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Abstract Calculations of the probability densities and
energies of the ground states for α-cluster nuclei 12C (3α),
16O (4α), 20Ne (5α), 24Mg (6α), 28Si (7α) and for nuclear
molecules 9Be (2α + n), 10Be (2α + 2n), 10B (2α + n + p),
10C (2α+2p), 11B (2α+2n+ p), 11C (2α+n+2p) were per-
formed by the Feynman Path Integral method using parallel
computing based on NVIDIA CUDA technology. In addition,
12C (3α) was considered in three-body hyperspherical har-
monics formalism with a new effective method of solving
hyperradial equation using cubic spline interpolation. The
spatial structures of the ground states of 12C and 16O corre-
spond to simple geometric shapes, a regular triangle and a
tetrahedron, respectively, with wide α-cluster clouds in their
vertices. The 24Mg nucleus has the shape of a pair of equal
regular triangles with wide α-cluster clouds in their vertices
as well. The nuclei 9Be, 10Be, 10B, 10C, 11B, 11C have molec-
ular structure with valence neutrons and/or protons between
two α-clusters.

1 Introduction

It is well known, that 12C, 16O, 20Ne, 24Mg, and 28Si
nuclei may be represented as composed of N α-particles (α-
clusters) with N = 3, 4, 5, 6, 7, respectively [1,2]. In partic-
ular, the energy Es of separation of the 12C nucleus into three
α-particles is equal to Es = 7.27 MeV and it is substantially
smaller than the energies of separation of a proton Es,p =
15.96 MeV or a neutron Es,p = 18.72 MeV (see, e.g., [3]).
The 9Be and 10Be nuclei may be represented as composed
of two α-particles (α-clusters) and respectively one and two
outer (valence) weakly bound neutrons [4–10]. They may be
regarded as simple two-center nuclear molecules [11–13].
The α-cluster model explains the large deformation of the
9Be and 10Be nuclei (for 9Be the quadrupole deformation
parameter is β2 = 0.89 [14]). The α-cluster structure of the
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9Be nucleus is manifested in scattering, breakup, and fusion
[15] as well as in the nucleon and cluster transfer reactions
[16]. An addition of two protons to the 10Be nucleus sig-
nificantly changes its structure (into the 12C (3α) nucleus).
Clustering in nuclei leads to some specific spatial structures
which can affect various observables associated with these
nuclei. The examples of these structures are dineutron and
cigar configurations in 6He [17–21] as well configurations
α + d and α + t in the 6Li and 7Li nuclei accordingly [22–
26]. In this work, the spatial structures in Nα-cluster nuclei
12C, 16O, 24Mg and cluster nuclei with few nucleons 9,10Be,
10,11B, 10,11C (nuclear molecules) are studied.

There are two general approaches to studying station-
ary states in quantum mechanics. The first, and the main
one, is based on the Schrödinger equation. The second is
based on the Feynman Path Integral (FPI) method [27].
There are many methods for an approximate solution of
the multi-dimensional stationary Schrödinger equation. The
three-body problem was solved using the hyperspherical
functions (HSF) method [15,18–20,28–30], Gaussian basis
and numeric solution of the Hill–Wheeler integral equations
[24,31], variational Gaussian-expansion method [29,30,32],
stochastic variational method [33], Lagrange mesh meth-
ods [29,30,34,35], continuum-discretized coupled-channel
approach and finite elements method [36,37], Faddeev equa-
tions [38,39], Faddeev–Yakubovsky equations [40], gen-
erator coordinate method [41], Tohsaki–Horiuchi–Schuck-
Röpke (THSR) wave function [4,5,8–10,41–43] and some
others. The Nα systems were studied using the hyperspher-
ical harmonics basis [44]. Application of hyperspherical
expansion for heavier nuclei is limited by the large size of
the model space and the large numbers of matrix elements in
the hyperspherical basis [44].

The FPI method is used because it is not limited by the
number of the particles. The reason why FPI is a natural
choice for studying spatial structures is because the asymp-
totic form of the FPI kernel contains density distributions
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explicitly. To demonstrate the capabilities of this method, we
first compare it with the HSF method for the systems of three
particles. In Sect. 2, the FPI method is described and tested for
the ground states of two exactly solvable oscillatory systems.
In Sect. 3, the hyperspherical formalism for zero orbital angu-
lar momentum together with a new method for solution of
the hyperradial equations with the cubic splines interpolation
are described. In Sect. 4, α–α potentials Vα−α are discussed
and the results for Nα systems with 2 ≤ N ≤ 7 are pre-
sented. The connection between the separation energies Es ,
the potential Vα−α , and the spatial structures in the ground
states of the nuclei 12C, 16O, 24Mg is studied. In Sect. 5,
nucleon-nucleon and α-nucleon potentials are discussed and
the results obtained for the nuclei 3H, 3He, 9,10Be, 10,11B,
10,11C are presented.

2 Feynman path integral method

Feynman path integral is a propagator-the probability ampli-
tude for a particle to travel from a pointq0 in an s-dimensional
space to a point q in a given time t [27]:

K
(
q, t;q0, 0

) = ∫ Dq(t ′) exp
{
i
h̄ S
[
q(t ′)

]}

= 〈q| exp
(
− i

h̄ Ĥ t
)

|q0〉.
(1)

Here, S[q(t)] and Ĥ are the action and the Hamiltonian of
the system, respectively, and Dq(t) is the integration measure
[45]. For a time-independent potential energy V (q), transi-
tion to the imaginary time t = −iτ yields the propagator
KE(q, τ ;q0, 0):

KE
(
q, τ ;q0, 0

) =
∫

DEq(τ ) exp

{
− 1

h̄
SE
[
q(τ ′)

]}
(2)

with the Euclidean action

SE
[
q(τ ′)

] =
τ∫

0

dτ ′
[
m

2

(
dq
dτ ′

)2

+ V (q)

]

. (3)

The propagator KE(q, τ ;q, 0) has the following asymptotic
behavior [46]:

KE (q, τ ;q, 0) → |ψ0(q)|2 exp
(
− E0τ

h̄

)

+ |ψ1(q)|2 exp
(
− E1τ

h̄

)
+ . . . , τ → ∞,

(4)

where E0 and E1 are the energies of the ground and the first
excited states with the wave functions ψ0(q), ψ1(q). For the
bound states of the N -body system, the energies are negative.
The expression

h̄ ln KE (q, τ ;q, 0) → h̄ ln |Ψ0(q)|2 − E0τ, τ → ∞ (5)

was used to obtain the energy E0 as the slope of the linear
part of the graph representing ln KE (q, τ ;q, 0) as a function

of τ . The squared modulus of the ground state wave function
|Ψ0(q)|2 in the points q of the finite region corresponding
to finite motion can be determined based on expression (4)
at τ values in the linear part of the graph of dependence
ln KE (q, τ ;q, 0) near its inflection point.

Feynman path integral for a one-dimensional system may
be represented as the limit of a multiple integral [46,47]:

KE (q, τ ; q0, 0)

= lim
N→∞

∫
· · ·
∫

exp

{

− 1

h̄

N∑

k=1

[
m (qk−qk−1)

2

2Δτ
+V (qk) Δτ

]}

×CNdq1dq2 . . . dqN−1,

(6)

where qk = q(τk), τk = kΔτ , k = 0, N , NΔτ = τ ,

C =
(

m

2π h̄Δτ

)1/2

. (7)

In order to calculate approximately the path integral in Eq.
(6), one singles out the Euclidean propagator K (0)

E of a free-
particle:

KE (q, τ ; q0, 0) ≈ K (0)
E (q, τ ; q0, 0)

×
〈
exp

[
−Δτ

h̄

N∑

k=1
V (qk)

]〉

0,N

,
(8)

K (0)
E (q, τ ; q0, 0) =

(
m

2π h̄τ

)1/2

exp

[

−m (q − q0)
2

2h̄τ

]

.

(9)

Setting qN = q0 = q, we obtain

KE (q, τ ; q, 0) ≈
(

m

2π h̄τ

)1/2
〈

exp

⎡

⎣−Δτ

h̄

N∑

k=1

V (qk)

⎤

⎦
〉

0,N

.

