Участие сотрудников НЭОМАП в проекте CDF.

А. Артиков

2024 г.

1

Участники группы ОИЯИ - CDF

Установка CDF II

Система сбора данных (слева) и трёхуровневая система триггеров установки CDF.

Сцинтилляционные счётчики мюонного триггера установки CDF II.

Мюонные сцинтилляционные счетчики покрывают область псевдобыстрот $0 < |\eta| < 1.5$ и сгруппированы в следующие основные подсистемы:

- Мюонные счетчики центральной области $0 < |\eta| < 0.6$ (красный цвет);
- Мюонные счетчики расширения центральной области $0.6 < |\eta| < 1.0$ (зеленый цвет);
- Мюонные счетчики передней области $1.0 < |\eta| < 1.5$ (синий цвет).

Сцинтилляционные счётчики мюонного комплекса CDF II

Нами введены в состав CDF II и задействованы:

система подачи высокого напряжения и система считывания для сцинтилляционных счётчиков с классическим светосбором и с оптоволоконным съёмом с миниатюрными ФЭУ.

Примеры "on-line" триггеров первого и второго уровня из общего набора

использовавшихся триггеров (левая колонка).

N	Полная формула триггера	сц. счетчики	эксперименты
1	L1_BMU10_BSUR_TSUO_&_CLC • L2_CJET15_L1_BMU10_BSUR_TSUO o L3_CENTRAL_JET_20 • MUON_CENTRAL_JET20_L1_BMU10_BSUR • MUON_BMU_1	BSU _R и TSU 1.25< η <1.5	M(t), all hadr.(off line)
2	L1_BMU10_BSU_PT11 • L2_CJET15_L1_BMU10_BSU_PT11 • L3_CENTRAL_JET_20 • MUON_CENTRAL_JET20_L1_BMU10_PT11 • MUON_BMU_1 • L2_RL2HZ_L1_BMU10_BSU_PT11 • L3_BMU9 • MUON_BMU9_L1_BMU10_BSU_PT11 • MUON_BMU_1	BSU _F 1.0< η <1.25	M(t), all hadr.(off line)
3	L1_CMU1.5_PT1.5_&_CMX1.5_PT2_CSX • L2_CMU1.5_PT1.5_&_CMX1.5_PT2_DPHI120_OPPQ	CSX и MSK 0.6< η <1.0	Л(0/b) All hadr.(off line), hel.W
4	L1_CMX6_PT8_CSX • L2_AUTO_L1_CMX6_PT8_CSX • L3_CMX8_TRACK5_ISO • TAU_CMX8_TRACK5_ISO • TAU_LEPTON_1 • L2_CMX6_PT15_JET10 • L3_MUON_CMX18 • MUON_CMX18 • HIGH_PT_MUON_1	CSX и MSK 0.6< η <1.0	M(t), B oscil., multilepton
5	Используются в "off-line" анализе, подготавливаются к включению в "on-line" триггер	СЅР и СЅР Wall 0< η <0.6	M(t), все другие

На CDF можно выделить несколько особо важных направлений современной физики высоких энергий, для изучения которых используются лептонные, в частности, мюонные моды распадов:

- Уточнение массы *t*-кварка;
- Уточнение массы W-бозона;
- ▶ Поиски частиц Хиггса;

Топологии конечных состояний распадов пары $t\bar{t}$ -кварков

- (1) $t\bar{t} \to W^+ b W^- \bar{b} \to q\bar{q}q\bar{q}b\bar{b}$ 44% струи
- (2) $t\bar{t} \to W^+ b W^- \bar{b} \to q\bar{q} l \nu_l b \bar{b}$
- (3) $t\bar{t} \to W^+ b W^- \bar{b} \to l \nu_l l \nu_l b \bar{b}$ 5%
- 30% струи + лептон (только μ и e)
 - 5% струи + 2 лептона (только μ и e)

Измерение массы топ-кварка.

