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The Euclidean generating functional of correlation functions is given by

2= | @«pexp{—sm +[I0 <p<x>} | @)

Here ./ is a normalisation factor, J(x) are the sources and [, = [d*x. The path integral contains
divergences as usual. These divergences need to be regularised and renormalised. In (2.1) we are
assuming that this has already been done, e.g., by a cutoff regularisation and thus the generating
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quantum effective action. We denote the generating functional with suppressed IR modes by

50 = [70p0em{-slol+ [0} 2.18)

where the subscript p? > k? indicates that we only include momentum modes above the scale k.
For k — 0, we get back the full generating functional Z,—o = Z. Such a restriction of the path
integral does not preserve the symmetries of most QFTs. We come back to this i1ssue in Sec. 2.7.

The full suppression of the IR modes leads to the Wegner-Houghton equation [6]. A more
general approach 1s to introduce a function that smoothly suppresses these modes. Thus, we define

[ 20,2 = [ 79 exp{-as:l0]} (2.19)

where

1

ASi9) = - /p 8 (P)Re(p2) 6 (~p). (2.20)

Here we have defined |, = [ d*p/(2m)* and Ry is the regulator function that suppresses modes with
p? < k? but leaves modes with p? > k? unaffected. This can be viewed as a momentum-dependent
mass term. The regulator function is required to have three properties



e Suppression of IR modes:

e UV-limit to ensure that I ,—A = S:

Regulator w

- - - (OcRy)/K?

e Physical limit to ensure that 2y = Z: ,
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A frequent parameterisation of the regulator 1s

Ri(p*) = p*r(p*/K°), (2.24)

where r 1s the dimensionless shape function of the regulator. A common choice for the shape
function is the Litim-type regulator [60, 61]

PLitim (%) = (l — 1) O(1—x). (2.25)

X

This shape function has the advantage that it often provides analytical flow equations. For nu-
merical purposes, the Litim-type shape function is less advantageous since it 1s not smooth. The
exponential shape function is an example for a smooth shape function

—X

rexp (¥) = —— (2.26)
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Schwinger functional, 1s introduced
W \J =InZ|J]|. (2.3)

The connected n-point functions are generated with functional derivatives with respect to the source

4
5](,61),”5,(%)—W‘>[J]—<<p<x1>...<p<xn>>f,c. (2.4)

Here we have introduced the notation % ( for n functional derivatives. How can we see that the
Schwinger functional generates only connected correlation functions? As an example, we look at

the propagator
Wl  &hZlJ b 1 82
8J(x1)6J(x2)  8J(x1)8J(x2)  8J(x1) Z[J] 8J(x2)
1 5°ZJ] 1 8ZJ]6Z|J]

T Z]67(x1)8)(xy)  Z2 8J(x1) 8J(x2)
= (@(x1)9(x2)); — (@(x1)); (P(x2)),
= (@(x1)P(x2)); . = G(x1,%2) . (2.5)
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Schwinger functional, is introduced
W (I =InZJ]. (2.3)

The connected n-point functions are generated with functional derivatives with respect to the source

5" W]
8J(x1).8J(x)

Here we have introduced the notation % ™ for n functional derivatives. How can we see that the

DI = (@0x1) - @) s (2.4)

Schwinger functional generates only connected correlation functions? As an example, we look at

the propagator
vl  &#mZzy 8 1 62|
8J(x1)8J(x2)  8J(x1)8J(x2)  8J(x1) Z[J] 8J(x2)
1 Sz 1 sz sz
 Z)8J(x1)8T(x2)  Z[|2 8J(x1) 6J(x2)

= (p(x1)9(x2)); ( (x1)); (@ (x2));
(@(x1)P(x2)); . = G(x1,x2) . (2.5)

N | =

ASi[o] =

/p 0(p)R(PV)9(—p).
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200~ [70p0em{~slol+ [1000)} @18

Let us now turn back to the scale-dependent generating functional Z;,. We are interested in
a flow equation for Z; and thus we take a derivative of (2.18) with respect to the RG time ¢. The
term ASy, 1s the only term that 1s scale-dependent and thus

0.2 = [70(-asde) exp{ ~Sig] - Asilol + [16) 00}

— (0 ASk[@]) ZilJ] .- (2.27)

Another convenient way to express this flow equation is to replace the field by a derivative with
respect to the source, ¢ = 6 /0J. Then we obtain

0, 20| = — (a,ASk L%D LAl 1 / - ?z)ﬁ[ﬁp)

This is already a useful formulation of the flow equation for the generating functional. As we can

(2)

see, this is an integro-differential equation, the flow of 2 depends on Z;

atRk (p2) .