(10)

Here and below, angular brackets denote averaging of the
quantity f

f = exp

[

−Δτ

h̄

N∑

k=1

V (qk)

]

(11)

over arbitrary trajectories-(N −1)-dimensional vectors Q =
{q1, . . . , qN−1} with the multidimensional Gaussian distri-
bution [48]:

W (q0; q1, . . . , qN−1; qN = q0)

= CN−1N 1/2 exp

[
− m

2h̄Δτ

N∑

k=1
(qk − qk−1)

2
]

.
(12)

Averaging of the quantity f can be performed by the Monte–
Carlo method:

〈 f 〉 ≈ 1

n

n∑

i=1

fi . (13)
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A standard algorithm for simulating a random vector satis-
fying the distribution law in (12) is presented in Appendix.
Because of random errors in simulation, a linear regression
should be used in expression (5) to determine the ground
state energy.

For s-dimensional vectors q, the propagator KE(q, τ ;
q0, 0) is calculated as

KE (q, τ ;q, 0) ≈
(

m

2π h̄τ

)s/2
〈

exp

[

−Δτ

h̄

N∑

k=1

V (qk)

]〉

.

(14)

The values of the propagator were calculated based on
Jacobi coordinates, the Monte–Carlo method, and averag-
ing over n 	 1 random trajectories qk, k = 0, N ,q0 =
qN , N 	 1. Parallel calculations of the KE values [49]
using NVIDIA CUDA technology [50,51] were performed
mainly on the Heterogeneous Cluster of the Joint Institute
for Nuclear Research [52]. Parallel calculations reduce com-
puting time when solving N -body problems using the FPI
method by three orders of magnitude [49]; this makes it pos-
sible to perform them on ordinary laptops.

For verifying and testing the FPI method in the system of
units with h̄ = 1, we used two harmonic oscillatory systems
in which particles interact with each other by the pairwise
potential:

V (r) = 1

2
r2 (15)

and the total potential energy had a constant shift U0:

V = −U0 +
∑

i< j

1

2
r2
i j . (16)

The first system (I) consisted of three particles with masses
m1 = m2 = 1,m3 = ∞, the normal mode frequencies are
equal to

Ω1 = √
3, Ω2 = 1. (17)

and the ground state energy for U0 = 0 is

E0 = 3

2

(
1 + √

3
)

= 4.098. (18)

The second system (II) consisted of N particles with equal
masses m = 1 and the ground state energy is

E0 = −U0 + 3

2
(N − 1)

√
N . (19)

The results of the FPI calculations of ln KE as a function of
τ for grid spacing in imaginary time Δτ = 0.01 are shown
in Fig. 1. The ground state energy calculated as the slope of
the linear part of the graph of ln KE is given in Table 1. One
can see that the FPI method yields the exact values of the
ground state energy with small uncertainties, which makes it
possible to use this method in calculations of the ground state

Fig. 1 Dependence of ln KE (14) on imaginary time τ for N -body
systems with oscillatory potential energy (16) (I) with U0 = 0 (a) and
(II) with U0 = −20 (b) in the system of units with h̄ = 1. (a) Dots are
the result of calculations and the straight line is the result of the linear
regression applied to the linear interval of the graph. (b) Results for
N = 5 (dash-dotted curve), N = 6 (solid curve), and N = 7 (dashed
curve)

energies for nuclear N -body systems with N > 3. The aim
of this paper is to study spatial distributions which will not be
much affected by the FPI uncertainties for 3-body systems.

Below, the dimensionless variables are used

K̃E (q̃, τ̃ ; q̃, 0) ≈
(

m̃

2πτ̃

)s/2
〈

exp

[

−Δτ̃b0

N∑

k=1

Ṽ (q̃k)

]〉

0,N

,

(20)

where K̃E = KExs0, q̃ = q/x0, x0 = 1 fm, m̃ = m/m0, m0

is the neutron mass, Ṽ = V/ε0, ε0 = 1 MeV, τ̃ = τ/t0,
τ = NΔτ , Δτ̃ = Δτ/t0,

t0 = m0x
2
0/h̄ ≈ 1.588 · 10−23s, (21)

b0 = t0ε0/h̄ ≈ 0.0241. (22)

The equation

b0
−1 ln K̃E (q̃, τ̃ ; q̃, 0) ≈ b0

−1 ln |ψ0(q̃)|2 − Ẽ0τ̃ (23)

is used to obtain the dimensionless energy Ẽ0 = E0/ε0 as
the slope of the linear part of the graph of ln K̃E as a function
of τ̃ .
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Table 1 The exact E0,ex and
calculated (using HSF and FPI
methods) E0,calc values of the
ground state energies of N -body
oscillatory systems (I) and (II)
with potential energy (12) in the
system of units with h̄ = 1

System, U0 N E0,ex E0,calc Method, parameter
(Δρ for HSF; n for FPI)

I, 0 3 4.098 4.139 ± 0.12 HSF, 0.4

I, 0 3 4.098 4.11 ± 0.12 HSF, 0.2

I, 0 3 4.098 4.10 ± 0.12 HSF, 0.1

I, 0 3 4.098 4.11 ± 0.01 FPI, 105

II, −20 5 −6.584 −6.578 ± 0.005 FPI, 107

II, −20 6 −1.629 −1.84 ± 0.01 FPI, 107

II, −20 7 3.812 3.71 ± 0.02 FPI, 105

Before applying the FPI method to 4- and 5-body systems
we will test it for a 3-body system 12C, for which we will also
use another method, the hyperspherical harmonics method,
described in the next section.

3 Hyperspherical functions method

In the HSF method for nuclear 3-body systems, we use the
normalized dimensionless variables (Jacobi coordinates):

x̃i =
√

m̃ j m̃k

m̃ j + m̃k
(r̃ j − r̃k), (24)

ỹi =
√

m̃i (m̃ j + m̃k)

m̃1 + m̃2 + m̃3

(
−r̃i + m̃ j r̃ j + m̃k r̃k

m̃ j + m̃k

)
, (25)

where r̃ = r/x0 and m̃ = m/m0 are dimensionless radius
vectors and masses of particles, respectively, x0 = 1 fm,
m0 is the neutron mass, the same as in FPI calculations. The
hyperspherical coordinates are Ω = {θx , ϕx , θy, ϕy, α

}
, x̃ =

ρ cos α, ỹ = ρ sin α; ρ is the dimensionless hyperradius

ρ2 = x̃2
1 + ỹ2

1 = x̃2
2 + ỹ2

2 = x̃2
3 + ỹ2

3. (26)

The hyperspherical harmonics (functions) are

Φ
lx ly
K LM (Ω) =

∑

mxmy

(lx lymxmy |LM)Φ
lx lymxmy
K L (Ω), (27)

Φ
lx lymxmy
K L (Ω) = g

lx ly
K (α)Ylxmx (x̂)Ylymy (ŷ); (28)

(lx lymxmy |LM) are the Clebsch-Gordon coefficients;Ylxmx (x̂),
Ylymy (ŷ) are spherical harmonics; lx is the angular momen-
tum of a pair of particles of the system. The orbital angular
momentum for the ground state is equal to zero, L = 0;
therefore, ly = lx and

glx lxK0 (α) = Nlx lx
K (cos α)lx (sin α)lx Plx+1/2,lx+1/2

n (cos 2α);
(29)

Plx+1/2,lx+1/2
n (t) are the Jacobi polynomials; K = 2n+2lxi

is the hypermoment; n = 0, 1, 2 . . ., lx = 0, 2, . . . . Expan-

sion of the wave function Ψ0 into hyperspherical functions
for L = 0 is

Ψ0(x, y, cos θ)= Ψ̃0(α, θ, ρ)=
∑

lx K

ϕ
lx
K (ρ)ρ−5/2Φ

lx lx
K00(Ω)

=
∑

lx K

f lx lxK0 (ρ)glx lxK0 (α) (2lx + 1) Plx (cos θ) ,

(30)

ϕ
lx
K (ρ) = ρ5/2 f lx lxK0 (ρ) (2lx + 1) , ϕ

lx
K (0) = 0, (31)

where θ is the angle between the Jacobi vectors. We take into
account a set of Ns pairs of numbers (K , lx ) or (n, lx ) with
the maximum hypermoment Kmax.