Лептоны фиксировалось детекторами, созданными с нашим участием:

- МЮОН - сцинт. счётчики мюонного триггера + дрейф. камеры
- ЭЛЕКТРОН - **преконвертор** + эл.м. калориметр.

DLM (dynamical likelihood method) наибольшего использует метод правдоподобия в каждом отдельно взятом событии для определения массы топкварка.

Значение $M_{top} = 173.2^{+2.6}_{-2.4}$ (stat.) ГэВ/с² функции определено максимуме В правдоподобия.

Phys. Rev. D73:092002,2006.

Восстановленная масса каждого топкварка сравнивается с "шаблонными" распределениями с примесью фона. Они получены путем моделирования для набора масс топ кварка M_{top} =(140÷220) $\Gamma \mathfrak{g} B/c^2$

Получен результат $M_{top} = 173.5^{+3.7}_{-3.6}$ (stat.) $\Gamma_{2}B/c^{2}$.

Phys. Rev. D73:032003,2006

Топология «струи+ 2 лептона»

Ha экспериментальных данных, отобранных с помощью инклюзивного лептонного триггера, на статистике 340 пб⁻¹ найдено 33 кандидата в топантитоп событий.

результате на установке В СDF II масса топ кварка в дилептонной была моде определена равной

 $M_{top} = 170.1 \ \Gamma \Im B/c2 \pm 6.0(stat.) \pm$ 4.1(syst.).

10

Измерение массы W-бозонов. Метод шаблонов.

Измерение массы W-бозона проводилось на 200 пб⁻¹ статистике при изучении свыше 110 тысяч кандидатов на W-бозоны. На рисунках даны распределения по недостающему поперечному импульсу в модах $W \rightarrow \mu v$ (нижний рисунок) и $W \rightarrow ev$ (верхний рисунок). В обоих случаях видна согласованность экспериментальных гистограмм с расчётной кривой. При объединении этих результатов масса W-бозона была определена M_W =80413±48 (stat.) МэВ/с2.

FERMILAB-PUB-07-444-E, Aug 2007

Опубликовано в Phys.Rev.D77:112001,2008

Fig. 18. The summary of the CDF top-mass measurements at the end of 2005

На сегодня: $M_W = 80,403 \pm 0,029$ (PDG, 2008)

fitter SM GSM - A Gfitter Package for the Global Electroweak Fit

 Δx^2 as a function of MH for the standard fit. The solid (dashed) line gives the results when including (ignoring) theoretical errors. The minimum x^2 of the fit including theoretical errors is used for both curves to obtain the offset-corrected Δx^2 . Δx^2 as a function of MH for the complete fit.

The solid (dashed) lines give the results when including (ignoring) theoretical errors. The minimum x^2 of the fit including theoretical errors is used for both curves to obtain the offset-corrected Δx^2 .

