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Abstract—The energy and the squared modulus of the wave function of the ground state of the 9Be nucleus as
a system of two alpha-clusters and an outer neutron were calculated using hyperspherical functions. A system
of hyperradial equations was solved using cubic splines. The charge distribution and the root-mean-square
charge radius for the 9Be nucleus were calculated and were found to agree with the experimental data.
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INTRODUCTION
It is known that a number of light nuclei can be rep-

resented as consisting of alpha-particles (alpha-clus-
ters) and outer (valence) nucleons [1, 2]. The structure
of the 9Be and 10Be nuclei as systems consisting of two
α-clusters and one neutron (2α + n) or two neutrons
(2α + 2n), respectively, was considered previously
[3, 4] using Feynman path integrals. It was shown that
the most probable configuration of the 9Be nucleus is
the configuration of a nuclear “molecule” with a neu-
tron between α-particles. Easy to implement using
parallel calculations, the method of Feynman path
integrals allows one to obtain the probability density of
a system of several interacting particles in numerical
form (in the form of multidimensional tables). This
makes it inconvenient to perform averaging over pos-
sible particle positions, in particular, when calculating
charge distributions and the root-mean-square charge
radius. Therefore, in this work, the wave function of the
ground state of the three-body system 9Be(α + n + α)
was found using an expansion in hyperspherical func-
tions [5]. The main mathematical task of the method
of hyperspherical functions is the numerical solution
of a system of hyperspherical equations for functions
that are coefficients of expansion in hyperspherical
harmonics. In this work, we solved this problem using
the cubic spline method [6]. This method allows one
to reduce the number of radial grid nodes and find the
values of functions between nodes using smooth inter-
polation, ensuring continuity of the function together
with its first and second derivatives. The potential of
interaction of α-particles was chosen in the form of a
modified potential describing s-scattering of low-
energy α-particles. The interaction of the neutron
with an α-particle was described using the pseudopo-

tential proposed previously [4]. The calculated charge
distributions and root-mean-square charge radius
agreed with experimental data.

METHOD OF HYPERSPHERICAL 
FUNCTIONS FOR A THREE-BODY SYSTEM

The Hamiltonian of a system consisting of two
α-clusters and a neutron with masses  and ,
respectively, in the center-of-mass system and using
Jacobi vectors

(1)

has the form

(2)

where

(3)

and  and  are the potential energies of interac-
tion, respectively, of α-particles with each other and
an α-particle with the neutron;

(4)
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The Schrödinger equation with Hamiltonian (2)
for the system in Jacobi vectors has the form

(5)

After transformation to normalized Jacobi coordi-
nates using quantities (3),

(6)

Schrödinger equation (5) for the system takes the
simple form

(7)

where ,  amu, 
1 fm,  MeV, , and .

The wave function  of the system in the six-
dimensional space of Jacobi vectors  is repre-
sented in a form that depends on the hyperradius

; four angles , , , and  of the
unit vectors  in the directions of normalized
Jacobi vectors ; and the fifth angle  determined
by the ratio of the lengths of these vectors,

(8)
The solution to Eq. (7) is presented in the form of

an expansion in known hyperspherical functions
depending on the angles  and the
quantum numbers  (total momentum),  and 
(orbital momenta of the relative motion of the pair of
α-clusters and the motion of the neutron relative to
the center of mass of the pair), and the hypermomen-
tum K [5]. In the ground state of the 9Be nucleus, the
total momentum is zero,  (its projection is also
zero, ); therefore, , and the expan-
sion is made in functions

(9)

Here,  are the Clebsch–Gordan

coefficients;  are the Jacobi polynomials of
order  (  is an integer); the hypermomentum K is

(10)
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and the normalization coefficient is determined by the
equation

(11)

where  is the gamma function. Functions
 (9) actually depend only on the angle  and

the angle  between the vectors  and :

(12)

The wave function  of the ground state of the
system consisting of two α-clusters and the neutron is
a series with summation over  and :

(13)

in which the functions  are determined from the
system of hyperradial equations

(14)

with the boundary conditions

(15)

and the channel coupling matrix

(16)

Coupling matrix (16)

(17)

with the potential energy of the system with pair inter-
actions,

(18)

was calculated using Gaussian quadrature formulas of
order from 32 to 80.
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APPLICATION OF CUBIC SPLINES 
TO SOLVING HYPERRADIAL EQUATIONS
Cubic splines allow one not only to construct a

smooth function based on its values  at grid nodes,
but also to express the values of the second derivative

 at grid nodes through :

(19)

where  is the column of values , and the explicit
forms of the matrices  and  were given in
Marchuk’s monograph [6]. This provides a convenient
opportunity to reduce the boundary-value differential
problem to a matrix eigenvalue problem. The bound-
ary-value problem for hyperradial equations (14) also
reduces to the problem of eigenvalues and eigenvectors
of a block matrix [4]:

(20)

where

(21)

(22)

(23)

(24)

and , , . In
general, the method can be used on a nonuniform grid

; in this work, a uniform grid , ,
was used. The eigenvalues and eigenvectors of the
matrix in problem (20) were found by the QR and QL
methods [9]; the calculations were carried out using
the NVIDIA CUDA platform [10]. Some of the calcu-
lations were performed on a heterogeneous cluster of
the Laboratory of Information Technologies, Joint
Institute for Nuclear Research [11].