The system of Ns hyperradial equations for L = 0 is

d2

dρ2 ϕ
lx
K (ρ) +

[
2Ẽb0 − ρ−2(K + 3/2)(K + 5/2)

]
ϕ
lx
K (ρ)

= 2b0

∑

K ′l ′x

Ũ
lx ;l ′x
K K ′ (ρ)ϕ

l ′x
K ′(ρ). (32)

It contains the dimensionless coupling matrix (Ns × Ns):

Ũ
lx ;l ′x
K K ′ (ρ) = 〈lx lx K0|Ũ |l ′x l ′x K ′0〉. (33)

The calculations of the double integrals over angles α, θ in
(33) were performed by the Gauss quadrature formula. The
dimensionless potential energy of the system is represented
as a sum of the pairwise potentials Ũ = (V12+V13+V23)/ε0.
The functions ϕ

lx
K (ρ) have asymptotic behavior

ϕ
lx
K (ρ) ∼ ργ , ρ → 0, (34)

where

γ = 1

2
+
√

1

4
+
(
K + 3

2

)(
K + 5

2

)
≥ 5

2
(35)

and conditions ϕ
lx
K (0) = 0 , ϕ

lx
K

′′
(0) = 0 are satisfied.

There are several laborious methods for solving hyper-
radial equations, e.g., using the Sturmian basis [20,44], the
basis of the Lagrange functions [15,28], and the Laguerre
polynomial expansion [30]. A new method for solving hyper-
radial equations using cubic splines interpolation [53] was

123



Eur. Phys. J. A           (2022) 58:117 Page 5 of 23   117 

proposed in [54]. The idea of this method is the simultaneous
calculation of the mesh function ϕi and its second derivative
ηi . As an example we show application of this method to
hyperradial equations for L = 0.

The cubic spline interpolation expression [53] for the
function ϕ(ρ) may be written using its values ϕ0 = 0,
ϕi , i = 1, ..., n p and the values of its second derivative
ηi = ϕ′′(ρi ) in the mesh points ρi , i = 0, 1, . . . , n p,
ρn p = ρmax:

ϕ(ρ) = ηi−1
(ρi − ρ)3

6hi
+ ηi

(ρ − ρi−1)
3

6hi

+
(

ϕi−1 − ηi−1h2
i

6

)
ρi − ρ

hi
+
(

ϕi − ηi h2
i

6

)
ρ − ρi−1

hi
,

ρ ∈ [ρi−1, ρi
]
, hi = ρi − ρi−1, i = 1, 2, . . . , n p.

(36)

With the additional natural boundary conditions η0 = ηn p =
0, the values of ηi are equal to

η = A−1Hϕ, ϕ = {ϕi }, i = 1, ..., n p − 1. (37)

The square tridiagonal matrix A [(n p − 1) × (n p − 1)] has
elements [53]:

Ai i = hi +hi+1

3
, Ai i+1 = Ai+1 i = hi+1

6
, i = 1, . . . , n p − 1.

(38)

The square tridiagonal matrix H [(n p − 1) × (n p − 1)] has
elements [53]:

Hi i = −h−1
i − h−1

i+1, Hi i+1 = Hi+1 i = h−1
i+1,

i = 1, . . . , n p − 1.
(39)

For the set of Ns hyperradial equations, we use the block
matrices A, H with the identity matrix I (Ns × Ns)

Ai i = I hi+hi+1
3 , Ai i+1 = Ai+1 i = I hi+1

6 , (40)

Hi+1 i = I h−1
i+1, Hi i = −I (h−1

i + h−1
i+1),

Hi i+1 = I h−1
i+1, i = 1, . . . , n p − 1,

(41)

the diagonal block matrix

Wi i =2b0Ũ
lx ;l ′x
K K ′ (ρi ) + 1

ρ2
i

(K + 3/2)(K+5/2)δKK ′δlx ;l ′x ,

(42)

and the block column matrix

Fi = {ϕlx
K (ρi )}, i = 1, . . . , n p − 1. (43)

The hyperradial equations on the mesh are

− A−1HF + WF = 2b0EF. (44)

With the additional boundary conditions Fn p = 0, system
(44) is the eigenvalue problemBF = λF for the square matrix
B [(n p − 1)Ns × (n p − 1)Ns]:

B = −A−1HF + WF = 2b0EF. (45)

For the equidistant mesh hi = Δρ, the matrixB is symmetric,
eigenvalues λ are real and the eigenvectors F are orthogonal.
Energies are equal to E = λ/(2b0). Smooth interpolation of
the functions ϕ

lx
K (ρ) provides the possibility of decreasing

the size of the hyperradial mesh n p and the possibility of
increasing the number of hyperradial equations Ns and the
maximum hypermoment Kmax in calculations for the systems
with pairwise interactions having a repulsive core.

For verification testing of splines interpolation for solution
of hyperradial equations, we used the harmonic oscillatory
system (I) (15)–(18). The calculated ground state energy for
n = 0, 2; lx = 0, 2; Kmax = 8; Ns = 6; ρmax = n pΔρ = 20
is given in Table 1. One can see that splines interpolation in
the HSF method provides the exact value with fast conver-
gence when the value of Δρ decreases.

For the radial Schrödinger equation

− ψ ′′ + 2m

h̄2 Ueff(r)ψ(r) = 2m

h̄2 Eψ(r), 0 ≤ r ≤ rmax

(46)

with the boundary conditions ψ(0) = 0, ψ(rmax) = 0,
splines interpolation leads to the eigenvalue problem:

Bψ = λψ,

B = −A−1H + 2m
h̄2 U, λ = 2m

h̄2 E .
(47)

For equidistant mesh, the matrix B is symmetric and the
eigenvectors are orthogonal.

4 α-Cluster nuclei 12C, 16O, 20Ne, 24Mg, 28Si

4.1 Pairwise potentials and energies of the ground states
for Nα systems

The nuclear part of interaction between two α-particles may
be represented as a potential involving a repulsive core for
excluding forbidden (internal) states. The Ali–Bodmer (AB)
potential version “a” [55]

V (N)
α−α(r) = v1 exp

(
−r2/a2

1

)
− v2 exp

(
−r2/a2

2

)
(48)

with v1 = 125 MeV, v2 = 30.18 MeV, a1 = 1.53 fm,
a2 = 2.85 fm reproduces the s-wave α-α phase shift δ0.
The experimental and calculated s-wave α–α phase shifts are
shown Fig. 2a. Coulomb repulsion of α-clusters was used in
the form [55]

V (C)
α−α(r) = 4e2

r
erf (βr) , (49)
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Fig. 2 a The experimental (dots) [55] and calculated (curves) s-wave
α–α phase shifts: solid curve corresponds to the Ali–Bodmer potential
“a” (48), dashed curve—to the similar DWS potential with parameters
(54), (55), dotted curve—to the DWS potential with parameters (56),
(57), dash-dotted curve—to the DWS potential with parameters (54),
(58). b The Ali–Bodmer potential “a” (48) (solid curve) and the DWS
potential with parameters: (54), (55) (dashed curve), (56), (57) (dotted
curve), (54), (58) (dash-dotted curve)

where β = 0.601 fm−1 [36]. The total pairwise potential is
the sum

Vα−α(r) = V (N)
α−α(r) + V (C)

α−α(r). (50)

The plot of the Ali–Bodmer potential (48) is shown in Fig. 2b.
Calculations with the Ali–Bodmer potential result in the

very small ground state energy for the 3α model of the 12C
nucleus [29]. When three or more α-particles (α-clusters)
are close together, polarization and shell effects change the
interaction between them [38]. This change was taken into
account by including a three-body (3B) potential in the sim-
ple Gaussian form [36,38]

V3(r)= S3 exp

(

−ρ2
√

3

4b2
3

)

= S3 exp

(

−
√

3

b2
3

3∑

i=1

r2
i

)

(51)

with b3 = 2.58 fm.
Modification of the pairwise potential may be another way

of improving the description of the 3α system, more conve-
nient for generalization to Nα systems. For this purpose,
we use the nuclear part of the potential for the zero orbital
momentum in the form of the combination of two Woods–
Saxon functions f (r; B, a) (below we refer to it as double

Woods–Saxon or DWS potential):

V (N)
α−α(r) = −Uα1 f (r; Bα1, aα1) +Uα2 f (r; Bα2, aα2),

(52)

f (r; B, a) =
[

1 + exp

(
r − B

a

)]−1

. (53)

Potential (52) is similar to the Ali–Bodmer potential (48) for
the set of parameters (see Fig. 2b)

Uα1 = 11.1 MeV, Bα1 = 3.78 fm, aα1 = 0.54 fm, (54)

Uα2 = 115.34 MeV, Bα2 = 1.14 fm, aα2 = 0.44 fm.