CDF & D0 analyses combination. April 2008

TABLE I: Luminosity, explored mass range and references for the CDF analyses. ℓ stands for either e or μ .						
	$WH \rightarrow \ell \nu b \bar{b}$ 2 (TDT,LDT,STC)	$ZH ightarrow u ar{ u} b ar{b}$ TDT,LDT	$ZH ightarrow \ell^+ \ell^- b ar b$ ST,DT	$H \rightarrow W^+W^-$ low,high S/B	$H + X ightarrow au^+ au^- + 2$ jet H+VBF+WH+ZH	8
Luminosity (fb^{-1})	1.9	1.7	1.0	2.4	2.0	
m_H range (GeV/c ²)	110-150	100-150	110-150	110-200	110-150	
Reference	[5]	[6]	[7]	[8]	[9]	
TABLE II:	Luminosity, explored	mass range ar	nd references for t	the DØ analyses.	ℓ stands for either e or μ	ι.
	$WH ightarrow \ell u b ar{b}$ 2 (ST,DT)	$ZH \rightarrow \nu \overline{\nu} b \overline{b}$ DT	$ZH \to \ell^+ \ell^- b\bar{b}$ 2 (ST,DT)	$H \rightarrow W^+ W^-$ $\rightarrow \ell^{\pm} \nu \ell^{\mp} \nu$	$WH \to WW^+W^-$ $\to \ell^{\pm}\nu\ell^{\pm}\nu$	$H ightarrow \gamma \gamma$
Luminosity (fb^{-1})	1.7	2.1	1.1	2.3	1.1	2.3
m_H range (GeV/c ²) 105-145	105-145	105-145	110-200	120-200	105-145
Reference	[10]	[11]	[12]	[13], [14]	[15]	[16]
2 Tevatron Run II Preliminary, L=1.0-2.4 fb ⁻¹ $b = \frac{1}{1000} 3.5$ $b = \frac{1}{1000} 3.5$ $b = \frac{1}{1000} 1000$ Tevatron Diserved $\pm \frac{1}{1000} 3.5$ $\pm \frac{1}{1000} 3.5$ $\pm \frac{1}{1000} 1000$ $\pm \frac{1}{1000} 1000$ $\pm \frac{1}{1000} 1000$					► Best Fit ±1 s.d.	

<u>"Observation of $B_{S}^{0} - \overline{B}_{S}^{0}$ oscillations"</u>

$$(B_{S}^{\circ} \rightarrow D_{S}^{+(\circ)}l^{-}\overline{\nu}_{l}, l = e$$
 или μ).

Изготовление и тестирование мюонных сцинтилляционных счётчиков

RUN II: Площадь покрытия CDF детекторами мюонной системы как функция азимутального угла ϕ и псевдобыстроты η :

Аксептанс **RUN I** (штрихованная область), который заново был воспроизведен в **RUN II**:

- серый (счетчики от RUN I)
 - сиреневый (модернизированные счетчики)
 - зелёный (счетчики нового поколения, ОИЯИ)
- в RUN II добавился:
 - красный (счетчики нового поколения, ОИЯИ)
 - желтый (новые, с «рыбьим хвостом»)

Исследование свойств сцинтиллятора UPS 923A

Материал	Время нарастания, нс (уровень 0,1-0,9)	Время спада, нс (уровень 0,90,1)
UPS 923A	0,8	5,3
UPS 923A + K27	1,7	17,3

Зависимость светосбора сцинтилляционного счётчика на основе

полистирола (UPS 923A) – слева и поливинилтолуола (NE 114) - справа, от расстояния до ФЭУ

Зависимость световыхода небольшого образца сцинтиллятора UPS 923А

в процентах к антрацену от времени

Исследование старения сцинтилляционных счётчиков CDF II.

3.2 м новые, съем света волокнами

В 1999 – 2006 годах мы измеряли светосбор с дальнего от ФЭУ конца для одного и того же набора детекторов и определили индивидуальные параметры ослабления света τ_i ($I_t = I_0 e^{-(t/\tau)}$).

индивидуальных значений постоянной старения; аппроксимация функцией Гаусса.

Результаты исследования старения сцинтилляционных счётчиков мюонного комплекса CDF II

Тип счётчика	Основа	Длина, м	Средний светосбор на 2006 год, ф.э./МИЧ	Постоянная старения, год	Уменьшение светосбора, % в год
CSP Wall	поливинилтолуол	3.2	3.8	4.7	19
CSX	поливинилтолуол	1.8	5.9	7.6	12
BSU*	полистирол	1.6	20.9	12.4	8
CSP*	полистирол	3.2	15.9	8.9	11
* - изготовлены в ОИЯИ.					

Получены ранее отсутствовавшие сведения по старению сцинтилляционных счётчиков в условиях реального эксперимента и интегрального учёта многих факторов, влияющих на деградацию: конкретно, для 3-м счётчиков установлено: скорость деградации поливинилтолуольного сцинтиллятора почти вдвое выше, чем у полистирольного сцинтиллятора аналогичной геометрии.