(2.28)

. Importantly, we do
not need to solve a path integral to obtain & = Z;—o.
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Schwinger functional, is introduced
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5" ]
5J(x1)...6J(x,)

Here we have introduced the notation % ™ for n functional derivatives. How can we see that the

=# DI =(@x1)...0%))Jc. (2.4)

Schwinger functional generates only connected correlation functions? As an example, we look at
the propagator

&wl  mZyJy 8 1 82|
8J(x1)8J(x2)  8J(x1)8J(x2)  8J(x1) Z|J] 8J(x2)
1 82 Z[J] 1 62 8Z[J]
Z) 67(x1)8(x2)  ZI]? 8J(x1) 61 (x,)

1)) (@(x2));

(@(x1)9(x2)); — (@ (x
— G(x1 x2) (2.5)

(@(x1)P(x2))5c =
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We now switch to a flow equation for the Schwinger functional #; = In Z;,. Again, the full
Schwinger functional is obtained in the limit k — 0, #;—o = # . We multiply (2.28) with 1/2% and
use

. 1 &% 1 8% &%
6]()61)6]()62) - %( 6]()61)6]()62) %2 5]()61) 6]()62)
1 &R M K (2.29)
- %c 6]()61)6.]()62) 6]()&71) 6]()62) ’ .
as well as 0, %}, = é}(a, %:. The flow equation is then given by
1 5’ oW oW 2
=3 [ | srora1=a1 + 5700 57C57) 2P 230

The Polchinski equation [7] is a flow equation for the Schwinger functional and it can be obtained
from (2.30) by amputating the legs from the connected correlation functions. We turn now to the
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An even more efficient way to store the information of a quantum theory is the effective action,
which is the Legendre transformation of the Schwinger functional with respect to the mean field

r16] = sup { [16)900) - Wm} = [nx) 9(5) V). 2.6

In the second expression we have picked out a configuration of sources, which maximises the Leg-
endre transform. This supremum of the source is a function of the mean field Jy,;, [¢]. The effective
action generates one-particle irreducible (1PI) n-point functions. 1PI means that the correspond-
ing Feynman diagram cannot be cut into two diagrams by the cut of a single internal line. These
1PI correlation functions are generated from the effective action by functional differentiation with
respect to the mean field

sTlo)
0 (x1)---00(xy)

r[g] = (@(x1) - @ (xn) )1p1 - (2.7)

So far we have only claimed that the effective action generates 1PI diagrams. We illustrate this

property again in an inductive way. Let us start with the fact that conjugate variable of the source
in (2.6) 1s indeed the mean field

syl 1 sz
X = 51w | T Z0 ei(

=(p(x))y,, - (2.8)

J sup J sup

NonPerturbative RG
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0"I'[¢]
() [h] = _
I [(P] — 6¢(X]) . 5¢(xn) — <(P(X1) (P(xn)>1PI . (27)

So far we have only claimed that the effective action generates 1PI diagrams. We illustrate this

property again in an inductive way. Let us start with the fact that conjugate variable of the source
in (2.6) 1s indeed the mean field

Cswl| 1 82l
Y%= 5100 | = 21 eIt

= (¢(x) >Jsup : (2.3)

J sup J, sup
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from (2.30) by amputating the legs from the connected correlation functions. We turn now to the
flow equation for the scale-dependent effective action I';. For this we use a modified Legendre
transform compared to (2.6)

ril9] = sup { 166~ # —Ask[«m} . @31)

It 1s a choice to include the term ASj into the Legendre transform. We only need to guarantee
that for k = O the original Legendre transform (2.6) is restored, which is indeed the case since
ASy—o = 0. We will see that the choice to include AS; in the Legendre transform results in a

simpler flow equation. Eq. (2.31) implies that I'; + ASy, is the Legendre transform of #;. Thus, the
relations (2.8) and (2.9) are modified and now read

5(Fk+ASk) _ X /4
6¢(X) o SUP[¢( )]7 6]()6)

= ¢(x). (2.32)