(55)

Potential (52) with parameters

Uα1 = 29.0 MeV, Bα1 = 3.73 fm, aα1 = 0.512 fm, (56)

Uα2 = 38.0 MeV, Bα2 = 2.71 fm, aα2 = 0.512 fm (57)

was used in calculations of the ground state energies for Nα

systems with N = 3, 4, 5, 6, 7 using the FPI method in [56]
and approximately reproduced the experimental values of the
separation energy of an α-particle for the nuclei 16O, 20Ne,
24Mg, 28Si; errors were higher for the nuclei from 20Ne to
28Si. The s-wave α-α phase shifts are reproduced worse than
for the Ali–Bodmer potential (48) and for the DWS potential
with parameters (54)–(55) (see Fig. 2a).

We suppose that polarization and overlapping of α-
clusters as well shell effects decrease the repulsive part of
the α-α interaction in comparison with the Ali–Bodmer
potential (48) and the DWS potential with parameters (54)–
(55). Therefore, the parameter Uα2 in the second (repul-
sive) term of the DWS potential (52), (53) must be modified
to describe the ground state energies of Nα systems. The
energies of the 0+ states for the 12C nucleus (3α system)
were calculated using the HSF method. The value of energy
E0 = −7.27 MeV for the ground state 0+

1 coincided with
the experimental value of energy of separation into three 3α

particles Es = 7.27 MeV (see, e.g., [3]); it was obtained with
parameters

Uα2 = 26.76 MeV, Bα2 = 1.07 fm, aα2 = 0.44 fm (58)

of the DWS potential for n = 0, . . . , 12; lx = 0, . . . , 12;
Kmax = 48 ; Ns = 91; ρmax = n pΔρ = 30 fm, Δρ =
0.2 fm. The energy of the 0+

2 state is equal to −0.967 MeV.
The DWS α-α potential for the 12C nucleus does not repro-
duce the s-wave α–α phase shifts δ0 (see Fig. 2a). The dif-
ference between the potentials for α-α scattering and for α-
systems may be explained by short times of α-α collisions,
so that there is no time for polarization and shell effects to
come into play.

The results of calculations of the propagator b0
−1 ln K̃E

for the nuclei 12C, 16O, 20Ne, 24Mg, 28Si are shown in
Fig. 3a. The computational time for the FPI method grows
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Fig. 3 a The results of calculations of the propagator b0
−1 ln K̃E and

b the linear parts of the graph of b0
−1 ln K̃E as a function of τ̃ for

the nuclei 12C (dots), 16O (circles), 20Ne (solid triangles), 24Mg (empty
triangles), 28Si (squares) for grid spacing in imaginary time Δτ̃ = 0.01.
cThe DWS potentialsVα−α(r) for 12C (dash-dotted curve), 16O (dashed
curve), 20Ne (dotted curve), 24Mg (solid curve), 28Si (dash-dot-dotted
curve)

very slowly with the number of particles. The required time
for parallel calculations of tens of millions of trajectories is
approximately few hours on the Heterogeneous Cluster of
the Joint Institute for Nuclear Research [52] and few tens of
hours on ordinary laptops.

The linear parts of the graph of b0
−1 ln K̃E as a function

of τ̃ are shown in Fig. 3b. The results of calculations of the
ground state energy for the 12C nucleus (3α system) using
the FPI method demonstrated noticeable uncertainties (see
Table 2). The plausible reason for it is the narrow linear part
of the graph of K̃E as a function of τ near its inflection point.
For a larger number of α-particles (α-clusters), the lengths
of the linear parts of the graphs increase and uncertainties
decrease. The results for the ground state energies are pre-
sented in Table 2. The graphs of α-α potentials Vα−α(r) for
the nuclei 12C, 16O, 20Ne, 24Mg, 28Si are shown in Fig. 3c.

Table 2 Parameter Uα2 of the second (repulsive) term in the DWS
potential (52) for α-cluster systems; other parameters are given in for-
mulas (54), (58)

Nuclei Uα2 (MeV) Es,exp (MeV) Es,calc (MeV) Method

12C (3α) 26.76 7.27 7.27 HSF
12C (3α) 26.76 7.27 7.15 ± 0.10 FPI
16O (4α) 27.50 14.44 14.40 ± 0.12 FPI
20Ne (5α) 37.87 19.17 19.14 ± 0.15 FPI
24Mg (6α) 38.22 28.48 28.43 ± 0.11 FPI
28Si (7α) 39.37 38.47 38.54 ± 0.23 FPI

One can see that there are two different groups of the α-α
potentials: first—for the nuclei 12C, 16O and second—for
20Ne, 24Mg, 28Si. It may be explained by the difference in
manifestations of polarization and shell effects in the nuclei
with simple shapes (triangle for 12C, tetrahedron for 16O;
see below) and in the nuclei with more complicated shapes,
similar to a sphere (20Ne, 24Mg, 28Si; see [56] and below).

4.2 2α System in self-consistent molecular orbit model

Antisymmetrization of nucleon wave functions in the 2α-
cluster nuclei, such as Be and B isotopes, was taken into
account in the AMD (antisymmetrized molecular dynam-
ics) approach by Kanada-En’yo and Horiuchi [4,5]. This
approach yielded the wave functions similar to those obtained
in the molecular orbit model used in works [11–13]. In
the two-center shell model [13], single-nucleon motion is
described by the orbits in the mean field potential with two
centers. For calculation of nucleon wave functions of 8Be,
we use a self-consistent shell model of atomic nuclei pro-
posed in [57]. In this model, the potential energy of nucle-
ons, depending non-linearly on the nucleon concentration n,
is determined taking into account the Pauli Exclusion Princi-
ple. Nucleon–nucleon interaction v(r), in particular its part
corresponding to attraction, serves as a basis for choosing the
family of functions V (n). The function V (n) is a superposi-
tion of two exponents that depend on the concentration via
the quantity s having a dimension of length:

V (n) = −W1 exp [−β1s(n)] − W2 exp [−β2s(n)] , (59)

where W1 = 172.8 MeV, W2 = 45.55 MeV, β1 =1.641 MeV,
β2 = 0.438 MeV,

s(n) =
(

3

4πn

)1/3

. (60)

This nonlinear dependence for the mean field V = V (n) of
other nucleons on nucleon concentration n(r) satisfies three
conditions. The first condition

V [n(r)] → 0, n(r) → 0 (61)
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requires absence of bound states of nucleons in a “loose”
nucleus with internucleon distances exceeding the range of
the nuclear force. A similar requirement in the opposite case

V [n(r)] → ∞, n(r) → ∞ (62)

is unnecessary because, due to the Uncertainty Principle, the
kinetic energy of nucleons and their total energy automati-
cally grow without any restrictions. The second condition of
stability

η(n) =
∣∣∣∣
n

V

dV (n)

dn

∣∣∣∣ ≤ 1, (63)

in accordance with the general mathematical principle of
contraction mapping, is necessary for convergence of the
iteration method of solving the nonlinear Schrödinger equa-
tion. Inequality (63) means that the magnitude of the rela-
tive change in the potential energy |dV/V | does not exceed
the relative change in the nucleon concentration |dn/n| as
the nucleon concentration varies. The third condition is the
agreement of the solution obtained in the self-consistent shell
model with the experimental data on nucleon separation ener-
gies along with the similarity of the self-consistent potential
V (n) for spherical nuclei with the well-known Woods–Saxon
potential.

