0 + A0
0

2
= exp[(3/2)

∫
β(t)dt ], (30)

where we define S0 = SV , P0 = PV , A0
0 = A0V .
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Basic equations: Energy momentum tensor of spinor field
From we then find following nontrivial components of EMT

T 0
0 = mspS + λF , (31a)

T 1
1 = T 2

2 = T 3
3 = λ (F − 2KFK ) . (31b)

T 1
2 =

ı

8
a2

a1

(
ȧ1

a1
− ȧ2

a2

)
A3, (31c)

T 3
1 =

ı

8
a1

a3

(
ȧ3

a3
− ȧ1

a1

)
A2, (31d)

T 2
3 =

ı

8
a3

a2

(
ȧ2

a2
− ȧ3

a3

)
A1, (31e)

with Aµ = ψ̄γ̄5γ̄µψ being the pseudo-vector. Note that although
the SAC in this case differs from those without Lyra’s geometry,
the additional terms cancel out leaving the components of EMT
unaltered.
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Basic equations: Einstein equation

The diagonal components of Einstein’s equations are

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− 3

2
β2 = κ (F − 2KFK ) , (32a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− 3

2
β2 = κ (F − 2KFK ) , (32b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
− 3

2
β2 = κ (F − 2KFK ) , (32c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
+

3
2
β2 = κ

(
mspS + F

)
, (32d)

Note that though the spinor affine connections in this case differ
from case without Lyra’s geometry, additional terms cancel out.
As a result the components of EMT remain same in both cases.
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Basic equations: Einstein equation

From (32) one finds the following solutions for metric functions:

ai = XiV 1/3 exp[Yi

∫
(1/V )dt ],

3∏
i=1

Xi = 1,
3∑

i=1

Yi = 0. (33)

Thus we see that the metric functions are given in terms of V .
Hence we have to find the volume scale as well. From (32) for
volume scale we find

V̈ =
3κ
2

[
mspS + λ (F − KFK )

]
V . (34)
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Basic equations: Einstein equation

But we have to find β as well. Taking into account that the in
case of spinor field T ν

µ;ν = 0 on account on Bianchi identity from
(17) we find

(
3
2
ϕµϕ

ν − 3
4
δνµϕαϕ

α

)
;ν

= 0, (35)

which in our case takes the form

V β̇ + βV̇ = 0 =⇒ β = β0/V , β0 = const. (36)
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Basic equations: Einstein equation

Now from (29) on account of (36) we obtain

S =
C0

V
exp

[
(3/4)

∫
V−1dt

]
, S0 = const., (37a)

K =
C2

0
V

exp

[
(3/2)

∫
V−1dt

]
, K0 = const. (37b)

Note that for K = {J, I ± J} relations (37b) holds for massless
spinor field only, whereas for K = I it is true for both massive
and massless spinor field.
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Basic equations: Einstein equation

The RHS of the equation (34) depends on V only, hence can be
solved. We do it numerically for different values of nonlinear
term. In doing so we have considered a few cases that
correspond to quintessence, Chapligyn gas, modified
quintessence and modified chapligyn gas, respectively:

F (K ) = λK (1+W )/2 − mS, W = const.− quintessence, (38a)

F (K ) =
(

A + λK (1+α)/2
)1/(1+α)

, A > 0, 0 ≤ α ≤ 1, (38b)

Chapligyn gas,

F (K ) =

[
A

1 + W
+ λK (1+α)(1+W )/2

]1/(1+α)

, (38c)

modified Chapligyn gas.
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Basic equations: Einstein equation

Рис.: Evolution of the volume scale for with (blue) and without (red)
Lyra geometry for power law
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Basic equations: Einstein equation

Рис.: Evolution of the volume scale for with (blue) and without (red)
Lyra geometry for cosmological constant
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Basic equations: Einstein equation

Рис.: Evolution of the volume scale for with (blue) and without (red)
Lyra geometry for modified Chapligyn gas
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Basic equations: Einstein equation
The non-diagonal components of the EMT leads to

(
ȧ1

a1
− ȧ2

a2

)
A3 = 0, (39a)(

ȧ3

a3
− ȧ1

a1

)
A2 = 0, (39b)(

ȧ2

a2
− ȧ3

a3

)
A1 = 0. (39c)

The foregoing system leads to three different cases:
(i) A1 = A2 = A3 = 0. By virtue of Fierz identity in this case
the spinor field becomes linear and massless;
(ii) A2 = A3 = 0 and a2 = a3 which gives rise to locally
rotational symmetric Bianchi type-I (LRSBI) model;
(iii) a1 = a2 = a3 i.e. the anisotropy vanishes and BI space-time
becomes Friedmann-Lamaitre-Robertson-Walker (FLRW) one.
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Concluding remarks

Within the scope of BI anisotropic cosmological model with
Lyra’s geometry we have studied the role of spinor filed in the
evolution of the Universe. Though the spinor affine connections
in this case differ from those without Lyra’s geometry, the
components of energy momentum tensor and the equation of
volume scale remain the unaltered and the restrictions which
occurs in usual cases remain the same. Nevertheless, the gauge
function influences the solution through invariants of spinor
field. These problems need additional attention. We hope to
address it in near future.
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