J sup
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By taking one derivative of the effective action with respect to the mean field, we obtain the quan-
tum equation of motion

OT(P] _ v ) [8I0) (o SN,
Soc = Jun(@) +sup [ 5¢(x)\(¢(y> Ll >f Tap(®). 29)
\ =0 )

We turn now to the two-point function, where we will find that the quantum propagator is the
inverse of the 1PI two-point function. Anticipating that result, we compute

52 52 5§ [ 5 [ 6
/yﬁf(xl)?(y) 6¢(y)62>(xz) :/y51(x1) [MZ)] 09 (y) [5¢(zz)]

_[600) 8() _ s
= ,870a) Boy) O 210

This proves the relation

w (2 (x1,x%2) = G(x1,x2) = (l"(z) (xl,xz))_1 : (2.11)

NonPerturbative RG
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By taking one derivative of the effective action with respect to the mean field, we obtain the quan-
tum equation of motion

OT(P] _ v ) [8I0) (o SN,
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We turn now to the two-point function, where we will find that the quantum propagator is the
inverse of the 1PI two-point function. Anticipating that result, we compute

52 52 5§ [ 5 [ 6
/yﬁf(xl)?f(y) 6¢(y)62>(xz) :/y5f(x1) [517(3] 09 (y) [5¢(zz)]

_[600) 8() _ s
= ,870a) Boy) O 210

This proves the relation Consequently, also the relation to the quantum propagator Gy, see (2.11), 1s modified

. &M [ AM+As) 1
W(Z)(xl,xz) — G(XI,XZ) — (1“(2) (x17X2)) . (211) Gk(p7 _p) - 5J(p)5](—p) — (5¢(p)5¢(—p)> — 1_‘]((2) —|—Rk (p7 —P) .
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For the higher n-point functions, we need the relation between a derivative with respect to the
source and with respect to the mean field

§  [6¢(y) O sy ()
5J(x)_/y6j(x) 5607) /y 57 (x /ny (2.12)

This relation allows us to derive

(@(x1) @) =¥ I:_Il(/ze, ) 560 >¢( n)- (2.13)

In (2.13) 1t 1s important to notice that the propagator is still a function of the mean field ¢ and that
derivatives of the propagator generate the 1PI three-point function

0 o ~1
(2) _ (3)
50 (x1 )G(xz,x3) 56 (x1) (F (xz,x3)) = yl,yzG(xz,yl)l" (x1,51,y2) G(x3,y2). (2.14)

Evaluating (2.13) leads to the explicit representations of the connected correlation functions in
terms of 1PI correlation functions. For n = 3 this leads to

W(3) — _/ G(x1,yl)G(xz,yz)G(X3,y3)r(3) (y17y27y3) . (215)
y

1,Y2,Y3 @

Figure 1: Diagrammatic representation of # ) and # ) in terms of G, I''®), and I'®. The first
diagram in the second equation summarised the s, ¢, and u channel, indicated by the

factor 3.
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The effective action is a very powerful object and so far we have discussed its derivation from
the generating functional. For a computation in terms of a path integral, we consider its exponential
and the relation to the generating functional (2.1). We obtain

e T10] — o= [Jsup ()9 (X)+7# [Jsup]

)

_ o Jess ot / D eSO [ Iup(x)9 ()

_ / D¢ SOTOIHLP (™ 55 (2.16)

In the last line we performed a shift of the integration variable ¢ — @’ + ¢. This is a path integral,
where the integrand depends on 8I'/8¢. It can only be solved for very simple cases. The repre-
sentation 1n (2.16) 1s nonetheless useful as it allows to discuss the symmetries of a theory on the
quantum level. A systematic approximation scheme of (2.16) is the vertex expansion

I'[¢| nv/ F(n (¢ =0](x1,..., %) 0 (x1) - @ (xn) (2.17)
n=0 KLyeeesX



1 52, S, &,
== | [5,(,))5/;_,,) 500 61(—2)] OR(P):
ril9] = sup { [1696) il —Askm} @31)
5(Fk+ASk)_ X 5% — o(x
LS oo, s, =90
L (@M+As) 1 -
Gi(p, P>—5J(p)af(_p)—(5¢(p)5¢(_p)) =0 g PP
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We take now a scale derivative of (2.31) and use (2.30), (2.32), and (2.33). The flow of the scale-
dependent effective action is then given by