Центральный вывод наших исследований: статистически достоверно определено, что счетчики, изготовленные в ОИЯИ, могут быть использованы для набора статистики без заметного уменьшения эффективности до конца 2010 года.

Новый годоскопический детектор (преконвертор) на основе пластического сцинтиллятора

Исследование тайлов после окончательной сборки модулей.

Первые физические результаты, полученные при помощи детектора CPR2.

Распределение тайлов CPR2 по относительному световыходу при облучении радиоактивным источником.

Энергия лептонов от распадов кандидатов *W*-бозонов и случайно возникающих от взаимодействия продуктов протон-антипротонных столкновений с веществом перед преконвертором частиц с треками с поперечной энергией более 8 *ГэВ*.

Увеличение светимости Тэватрона до 2,0х10³² см⁻²с⁻¹ исключило из триггера первого уровня информацию от детекторов мюонной системы в области псевдобыстрот 1<|η|<1.25.

- СОТ Центральный Наружный Трекер (Central Outer Tracker);
- СНА Центральный Адронный Калориметр (Central Hadronic Calorimeter);
- WHA Промежуточный Адронный Калориметр (Wall Hadronic Calorimeter);
- **РНА** Передний Адронный Калориметр (Plug End Hadronic Calorimeter);
- СМU Центральный Мюонный Детектор (Central Muon Detector);
- СМР Дополнение Центрального Мюонного Детектора (Central Muon Upgrade Detector);
- CSP Дополнение Центрального Мюонного Сцинтилляционного Детектора (Central Muon Scintillator Upgrade);
- СМХ Расширение Центрального Мюонного Детектора (Central Muon Extension) и камеры «Miniskirt» (MSK);
- CSX Расширение Центрального Мюонного Сцинтилляционного Детектора (Central Muon Scintillator Extension) и счётчики «Miniskirt» (MSK);
- BMU Дрейфовые камеры Передней Мюонной Системы (Barrel Muon Upgrade chambers);
- BSU Передние Мюонные Сцинтилляционные счётчики, облегающие тороиды (Barrel Scintillator Upgrade);
- TSU Передние Мюонные Сцинтилляционные счётчики, расположенные внутри тороидов (Toroid Scintillator Upgrade);
- SSU Вероятное расположение нового слоя (Snout Scintillator Upgrade);

Детекторы CDF, задействованные в мюонных триггерах.

Шесть прототипов новых счётчиков SSU.

Конструкция прототипов. Всего создано 6 штук. Пять из них впоследствии были включены в состав CDF II.

Результаты тестирования счётчиков

	Дальний от ФЭУ конец	Светосбор с дальнего от ФЭУ конца, ф.э.	Отношение Зазер./Зачер.
SSU01	Зачернён	18.5	1 0
	Зазеркален	33	1.0
SSU03	Зачернён	23	1.6
	Зазеркален	37.6	1.0

	Напряжение	Порог,	Темновой шум,	Темновой ток,	Светосбор с дальнего от
	плато, В	мВ	Гц	нА	ФЭУ конца, ф.э.
SSU01	740	3	72	0,2	27,6
SSU02	710	3	125	0,3	33,0
SSU03	890	3	135	0,3	20,8
SSU04	730	3	78	0,3	37,6
SSU05	850	3	130	0,2	18,7
SSU06	770	3	130	0,3	26,4

Планируемое место расположения нового слоя сцинтилляционных счётчиков SSU на установке CDF.

Исследование предложенного нового мюонного триггера в области 1.0<| η|<1.25

Выводы

1. Разработаны и созданы крупногабаритные сцинтилляционные счетчики нового поколения, в которых впервые применена техника светосбора спектросмещающими волокнами [3, 4, 11]; ранее подобная техника светосбора применялась только в калориметрах.