The self-consistent system of equations for two-center
systems may be written in the cylindrical coordinate sys-
tem. The Schrödinger equation for the two-component wave
function of a neutron is
[
− h̄2

2mΔ + V (ρ, z) + i b2
1
ρ
Vρ

∂
∂ϕ

]
ψ1ν

+i b2e
−iϕ
[
i
(
Vρ

∂
∂z − Vz

∂
∂ρ

)
− 1

ρ
Vz

∂
∂ϕ

]
ψ2ν = ενψ1ν,

(64)
[
− h̄2

2mΔ + V (ρ, z) − i b2
1
ρ
Vρ

∂
∂ϕ

]
ψ2ν

−i b2e
iϕ
[
i
(
Vρ

∂
∂z − Vz

∂
∂ρ

)
+ 1

ρ
Vz

∂
∂ϕ

]
ψ1ν = ενψ2ν .

(65)

Here m is the nucleon mass, Vρ ≡ ∂V /∂ρ, Vz ≡ ∂V /∂z,

b = κ
2

h̄2

c2m2 , c is speed of light, and κ is the spin-orbit coupling

strength, the value κ = 5 was used. The method of numerical
solution of the Schrödinger equation is described in the next
subsection. Due to non-linearity of problem (59), (60) its
numerical solution was obtained using an iteration scheme.
Convergence of the iteration procedure is demonstrated in
Fig. 4. The initial approximation for the two-center mean
field V is the sum of two Woods–Saxon potential wells with
distances Rin between their centers. The parameters of each
Woods–Saxon potential well are the depth V0 = 55 MeV,
the width r0 = 2.25 fm, and the diffuseness 0.7 fm. For large
distances Rin > 6 fm, the energy of levels approximately
corresponds to the experimental data on nucleon separation
energies for 4He, 20.6 MeV. For small values of Rin < 5 fm,

Fig. 4 Convergence of neutron energies ε for the two lower levels of
the 8Be nucleus in the iteration procedure of solution of the nonlinear
Schrödinger equation for the initial approximation of the two-center
mean field V as a sum of two Woods–Saxon potential wells with dis-
tances between their centers Rin = 8 fm (filled and empty squares),
6 fm (filled and empty circles), 5.25 fm (filled and empty triangles),
5 fm (filled and empty diamonds), 4 fm (filled and empty stars), 2 fm
(direct and skew crosses); Nit is the number of iteration step

Fig. 5 The total nucleon density (shades of grey; logarithmic scale)
for the ground state of the 8Be nucleus in the self-consistent molecular
orbit model (a, c, e) and landscapes of the self-consistent potentials
(b, d, f) for the initial approximation of the two-center wave functions
with distances between the centers of the Woods–Saxon potential wells
Rin = 8 fm (a, b), 6 fm (c, d), 4 fm (e, f)

the energy of levels is the same because the resulting self-
consistent mean field and nucleon density do not depend on
initial approximations.

The total nucleon density for the ground state of the 8Be
nucleus in the self-consistent molecular orbit model and land-
scapes of the self-consistent potentials are shown in Fig. 5.
The nucleon distributions have two peaks corresponding to
the centers of α-clusters. Energies ε for the two lower neu-
tron and proton levels of the 8Be nucleus as a function of the
distance Rα−α between the peaks of the nucleon densities
are shown in Fig. 6. In this model, the 8Be nucleus, as sys-
tem of four neutrons and four protons, may be in the stable
self-consistent states only for Rα−α > 3.4 fm. Instability of
the system when α-clusters approach each another may be
an indication of strong repulsion in the α − α interaction.
The reason for repulsion in the semiempirical alpha-alpha
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Fig. 6 Energies for two lower neutron (solid curves) and proton
(dashed curves) levels E of the of the 8Be nucleus as function of dis-
tances Rα−α between the peaks of the nucleons densities

potential was demonstrated using the self-consistent shell
model on the example of the 8Be nucleus. The properties
of the repulsive part of the potential may vary for different
nuclei. These variations may be determined from comparing
the theoretical results with experimental data.

We may say that the conditions where the alpha-cluster
model may be applied to real nuclear systems are the exis-
tence of local peaks in the total nucleon density formed of
neutron and protons pairs as in Fig. 5. In fact, in the cal-
culation of the total nucleon density, antisymmetrization of
nucleon wave functions may be taken into account via occu-
pation of nucleon states using the Pauli Exclusion Principle
in the self-consistent shell model for spherical or deformed
nuclei. The role of nucleon density in formation of the inter-
nal structure with alpha clusters may be studied in the pro-
posed self-consistent shell model owing to the nonlinear rela-
tionship (59), (60) between the nucleon density and the mean
field.

4.3 Spatial structure of the 12C nucleus in 3α model

For the 12C nucleus (3α system) the physical distances pro-
portional to the normalized Jacobi coordinates (24), (25) are

x = rα2 − rα1 , y = rα3 − 1

2

(
rα1 + rα2

)
. (66)

The potential landscapes for the total potential energies are
shown in Figs. 7, 9. The convergence of the approximations
of the HSF method is demonstrated in Tables 3, 4 for different
α-α potentials, numbers of hyperradial equations, and values
of mesh parameters. The satisfactory accuracy is achieved
even for rather large mesh step Δρ ≈ 0.6 fm (Table 4). One
may see that ρmax = 20 fm is large enough for the 0+

1 state
and ρmax = 60 fm is large enough for the 0+

2 state.
The value of S3 = −152.2 MeV used for calculations

of the 3α system in [36] yielded the energy of the Hoyle
state 0+

2 0.3668877 MeV which was close to the experimen-
tal value 0.38 MeV [3]. The energy of the ground state 0+

1

obtained in [36] was −9.300922 MeV which was rather far
from the experimental value −7.27 MeV [3,38]. Thus, we
may conclude that the strength of the three-body potential
for the Hoyle state 0+

2 is different from that for the ground
state 0+

1 . The result of our calculations using splines inter-
polation is similar to the result of [36] for the 0+

2 state, but
differs from it for the 0+

1 state. The strength of the repulsive
core (the value of the parameter Uα2) for the Hoyle state 0+

2
is different from that for the ground state 0+

1 and is similar to
that for the Ali–Bodmer (AB) potential for elastic scattering
of α-particles. This fact may be explained by changes in the
α-particles themselves (polarization and shell effects) in the
compact 3α system as compared with free α-particles.

Using hyper-radial wave functions, we calculated the root-
mean-square (rms) radius 〈R2〉 = 〈ρ2〉/4 of the three-α sys-
tem. We obtained 1.95 fm for the 0+

1 state, this value is similar
to result 1.78 fm [36] for AB+3B α-α potential (48), (51).
The rms radii of the 12C nucleus was determined in [36]
as Rrms = √〈R2〉 + R2

α with the rms radius of α-particle,
Rα = 1.42 fm. Our result Rrms = 2.41 fm is also similar to
result 2.28 fm [36].

We admit that for calculations of the 3α system, the HSF
method is more precise and faster than the FPI method. The
FPI method was used here only for the purposes of testing
and estimating its uncertainty for the following study of the
ground states of N -body systems with 4 ≤ N ≤ 7, when the
use of more accurate methods is very laborious.

The probability density for the ground state 0+
1 of the

12C nucleus calculated as a 3-body system 3α by the HSF
method with cubic splines interpolation is shown in Fig. 7.
The probability density is consistent with the potential land-
scape, which confirms the correctness of calculations. It is
well known that the properties of the probability densities
are determined by the potential landscape. The large values
of the probability density are in the region where the energy
of state exceeds the potential energy. The probability density
is a rapidly decreasing function in the region where height of
the barrier exceeds the energy of the state. We see a confir-
mation of this fact in Fig. 7 and below in all figures with the
probability densities and potential landscapes.