The interaction of an α particle with the neutron
was described by the pseudopotential

(25)
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atomic cores and to approximately calculate the outer
part of the electron wave function outside the atomic
core. Similarly, pseudopotential (25) was used in this
work to calculate the outer part of the neutron wave
function outside the inner part of the α particle, occu-
pied by closely spaced pairs of protons and neutrons.
Figure 1a presents the graph of pseudopotential (25).
The following values of the parameters of potential (25)
were proposed previously [4]:

(26)

(27)

(28)

The scattering of α-particles at low energies is
described by the Ali–Bodmer potential [8] with the
nuclear part in the form

(29)

and the Coulomb part  approximated using the
error function ,

(30)

where  fm–1 and  = 5.759 MeV
fm [8]. The values of the parameters of the nuclear part
of the potential, which were determined from the con-
dition that the theoretical and experimental values of
the s-scattering phase are close, are the following [8]:

(31)

Figure 1b presents the graph of the potential of
interaction of α-particles in the Ali–Bodmer form

(32)

The nuclear part of potential (32) has a strongly
repulsive central part (core), which can be explained
as a consequence of the averaged action of the repul-
sive core of the nucleon–nucleon interaction and the
Pauli principle.

Generally speaking, the interaction of α-clusters
within the stable 9Be nucleus may differ from the
interaction in collisions of α-particles, which lasts for
a fairly short period of time (time of f light). To obtain
greater possibilities for modifying the interaction, it is
convenient to use the previously proposed form [4]
with six parameters,
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Fig. 1. Graphs of (a) the pseudopotential  of inter-
action of an α-particle with a neutron and (b) the potential

 of interaction of α-particles: Ali–Bodmer poten-
tial (29) (dashed curve) and potential (33) with parame-
ters (42) and (43) (solid curve).
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(Fermi distribution),
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instead of Gaussian exponentials in the Ali–Bodmer
potential. During the calculations, the parameters of
potential (33) were varied to ensure the closeness of
the theoretical and experimental values of the energy
E0 of the ground state of the system (α + n + α), which
is equal to the energy of its decomposition into com-
ponents with the opposite sign, . The exper-
imental value of  is equal to the neutron separation
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energy:  1.66452 MeV (see, e.g., [12]), since the
8Be nucleus is unbound. The root-mean-square
charge radius  of the system is determined by the
root-mean-square charge radius of the charge distri-
bution in the α-cluster, which was considered the
same as that for the α-particle, , and by the root-
mean-square radius of the distribution of α-cluster
centers :

(35)

(36)

where Rα is the distance between the α-particle and
the center of mass of the system,

(37)

The calculations of the wave function  of the
ground state allow one to find , and the root-
mean-square charge radii of the 4He and 9Be nuclei

are  1.68 fm and  2.52 fm, respec-
tively (see, e.g., [12]). Using the electric charge distri-
bution  in the 4He nucleus, one can calculate the
electric charge distribution in the 9Be nucleus. Figures 2a
and 2b show the experimentally measured electric
charge distributions  in the 4He and 9Be nuclei,
respectively [13, 14], satisfying the normalization con-
dition to the atomic number Z of the nucleus:
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Fig. 2. (a) Density  of distribution of electric charge
(in units of elementary charge) in the 4He nucleus: the
points represent the experimental data [13]; the curve,
their approximation (39). (b) Density  of distribution
of electric charge (in units of elementary charge) in the 9Be
nucleus: the points represent the experimental data [14];
the curves, the calculated potentials  of interaction
of α-particles (Ali–Bodmer potential (29), dashed curve)
and interaction of α-clusters (potential (33), solid curve).
(c) Radial ( ) distribution functions of centers of α-clus-
ters for potential (33) (solid curve) and Ali–Bodmer
potential (29) (dashed curve).

0.10

0.05

0

�, fm–3 (a)

0.04

0.02

0 1 542

n, fm–3

3

(c)

r, fm

0.050

0.075

0.025

0

(b)

ρHe( )r

ρ( )r

α−α( )V r

1r
good agreement with experimental data was obtained
at the following parameter values:

(42)

(43)

Figure 1b presents the graph of the potential
 of interaction of α-clusters in the 9Be nucleus.