Интегрированные в мюонный комплекс CDF, эти счетчики (более 600 штук с общей площадью свыше 250 *м*²) радикально, на 60%, увеличили аксептанс установки для регистрации мюонов, составляющей принципиальную часть большинства триггеров при исследованиях по физике *с,b,t* – кварков, поиске Хиггс бозонов, явлений за пределами стандартной модели, проявлений суперсимметрии и др.

2. Предложен SVT триггер и создана система сцинтилляционных детекторов мюонного комплекса (более 1140 сцинтилляционных счетчиков разных типов), включая системы подачи питания, съема информации [17], управления и контроля [2], которая входит, как принципиальная часть в мюонный триггер реального времени и активно используется в проводимых ныне экспериментах на CDF II, обеспечившие получение ряда важных

новых результатов принципиального научного значения. В их числе:

- наиболее точное измерение массы топ кварка в т.н. моде "лептон + струи" M_{top} =173,5^{+3,7}_{-3,6} (stat.) ГэВ/с² [5, 6]
- прецизионное измерение этой величины в т.н. дилептонной моде M_{top} =170,1^{+6,0}_{-6,0} (stat.) ГэВ/с² ± 4.1(syst.) [7]
- наиболее точное измерение массы *W*-бозона M_w = 80493 ± 48(stat.) *МэВ/с*² [16]
- первое наблюдение и измерение частоты $B_s^0 \overline{B}_s^0$ осцилляций, $\Delta m_s = 17.77 \pm 0.10$ (stat) ± 0.07 (syst) *пс*-1 [8,9]
- высокоточное измерение времени жизни Λ_b^0 адрона, $\tau(\Lambda_b^0) = =1.593^{+0.083}_{-0.078}$ (stat) \pm 0.033 *пс* (syst) [12]
- ряд существенных проверок СМ в процессах аномального рождения многомюонных событий [13],

измерения заряда *t*-кварка позволили с 99%-м уровнем достоверности исключить гипотезу осуществовании экзотического *t*-кварка, измерения сечения образования пары *tī* [10] и спиральности *W*-бозона из распадов *t*-кварков [14].

3. С целью повышения эффективности установки CDF в исследованиях процессов с тяжелыми кварками при возросшей светимости Тэватрона (2·10³²/см²с и выше) создан новый прибор – 2600 канальный годоскопический преконвертор электромагнитного калориметра из сцинтилляционных пластин с размерами 125 × 125 × 20 *мм*² общей площадью более 40 *м*² [20, 21]. Его быстродействие и сегментация по псевдобыстроте на порядок превосходят эти величины в сравнении с ранее существовавшей системой – пропорциональной камерой, пригодной для использования при светимости менее 10³² см⁻²с⁻¹.

4. Использование созданных детекторов нового поколения непосредственно в экспериментах, а также детальные исследования их свойств свидетельствуют о ряде неоспоримых преимуществ этих детекторов со светосъемом оптоволоконной лентой по сравнению с известной, классической системой светосбора со световодом [3]. Среди этих преимуществ: компактность, способность функционировать в магнитных полях без дополнительной экранировки ФЭУ, существенно меньший темп деградации вследствие естественного старения [11].

5. Детальное изучение свойств нового сцинтилляционного материала UPS 923A и WLS волокон позволило предложить новую методику и получить ряд новых результатов [4]:

· физически мотивированный метод измерения объемной длины ослабления (BAL) сцинтиллятором собственного излучения и установление факта зависимости BAL от эффекта реабсорбции

 • определение времени (≈2 нс) нарастания импульса света в системе "UPS 923A + WLS", что открывает возможность ее применения в быстрых системах совпадений и времяпролетных измерениях

· более чем двукратное превосходство созданного полистирольного сцинтиллятора UPS 923A по времени старения в сравнении с общеизвестным поливинилтолуольным сцинтиллятором NE 114 вследствие различий в химической структуре полимерных основ.