The broad maximum of the probability density corre-
sponds to the regular triangle with wide α-cluster clouds
in its vertices. This result of the α-cluster model is simi-
lar to the result of the simple shell model of the deformed
12C nucleus. The value of the quadrupole deformation β2 =
− 0.411 ± 0.226 [14] for the 12C nucleus was obtained
from the experimental value of quadrupole moment [58].
For a deformed nucleus with an axially symmetric surface
described in the spherical coordinate system by the equa-
tion R = R(θ), the potential energy of a nucleon is usually
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Table 3 The results of
calculations of energies for the
states 0+

1 and 0+
2 of the 12C

nucleus (3α system) within the
HSF method with spline
interpolation for AB+3B α-α
potential (48), (51) and for
different numbers of hyperradial
equations and different values of
mesh parameters: (i)
Δρ = 0.2 fm, ρmax= 20 fm; (ii)
Δρ = 0.2 fm, ρmax= 60 fm; (iii)
Δρ = 0.2 fm, lxmax = nmax = 4

0+
1 0+

2 0+
1 0+

2
S3 = −152.2 (MeV) S3 = −152.2 (MeV) S3 = −132.5 (MeV) S3 = −132.5 (MeV)

lxmax (i)

nmax

2 −9.1891 0.840 −6.8921 1.4361

4 −9.5377 0.3879 −7.2414 0.9442

6 −9.5590 0.3384 −7.2653 0.8777

8 −9.5593 0.3311 −7.2658 0.8683

10 −9.5593 0.3285 −7.2658 0.8646

12 −9.5593 0.3278 −7.2658 0.8633

(ii)

2 −9.1891 0.8008 −6.8921 1.0879

4 −9.5377 0.3496 −7.2414 0.8412

6 −9.5590 0.2895 −7.2653 0.7444

8 −9.5593 0.2785 −7.2658 0.7197

10 −9.5593 0.2740 −7.2658 0.7150

ρmax (fm) (iii)

12 −9.5244 2.2580 −7.2064 3.5306

16 −9.5377 0.6047 −7.2412 1.3274

20 −9.5377 0.3879 −7.2414 0.9442

24 −9.5377 0.3557 −7.2414 0.8663

30 −9.5377 0.3501 −7.2414 0.8450

60 −9.5377 0.3496 −7.2414 0.8412

Table 4 The results of
calculations of energies for the
states 0+

1 and 0+
2 of the 12C

nucleus (3α system) within the
HSF method with spline
interpolation for DWS α–α

potentials (54), (58) and for
different numbers of hyperradial
equations and different values of
mesh parameters: (i)
Δρ = 0.2 fm, ρmax = 20 fm;
(ii) Δρ = 0.2 fm, ρmax= 60 fm;
(iii) Δρ = 0.2 fm,
lxmax = nmax = 8; (iv)
ρmax = 24 fm and lxmax = 4,
nmax = 4 for Uα2 =26.76 MeV,
ρmax = 60 fm and lxmax = 8,
nmax = 8 for Uα2 =61.5 MeV

0+
1 0+

2 0+
1 0+

2
Uα2 = 26.76 (MeV) Uα2 = 26.76 (MeV) Uα2 = 61.5 (MeV) Uα2 = 61.5 (MeV)

lxmax (i)

nmax

2 −7.1728 −0.7136 −3.4147 1.3868

4 −7.2724 −0.9487 −3.6631 0.9462

6 −7.2735 −0.9695 −3.6709 0.8868

8 −7.2735 −0.9763 −3.6714 0.8661

10 −7.2735 −0.9771 −3.6715 0.8636

(ii)

2 −7.1728 −0.7136 −3.4115 0.9859

4 −7.2724 −0.9487 −3.6633 0.7416

6 −7.2728 −0.9695 −3.6712 0.5403

8 −7.2735 −0.9763 −3.6716 0.3807

ρmax (fm) (iii)

12 −7.2049 −0.1047 −3.3912 2.8278

16 −7.2728 −0.8850 −3.6555 1.2014

20 −7.2735 −0.9763 −3.6714 0.8661

24 −7.2735 −0.9940 −3.6716 0.7449

30 −7.2735 −1.0002 −3.6716 0.5264

40 −7.2735 −1.0002 −3.6716 0.4075

60 −7.2735 −1.0002 −3.6716 0.3807
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Table 4 continued
0+

1 0+
2 0+

1 0+
2

Uα2 = 26.76 (MeV) Uα2 = 26.76 (MeV) Uα2 = 61.5 (MeV) Uα2 = 61.5 (MeV)

Δρ (fm) (iv)

0.2 −7.2724 −0.9612 −3.6716 0.3807

0.3 −7.2682 −0.950 −3.6680 0.3881

0.6 −7.2657 −0.9531 −3.6488 0.3823

1.2 −7.1590 −0.9265 −3.5754 0.3871

Fig. 7 The probability density (shades of grey; logarithmic scale) for
the ground state 0+

1 of the 12C nucleus as a 3α system along with the
potential landscape (curves) in the case of the distances (66) x⊥y calcu-
lated by the HSF method for the DWS potential with parameters (54),
(58),Uα2 =26.76 MeV (a) and AB+3B potential (48), (51) with param-
eters b3 = 2.58 fm, S3 = −152.2 MeV (b) and S3 = −132.5 MeV (c)

represented in the Woods–Saxon form

U (WS) (r, cos θ) = V0

[
1 + exp

(
r − R (θ)

a(WS)

)]−1

, (67)

where the shape of a deformed nucleus with dimensionless
deformation parameters β2 is represented using the decom-

position into spherical functions Yλ0 [59]

R (θ) = R̃ [1 + β2Y20 (θ)] , (68)

R̃ = R0

(
1 + 3

4π
β2

2

)−1/3

, (69)

where R0 = r0A1/3, and A is the mass number. The nucleon
states in the field of the axially deformed nucleus may be
determined by solving the Schrödinger equation for two com-
ponents ψ1, ψ2 of the spinor wave function in the cylindrical
coordinates (ρ, ϕ, z):
[
− h̄2

2mΔ +U (WS)(ρ, z) + i b2
1
ρ
U (SO)

ρ
∂
∂ϕ

]
ψ1ν

+i b2e
−iϕ
[
i
(
U (SO)

ρ
∂
∂z −U (SO)

z
∂
∂ρ

)
− 1

ρ
U (SO)
z

∂
∂ϕ

]
ψ2ν

= ενψ1ν,

(70)
[
− h̄2

2mΔ +U (WS)(ρ, z) − i b2
1
ρ
U (SO)

ρ
∂
∂ϕ

]
ψ2ν

−i b2e
iϕ
[
i
(
U (SO)

ρ
∂
∂z −U (SO)

z
∂
∂ρ

)
+ 1

ρ
U (SO)
z

∂
∂ϕ

]
ψ1ν

= ενψ2ν,

(71)

where the function U (SO) (r, cos θ) is

U (SO) (r, cos θ) = V0

[
1 + exp

(
r − R (θ)

a(SO)

)]−1

. (72)

Here m is the nucleon mass, U (SO)
ρ ≡ ∂U (SO)/∂ρ, U (SO)

z ≡
∂U (SO)/∂z, b = κ

2
h̄2

c2m2 , c is speed of light, and κ is the spin-
orbit coupling strength. It is necessary to supplement equa-
tions (70), (71) with the homogeneous boundary conditions at
the cylinder surface (ρ = ρ0, z = z0 < 0, and z = zM > 0)
chosen in such a way that the distance from it to the sur-
faces of the nuclei significantly exceeds the range nuclear
forces (about 1 fm). The resulting boundary-value problem
has a discrete spectrum of energy eigenvalues εν < 0 ; val-
ues εν ≥ 0 correspond to the continuous spectrum. Taking
into account axial symmetry of the potential, the particular
solutions are