Figure 2b shows the charge distributions  in the
9Be nucleus obtained for potential (33) and Ali–Bod-
mer potential (29):

(44)

Here,  is the radial ( ) distribution function of
centers of α-particles, normalized by the condition
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which is shown in Fig. 2c for potential (33) and Ali–
Bodmer potential (29). The function  is deter-
mined by the expression
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. In numerical calculations, the
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Table 1. Calculated values of the energy  of the ground state of the system (α + n + α) and the root-mean-square radii

 and  at  fm and h =0.2 fm for Ali–Bodmer potential (29) and potential (33) with parameters (42)
and (43); the experimental values are  MeV and  2.52 fm (see, e.g, [12])

, MeV , fm , fm

 (29)  (33)  (29)  (33)  (29)  (33)

2 2 ‒0.5814 ‒0.9979 2.3260 2.0577 2.7875 2.6466

4 4 ‒1.0813 ‒1.4824 2.2333 2.0 2.7854 2.6020

6 6 ‒1.2378 ‒1.6135 2.2308 2.0079 2.7834 2.6081

8 8 ‒1.2815 ‒1.6471 2.2418 2.0160 2.7922 2.6144

10 10 ‒1.2949 ‒1.6562 2.2502 2.0237 2.7989 2.6203

12 12 ‒1.2993 ‒1.6591 2.2530 2.0266 2.8012 2.6225
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Ber
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Table 2. Energies ( MeV) of the ground state of a system consisting of two α-clusters and a neutron (or energies of separa-
tion of a neutron from the 9Be nucleus) at various steps h, various maximum values  and  of quantum numbers, and

 fm

h, fm

1 0.5 0.2

4 4 ‒1.4160 ‒1.4661 ‒1.4824
8 8 ‒1.580 ‒1.6307 ‒1.6471

12 12 ‒1.5925 ‒1.6429 ‒1.6591
16 16 ‒1.5939 ‒1.6442 ‒1.6602

maxn maxl
ρ =max 30

maxn maxl
mean-square charge radius can be explained by the
use of the charge distribution in the free 4He nucleus,
which differs from the charge distribution in α-clus-
ters of the 9Be nucleus. In contrast to the Ali–Bodmer
potential, more accurate form (33) of the interaction
of α-clusters in the 9Be nucleus has a softer repulsive
core for colliding α-particles in the region of small dis-
tances between the centers of α-clusters,  fm.
This allows one to judge the modification of α-clusters
in the 9Be nucleus in comparison with free α-particles,
in particular, their polarization, deformation, and
mutual overlap.

The structure of the 9Be nucleus is provided by the
probability density maps for the three-body wave
function in Fig. 3, which shows the probability density

 at two values  and  of the angle
between the Jacobi vectors in combination with the
potential relief. The correspondence between the
probability density and the potential relief, in particu-
lar, the presence of local maxima of  near local
minima of the potential energy indicates the correct-
ness of the calculations performed. The most probable

≤ 2r

Ψ 2
0 θ = π 2 θ = 0

Ψ 2
0
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is a three-body configuration with a valence neutron
between α-particles at a distance between their centers
of  3 fm, which corresponds to the
vicinity of the potential minimum  (Fig. 1b).
The probability density distributions shown in Fig. 3
are consistent with ideas about the structure of the 9Be
nucleus as a nuclear molecule consisting of two α-par-
ticles (α-clusters) and an outer (valence) neutron
[3, 4]. The results obtained agree with the published
maps of the relative positions of α-clusters and neu-
trons [3, 4] and refine the spatial parameters of this
nuclear molecule.

The use of spline interpolation allows one to con-
struct smooth solutions throughout the range

 even at a not very small grid step h. The
results of the numerical solution of hyperradial equa-
tions using cubic spline interpolation are shown in
Fig. 4 at h = 1 fm. Tables 1 and 2 demonstrate the con-
vergence of the results to the accurate value of the
energy of separation of a neutron from the 9Be
nucleus, which is close to the experimental value

 (see, e.g., [12]).

x α α= − ≈� �

2 1
r r

α−α( )V r

( )ρ ρmin max,

= −0 1.664 MeVE
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Fig. 3. Probability density  (linear gray-
scale) at two values (a)  and (b)  of the angle
between the Jacobi vectors , calculated at

 fm, and h = 0.2 fm
together with the potential energy lines of the system. The
numbers in some lines are the corresponding values of
potential energy  (18) of the system.
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Fig. 4. Examples of solutions to the system of hyperradial
equations (14) at  fm,
and h = 1 fm. The points represent the values of the func-

tion  at grid nodes: (a) ( ) ,
( ) , ( ) , and ( ) ;
(b) ( ) , ( ) , and ( ) ;
and (c) ( ) , ( ) , and
( ) . The curve represents the results of
interpolation by cubic splines between nodes.
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CONCLUSIONS
The proposed method for solving hyperradial

equations can be useful for studying three-body sys-
tems in nuclear and atomic physics. For the 9Be
nucleus, this method made it possible to calculate the
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
neutron separation energy, root-mean-square charge
radius, and charge distribution and obtain agreement
with experimental values.
: PHYSICS  Vol. 88  No. 8  2024
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