0J(x)

=0

= 5 [ Gep=p) + 9 ()0 (~P))AR:(") — 3185

=3 | o g PR

o _
733 —STr R, | = . (2.34)
(259 2 1P +Re @

This is the Wetterich equation in its most compact form. In the last step, we have generalised our
derivation and introduced the super trace, STr. The super trace sums over all discrete indices, such

o Lk|¢] = — 0 #i|[J] — 0, AS;[ 9] —l-/xatf(x) [d)(x) — S%U]]

” J:Jsup[‘l’]

(2.32)

as Lorentz and gauge indices, and integrates over continuous indices, such as space or momentum.
It further includes a minus sign for Grassmann valued fields, such as fermions or ghosts. In (2.34),
we have also introduced a diagrammatic representation of the Wetterich equation. The solid line
stands for the quantum propagator and the cross represents a regulator insertion. We use this
diagrammatic notation also later in these notes. Note that all quantities in this equation are fully
dressed, 1.e., all quantities are formulated in term of the scale-dependent effective action and not in
terms of the bare action.
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e By construction, the limits of the scale-dependent effective action are given by the bare action
in the UV, I',_A = S, and by the quantum effective action in the IR, I',_o =I'. The latter

e The properties of the regulator guarantee the correct limits of I, but the regulator serves
more purposes. The derivative of the regulator is peaked around p? ~ k?, see Fig. 2. This
implements that momentum shells around p? ~ k? are integrated out. Furthermore, the Wet-
terich equation is inherently finite due to the regulator in the UV as well as in the IR

1
I + R

o;R;, > UV finiteness.

> IR finiteness,

° 81
e We can interpret a solution to (2.34) as trajectory between the bare action and the quantum
effective action in theory space. The theory space is the infinite-dimensional space of all
couplings. The couplings are the prefactors of all operators that are compatible with the
symmetry of the theory. We display a sketch of the theory space in Fig. 3.

We have introduced the RG scale k just as a tool to interpolate between the bare action and the quantum effective action.
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e We can expand (2.34) in loop orders and by that retain perturbation theory. We expand the
scale-dependent effective action with I'y =8 + I 1.100p. The Wetterich equation is 1-loop on
the right-hand side and thus at 1-loop order we get

1

1
L% L1oop = 51 [s(z) +Ry

8,Rk] = a,%Tr [1n(s<2> —I—Rk)] , (2.35)

where we used in the last step that S is not k dependent. Now it follows that

1
T Lloop = ETrlnS(z) + const. (2.36)

which is the standard formula for the 1-loop effective action.

(2.34) still carry field dependence, for instance, Gi[@] = (F,(cz) (0] + R)~!. Consequently, a field
derivative acts on the propagator with 6 /0¢ G, = —I ,E3) le",(f). The flow equation for the one-point
function is given by

Y = —%Tr G GR, | = , (2.37)

while the flow equation for the two-point function reads

1 1
o) = —Tr [Gk(r,(j) - 2r,£3)Gkr,§3))GkatRk] — _6_ -5 Q (2.38)
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quantum level. A systematic approximation scheme of (2.16) is the vertex expansion vertex expansion. The vertex expansion of the scale-dependent effective reads
I(¢] = Z%);/l TO0 = 0], %) (x1) -9 (xn), (2.17) Lol =Y ;/ L[ = 0] (x1,. .., %) (1) - O (). (2.39)
n= y0rn n—=0 "t JX1,..0Xn

which we also use later in the FRG context. Inserting (2.17) into (2.16) and comparing the field Plugging this ansatz into (2.34) leads to an infinite tower of coupled differential equations, with the

)

monomials leads to an infinite tower of integro-differential equations known as Dyson-Schwinger first ones precisely given by (2.37) and (2.38). However, an important difference is that the 1_‘I(Cn

equations [51-53]. This tower can be truncated to a finite amount of equations and, for example,
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Beta functions

The Wetterich equation 1s not only a tool to compute the quantum effective action, it also
allows for the computation of beta functions. We expand the scale-dependent effective action in
operators with scale-dependent couplings

I'k[¢] = Zgi(k) 0i(9). (2.40)

The g;(k) are precisely the couplings that span the infinite-dimensional theory space, depicted in
Fig. 3. The scale derivative of the couplings result in the respective beta functions kdy g;(k) =
d; gi(k) = Bz, By taking the scale derivative of (2.40), we obtain