6. Создана экспериментально мотивированная основа прогнозирования старения сцинтилляционных счетчиков CDF II [15, 19]; установлено в частности, что техническая длина ослабления (TAL) комплекса "сцинтиллятор + оптоволокно" очень слабо меняется со временем и деградация на 80% обусловлена старением пластика. Коллаборации дана программа замены теряющих эффективность счетчиков, эксплуатируемых с 1992 года. Вместе с этим установлено: счетчики ОИЯИ сохранят высокую эффективность до конца сеанса Run II.

7. Предложен и экспериментально обоснован новый вариант триггера I уровня [18], дающий возможность регистрации мюонов в области 1.0< |η|<1.25 в условиях существенно возросшей (до 2.10³² см⁻²с⁻¹ и выше) светимости Тэватрона. Показано, что размещение дополнительного слоя сцинтилляционных счётчиков в указанной области позволит коллаборации увеличит более чем на 10% количество отбираемых событий с мюонами в качестве сигнатурной частицы.

По итогам работ группы сотрудников НЭОМАП на установке CDF:

- было защищено 2 докторских и 4 кандидатских диссертаций

-получена 1-ая премия ОИЯИ за цикл работ по сцинтилляционным детекторам мюонов установки CDF -В 2019 году присуждена High Energy and Particle Physics Prize членам коллаборации CDF и D0 за выдающийся вклад в Физике Высоких Энергий по обнаружению и исследованию свойств топ-кварка.

Дополнение

Группа сотрудников ОИЯИ – ИНФН - ФНАЛ

Слева- Начало массового производства сцинтилляционных детекторов Справа – перед установкой готового счетчика на CDF

Слева – фрагмент массового производства сц. счетчиков Справа – на CDF, возле счетчиков CSX.

Тестирование счетчиков и их складирование перед отправкой во ФНАЛ

Дирекция ОИЯИ на установке CDF

<u>"Search for anomalous production of multi-lepton events in $p\bar{p}$ collision at $\sqrt{s} = 1.96$ T₃B"</u>

Триггер- 1 мюон с рТ>18 ГэВ/с в области |η|<1 (Табл.2.2). В "off-line" анализе отбирались мюоны с pT>20 ГэВ/с, pT>8 ГэВ/с и pT>5 ГэВ/с, димюонные события отбрасывались, как фон. Обработаны данные, соответствующие накопленной светимости 346 pb-1. Поиск осуществлен отдельно для событий «3 лептона» и «≥4 лептона». В обоих случаях количество событий согласуется с ожидаемыми фонами, предсказанными СМ. В рамках модели «супергравитация с нарушением R-четности» получены пределы на массу легчайшего нейтралино >110 ГэВ/с2 и чарджино >203 ГэВ/с2 на уровне достоверности 95%.

"Measurement of the ^{tt} production cross-section in collisions at $\sqrt{s} = 1.96$ T₂B in the all-hadronic decay mode"

Измерено сечение = 7.5 ± 2.1(stat)(syst) (lumi) pb образования пары по данным с накопленной светимостью 311 *pb-1* в согласии с предсказанием СМ. События отбирались с требованием «≥6 струй» (адронная мода распада пары). Сцинтилляционные счетчики используются в "off-line" анализе для отсеивания событий с зарегистрированным мюоном (лептонная мода распада пары).

"Measurement of the helicity fractions of W bosons from top quark decays using fulli reconstructed events with CDF II"

Измерены фракции F0 и F+ для продольно поляризованных и (right-handed) W бозонов из распадов t-кварков используя данные с интегральной светимостью 318 pb-1. Полученные значения F0= 0.85(stat) ± 0.06 (syst) и F+= 0.05(stat) ± 0.06 (syst) согласуются с предсказаниями CM. Отбор событий осуществлялся с полным восстановлением кинематики распада пары на один лептон с «≥4 струями» и потерянной энергией (v). Мюоны отбирались в области |η|≤1 триггером, настроенным на импульс pT>18 ГэВ/с.