ψ1νm j = (2π)−1/2 f1νm j (ρ, z) exp
[
i(m j − 1/2)ϕ

]
,

ψ2νm j = (2π)−1/2 f2νm j (ρ, z) exp
[
i(m j + 1/2)ϕ

]
,

(73)
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Fig. 8 Neutron level scheme (a) for the deformed 12C nucleus obtained
in the shell model of a deformed nucleus; the modules of the quan-
tum numbers |m j | are shown. The regular triangle configuration in the
alpha-cluster models (b) and the total neutrons probability density (log-
arithmic scale) for the deformed 12C nucleus obtained in the shell model
of a deformed nucleus (c)

wherem j = − j,− j+1, . . . , j is the quantum number of the
angular-momentum projection onto the nuclear symmetry
axis Oz. The probability density P in cylindrical coordinates
for neutron levels with quantum numbers ν, m j is

P = ∣∣ψ1νm j

∣∣2 + ∣∣ψ2νm j

∣∣2 . (74)

For solving Schrödinger equations (70), (71), we used the
method based on expansion of functions f1 and f2 into a
series of Bessel functions proposed in [60]. The calculations
within the shell model of the deformed 12C nucleus yielded
energies εν of the upper occupied level which were approxi-
mately equal to the experimental neutron separation energies
18.72 MeV taken with opposite signs [3]. The resulting neu-
tron level scheme εν

(|m j |
)

is shown in Fig. 8a. The param-
eters of the shell model are V0 = 60.3 MeV, r0 = 1.2 fm,
a(WS) = 0.6 fm, κ = 38. The Pauli Exclusion Principle
states that no more than two neutrons with m j = ± |m j | can
occupy each level; there are three occupied levels with quan-
tum numbers m j = ± 1/2,± 3/2,± 1/2. The total neutrons
probability density (and similar for protons) obtained in the
shell model of a deformed nucleus is similar to the oblate total
nucleon distribution for the regular triangle configuration in
the alpha-cluster model.

Fig. 9 The probability density (shades of grey; logarithmic scale in the
range of 7 orders of magnitude) for the excited state 0+

2 (Hoyle state) of
12C in 3α model calculated by the HSF method along with the potential
landscape (level curves, particularly dash-dotted curves for 0.8 MeV,
dashed curves for 1 MeV, white curves for −10 MeV) for the distances
(66) x⊥y (a), for angle θ = π/4 between vectors x, y (b), and for
x ‖ y (c) with the 3D models of some configurations (d). The regular
triangle configuration 1, the linear configuration 2, and the compact
dinuclear configurations 3 (8Be + α-cluster) are the most probable; the
sparse configurations 4 are of very small probability. The arrows show
oscillatory relative motion of α-clusters between the compact regular
triangle configuration 1 and the linear dinuclear configurations 2, 3 near
the top of the multi-dimensional Coulomb barrier. The calculations were
done with the DWS potential with parameters (54), (58) and Uα2 =
61.5 MeV

Examples of the probability density for the excited state
0+

2 (Hoyle state) of 12C calculated by the HSF method along
with the potential landscapes for the total potential energies
are shown in Fig. 9. The potential (Coulomb) barrier sur-
rounds the region of the 12C nucleus; the level curves for 0.8
and 1 MeV are shown in Fig. 9. The height of the barrier
exceeds the positive 3-body energy of the 0+

2 state every-
where, except the narrow ravines for the breakup channel
8Be+4He. The module of the wave function of the quasi-
stationary 0+

2 state is rapidly decreasing function in the
region where the height of the barrier exceeds the energy
of the 0+

2 state (0.4 MeV, for results in Fig. 9). Therefore the
zero boundary condition at a large value ρmax is a reason-
able approximation for calculations using the HSF method.
The 3-body energy depends weakly on the choice of ρmax

at ρmax > 40 fm. Of course, the result for the wave func-
tion will be incorrect in the narrow ravines for the breakup
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Fig. 10 Topography (shades of grey; logarithmic scale) of the propa-
gator K̃E (20), i.e., the probability density for the ground state of the
16O nucleus as a 4α system calculated by the FPI method along with the
potential landscape (curves) for the distances (75) x⊥y, x = and x⊥z
(a), for angle θ = π/4 between vectors x, z (b), and for x ‖ z (c) with
the 3D models of some configurations (d). The tetrahedron configura-
tion 1 is the most probable; the square configuration 2 is of considerably
lower probability; the dinuclear configurations 3, 4 (α + 12C) are even
less probable. The calculations were done for the DWS potential with
parameters (54), (58) and Uα2 from Table 2

channel 8Be+4He, but in the central area of the 12C nucleus
the probability density may be used for studying the spa-
tial structure of the Hoyle state. The probability density is
consistent with the potential landscape, which confirms the
correctness of calculations. For the Hoyle state, there are two
probable separate configurations: regular triangle configura-
tion and linear dinuclear configuration (8Be + α-cluster). The
Hoyle state may correspond to oscillatory relative motion of
α-clusters between the compact regular triangle configura-
tion and the linear dinuclear configuration near the top of the
multi-dimensional Coulomb barrier.

4.4 Spatial structures of the 16O and 24Mg nuclei in 4α and
6α models

For the 16O nucleus (4α system), the physical distances pro-
portional to the normalized Jacobi coordinates are

x = rα2 − rα1 , y = rα4 − rα3 ,

z = 1
2

(
rα4 + rα3

)− 1
2

(
rα2 + rα1

)
.

(75)

Examples of the probability density for the ground state of
the 16O nucleus calculated as a 4-body system by the FPI

Fig. 11 aFive physical distances proportional to the normalized Jacobi
coordinates for the 24Mg nucleus (6α-system) in the case of x⊥y, y⊥s,
x ‖ z, y ‖ t for the shape of a pair of equal regular triangles with
α-clusters in their vertices (b). c The probability density (shades of
grey; logarithmic scale) for this configuration of the ground state of
the 24Mg (6α) nucleus along with the potential landscape (curves). The
calculations were done for the DWS potential with parameters (54),
(58) and Uα2 from Table 2

method for Jacobi vectors x⊥y⊥z are shown in Fig. 10.
An evident result is that the broad maximum of the prob-
ability density corresponds to the tetrahedron configuration
with wide α-cluster clouds in its vertices. This result of the
α-cluster model is similar to the result of the simple shell
model of the 16O nucleus. The square configuration and the
dinuclear configuration (α + 12C) are of considerably lower
probability.

For the 24Mg nucleus (6α system), the physical distances
proportional to the normalized Jacobi coordinates are shown
in Fig. 11a. The probability density distribution for the
ground state is shown in Fig. 11c for the shape of a pair
of equal regular triangles with α-clusters in their vertices
(Fig. 11b). The sides of the triangles are equal to x and the
distance between the centers of the triangles is equal to s.
The probability density is consistent with the potential land-
scape, which confirms the correctness of calculations. The
most probable configuration is a pair of regular triangles.
This configuration may be represented as a combination of
two carbon clusters (3α + 3α).
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Table 5 Parameters of the Afnan–Tang nucleon–nucleon potentials
(76), (77) for triplet p–n and singlet p–n, p–p systems

Potential Vt1 (MeV) Vt2 (MeV) Vt3 (MeV) State, system

S3 [61] 1000.0 −326.7 −43.0 Triplet p–n

S4 [61] 600.0 −70.0 −27.6 Triplet p–n

SX [63] 500.0 −102.0 −2.0 Triplet p–n

S3 [61] 1000.0 −166.0 −23.0 Singlet p–n, p–p

S4 [61] 880.0 −70.0 −21.0 Singlet p–n, p–p

SX [63] 500.0 −102.0 −2.0 Singlet p–n, p–p

Potential βt1 βt2 βt3 State,

(fm−2) (fm−2) (fm−2) System

S3 [61] 3.0 1.05 0.6 Triplet p–n

S4 [61] 5.5 0.5 0.38 Triplet p–n

SX [63] 11.41 0.625 0.141 Triplet p–n

S3 [61] 3.0 0.8 0.40 Singlet p–n, p–p

S4 [61] 5.4 0.64 0.48 Singlet p–n, p–p

SX [63] 4.15 0.625 0.141 Singlet p–n

SX [63] 3.92 0.625 0.141 Singlet p–p

5 Spatial structures of the nuclei 9Be, 10Be, 10,11B,
10,11C in 2α model

5.1 Nucleon–nucleon potentials

The nuclear part of the nucleon–nucleon interaction may be
described by the effective pairwise central soft-core Afnan–
Tang potential [61] for a triplet state