ITk[9] = ). Bz Oi(9), (2.41)



Example: the anharmonic oscillator

The action for the anharmonic oscillator 1s given by
1
S = /dr( - a)2x2—|— A ) (2.53)

The dot indicates a derivative with respect to 7. We consider only the case with @* > 0 and A > 0.
The symmetry-breaking case with w? < 0 was investigated with the FRG in [92, 93]. We are
interested in the ground state energy in the non-perturbative regime, i.e., for large A > 1. We
display the computation with the FRG and with perturbation theory.
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FRG We have to make an ansatz for the scale-dependent effective action. We choose the trunca-

tion
1
[i|x] = /d’l: (ixz —I—Vk(x)) . (2.54)
(2.54), we compute the second derivative with respect to x, which is given by
oLy [x] 2
= (=d2 +V/ 0(T1— ). 2.55
0x(71)0x(12) (=05 + V(%) 8(z1 — ) (2:53)

We furthermore perform a Fourier transformation from 7 to p and obtain

' = p*+ V' (x). (2.56)

Now we need to choose the regulator function. As explained in (2.25), the Limit-type regulator is
advantageous since it allows for analytic flow equations. For the anharmonic oscillator, it is even
an optimised regulator [60, 61]. It is given by

Ry = (K — p*)O(k* — p*). (2.57)
From this we can compute the scale derivative of the regulator
O;Ry = 2k*O(k* — p*) + 2k* (k* — p*) 8 (k* — p*) = 2k*O(k* — p?), (2.58)

where we have used that x 6 (x) = 0. From (2.56) and (2.57), we obtain the full propagator

1 2 12
Gr = (2)1 - 2 2 2 12 2 e k2+‘1”(x) o ngkz (2.59)
I+ Ry p*+ (k* — p*)O(k* — p*) + V" (x) V) for p© > k-.
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We have now all ingredients to write down the full flow equation. We are only interested in the

ground-state energy and thus we consider only vanishing external momentum. T]
rectly to a flow equation for the effective potential

1 =dp2k*O(k*—p*) 1 K
2/ 2m R24+VI'(x)  mkE4V'(x)

9, Vi (x)

purposes to expand the potential in a polynomial

~ 1 1
Vi(x) = Ex+ Ew,%xz + ﬂlkxél +....

From (2.60) and (2.61), we can easily obtain the other flow equations

1 2
Wi = —— k 5 M
)
2
=2 2.

" (2 n3)’

nis leads us di-

(2.60)

(2.61)

(2.63)

(2.64)

(2.65)
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The corresponding integrals can be solved analytically, for example, with Mathematica. We plug
these results into (2.63) and integrate them down, which again can be done analytically. The result

1S

Ey = /wdkaE—/wdkl(l S )
0=" kb= ) Al 2w

1 3/ A 3, A \?
_ — — S _ 2 N :
2" T4 (24w3)w 167r(87r +29) (24w3) W

Let us compare this result to ordinary perturbation theory

. 1 +3 A 21/ A \? N
= — — W — w
OPT = 5WT 4 \ 243 8 \ 243

1.2
1 -
-

0.8 —— FRG approx 1 | |

----- FRG approx 2
,/ -~ pplsl

o6l / | 'pB[lo,lO] -

—_ exact
|

0 20 40 60 80 100
A
OtEo,k ~ @ Orwi ~ Ot Ak ’\>®<
Figure 4: The energy of the ground state of the anharmonic oscillator as a function of A for @ = 1.

Fig. 4. Diagrammatic representation of Eqgs. (37)-(39). The diagrams look similar
to one-loop perturbative diagrams with all internal propagators and vertices being
fully dressed quantities. One internal line always carries the regulator insertion 0; Rk
(filled box). (One further diagram for 9;:\x involving a 6-point vertex is dropped, as

in Eq. (39).)

FRG approx 1 is based on a numerical integration of (2.63) and (2.64), while FRG
approx 2 additionally includes (2.65). We compare this to the Padé approximants of the
Borel transform 22%"™ where n is the degree of the polynomial of the numerator,
m of the denominator, and n + m 1s the order of the perturbation series needed for this
approximant. The exact solution stems from a well-converged numerical diagonalisation
of Hamilton operator in terms of ladder operators.



Thank you for your attention!