<u>"Measurement of the Λ_{b}^{0} lifetime in $\Lambda_{b}^{0} \rightarrow J/\psi \Lambda 0$ in collisions at $\sqrt{s} = 1.96$ T $_{2}B$ "</u>

Измерено время жизни адрона в инклюзивном распаде $\Lambda_b^0 \to J/\psi\Lambda 0$ по данным с накопленной светимостью 1 fb-1. Используя полностью восстановленные распады, получено значение τ , по точности превосходящее опубликованное современное мировое среднее. Мюоны отбирались в области $|\eta| \le 0.6$ с использованием счетчиков CSP, в "off-line" анализе с требованием pT>1.4 ГэB/с (Табл.3, строка 5), а в области $0.6 \le |\eta| \le 1$ триггером (с участием счетчиков CSX) на два мюона, $J/\psi \to \mu\mu$ с условием pT>2 ГэB/с.

<u>"Observation of $B_s^0 - \overline{B}_s^0$ oscillations"</u>

Наблюдались осцилляции на основе время-зависимых измерений этих осцилляций с частотой Δ ms. Результат получен на основе 5600 полностью восстановленных адронных, 3100 частично восстановленных адронных и 61500 частично восстановленных полулептонных распадов $(\overline{B}_{s}^{0} \rightarrow D_{s}^{+(*)}l^{-}\overline{v}_{l}, l = e$ или μ).

Спектр излучения и поглощения спектросмещающей добавки РОРОР

Последние данные измерений массы топ-кварка

Улучшение защиты мюонных детекторов от вторичных фоновых частиц в

области псевдобыстрот $0.6 < |\eta| < 1.0$.

Блок-схема измерительной установки в ОИЯИ. 2000 год

Поведение технической длины ослабления света для исследуемых счётчиков со временем.

Итог: on-line триггер уровней L1 и L2 для IMU подсистемы до и после февраля 2006 года.

Trigger Table PHYSICS_3_09_v-1, на февраль, 2006:	Trigger Table PHYSICS_4_01_v-2, на январь, 2007:	Область
#43 – L1_BMU10_BSU_PT8_v-1 (3) #10 – L2_BMU10_BSU_PT15_DPS_v-1 #11 – L2_BMU10_BSU_PT8_&_TRK5_v-1 #44 – L2_CJET15_&_BMU10_PT11_L1_BMU10_BSU_PT8_v-1	Исключёны!	1.0< <i>η</i> <1.25
#48 – L1_BMU10_BSUR_TSUO_&_CLC_v-1 (2) #45 – L2_CJET15_L1_BMU10_BSUR_TSUO_v-5 #109 – L2_TAU4_PT5_&_L1_BMU10_BSUR_TSUO_v-1	#48 – L1_BMU10_BSUR_TSUO_&_CLC_LUMI_190 #39 – L2_CJET15_L1_BMU10_BSUR_TSUO_v-5 (! Был #45) #113 – L2_TAU4_PT5_&_L1_BMU10_BSUR_TSUO_v-14 (! Был #109)	1.25< <i>η</i> <1.5

Как видно из таблицы используемых на CDF on-line триггеров уровня L1/L2, для IMU подсистемы ПОЛНОСТЬЮ ИСКЛЮЧЁНЫ триггера, отвечающие за область псевдобыстрот 1.0<|η|<1.25 из-за высокой частоты срабатывания (более 1 кГц).

Между тем, благодаря использованию счётчиков TSU вторая часть триггера L1 IMU удержалась на приемлемом уровне в 400 Гц при светимости Тэватрона $L=2\times10^{32}$ см⁻¹с⁻¹.

Нами был предложен способ «возвращения» мюонного триггера L1 в области псевдобыстрот 1.0<|η|<1.25 путём включения в него сигналов со второго, дополнительного слоя мюонных сцинтилляционных детекторов по аналогии с областью псевдобыстрот 1.25<|η|<1.5.

Требовалось показать эффективность данного решения.

Блок-схема стенда для измерений в Фермилабе и ОИЯИ.