Vt (r) =
3∑

k=1

Vti exp(−βti r
2) (76)

and for a singlet state

Vs(r) =
3∑

k=1

Vsi exp(−βsi r
2). (77)

The values of the parameters of potentials (76), (77)
depend on the total isospin of a two-nucleon system; they
are given in [61] and in Table 5. The proton–neutron triplet
potentials Vt (r) named as S3 and S4 in [61] lead to the value
of the ground state energy for the 2H nucleus, −2.22 MeV.
This result may be easily obtained using the method based on
splines interpolation of the radial wave function (46), (47),
e.g., for n p = 200, Δr = 0.1 fm. Potentials S3 and S4 sat-
isfactorily reproduce the experimental s-wave phase shifts
δ0 [62]. The experimental and calculated s-wave triplet p–n
and singlet p–n, p–p phase shifts are shown in Fig. 12.

The s-wave singlet phase shifts for proton-neutron scat-
tering are satisfactorily reproduced (see Fig. 12b) with the
potential named below as SX; its parameters are given in

Fig. 12 The experimental (dots) [62] and calculated (curves) phase
shifts for s-wave (a) triplet p–n, (b) singlet p–n, and (c) p–p. Curves
are the results obtained with the Afnan–Tang potentials (76), (77) S4
(solid curves), S3 (dashed curves), and the SX potentials used in [63,64]
(dash-dotted curves). The parameters of the potentials are given in Table
5

Table 5. This singlet potential (77) SX was used in [63,64]
for description of neutron-neutron interaction in the nuclei
6,7,9,11Li [63], 6,7,9,10Be [64]. The proton–neutron triplet
potentials Vt (r) SX also lead to the experimental value of
the ground state energy for the 2H nucleus, −2.22 MeV. The
graphs of the potentials S3, S4, and SX are shown in Fig. 13.

The experimental values of the separation energy for the
nuclei 3H and 3He are 8.48 and 7.72 MeV, respectively.
Variational calculations with the effective spin-independent
nucleon-nucleon potential of the form

Ve(r) = 1

2
[Vt (r) + Vs(r)] (78)

lead to the upper bound of the ground-state energy−6.56 MeV
and the ground state energy about −6.7 MeV [61]. Similar
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Fig. 13 The graphs of the Afnan–Tang potentials (76), (77) S4 (solid
curves), S3 (dashed curves), and the potential SX (dash-dotted curves)
for a triplet state of the system p+n, b singlet state of the system p+n,
c singlet state of the system p+ p. The parameters of the potentials are
given in Table 5

results were obtained in several works using different meth-
ods: −6.68 MeV [44], −6.6953 MeV [65], −6.64 MeV [66],
−6.69 MeV [67]. The results of the HSF calculations for the
effective nucleon–nucleon potential (78) and the potential
energy of the 3-body system p + n + n

Vp,n,n = Ve
(∣∣rn2 − rn1

∣∣)

+Ve
(∣∣rp − rn1

∣∣)+ Ve
(∣∣rp − rn2

∣∣) (79)

are given in Table 6. The ground state energy for spin-
independent potential energy Vp,n,n (79) is about −6.7 MeV
as in the above-mentioned Refs.

In the model with spin-dependent potentials the potential
energy of the 3-body system 3H (p + n + n) may be repre-
sented as

Table 6 The results of calculations of energy (MeV) for the ground
states of the 3H nucleus within the HSF method with spline interpolation
for S3 potentials (76), (77) with parameters from Table 5 and different
numbers of hyperradial equations with mesh parameters Δρ = 0.1 fm,
ρmax=15 fm for spin-independent potential energyVp,n,n (79) andΔρ =
0.2 fm, ρmax=20 fm for spin-dependent potential energyVp,n,n (80)

lxmax nmax for Vp,n,n (79) for Vp,n,n (80)

2 6 −5.4008 −4.4975

4 8 −6.3075 −5.2699

6 10 −6.5626 −5.5279

8 12 −6.6408 −5.6277

10 14 −6.6655 −5.70

Table 7 The results of calculations of the ground state energy (MeV) of
the 3H and 3He nuclei for spin-dependent potential energies within the
HSF method with spline interpolation for SX potentials (76), (77) with
parameters from Table 5 and different numbers of hyperradial equations
with mesh parameters Δρ = 0.1 fm, ρmax=15 fm

lxmax nmax
3H 3He

2 6 −8.0848 −7.3506

4 8 −8.3504 −7.6143

6 10 −8.4301 −7.6946

8 12 −8.4581 −7.7233

10 14 −8.4692 −7.7348

Vp,n,n = V (n,n)
s

(∣∣rn2 − rn1

∣∣)

+V (p,n)
s

(∣∣rp − rn1

∣∣)+ V (p,n)
t

(∣∣rp − rn2

∣∣) .
(80)

The potential energy of the 3-body system 3He (p + n + p)
may be represented in a similar form with addition of the
Coulomb repulsion for protons. The results of calculations of
the ground state energy of the 3H nucleus for spin-dependent
potential energy Vp,n,n (80) are given in Table 6 for the S3
potentials and in Table 7 for the SX potentials. The results
of similar calculations of the ground state energy of the 3He
nucleus for the SX potentials are given in Table 7. The results
for the SX potentials coincide with the experimental values.

The probability density for the 3H nucleus is shown in Fig.
14. We used the set of the physical distances proportional to
the normalized Jacobi coordinates (24), (25):

x = rp − rn1, y = rn2 − 1

2

(
rn1 + rp

)
, (81)

where the masses of protons and neutrons are considered to
be equal because the difference between them is small. The
narrow maximum of the probability density corresponds to
an isosceles triangle with wide nucleons clouds in its ver-
tices. The space structure of the 3H nucleus is similar to a
compressed deuteron cluster in the cloud of the second neu-
tron.
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Fig. 14 The probability density (shades of grey; logarithmic scale) for
the ground state of the 3H nucleus along with the potential landscape
(curves) for x⊥y. The calculations were done for the spin-dependent
potential energy (80) within the HSF method with spline interpolation
for SX potentials (76), (77) with parameters from Table 5

Just as for Nα systems, the ground state energy may closer
to the experimental value if a repulsive core of the effective
pairwise potential is decreased in comparison with the poten-
tial used for description of particle scattering. Below we use
the potentials SX and DWS with parameters (56), (57) to
calculate of the ground state energies for the nuclei 10Be,
10,11B, 10,11C.

5.2 α-Nucleon potentials and spatial structure of the 9Be
nucleus

The need of modification of pairwise potentials for N -body
systems leads to using effective α-nucleon pseudopotentials
Vα−n and Vα−p in calculations. The pseudopotentials do not
take into account the data on phase shifts (e.g., [68]), but
their forms are similar to α–α and nucleon–nucleon poten-
tials. The parameters of the pseudopotentials were deter-
mined from the condition of equality of the calculated and
experimental values of the ground state energies for systems
α-cluster + nucleons, in particular, for the nuclei: 6He [48],
6,7Li [63], 6,7Be [64].

For α-cluster nuclei with two or three outer nucleons
the parameters of α-nucleon pseudopotentials depend on the
choice of the form and the parameters of nucleon–nucleon
potentials. In [63,64], this pseudopotential was chosen as a
combination

Vα−N (r) = −U1 f (r; B1, a1) +U2 f (r; B2, a2)

−U3 f (r; B3, a3) f (r; B4, a4).
(82)

A similar form with only two first terms of the α-nucleon
interaction was used in [23] for calculations of the 6Li
nucleus. The values of the parameters of α-nucleon pseu-
dopotential (82) are given in Table 8 [63,64]. The pseudopo-
tential Vα−p(r) includes the Coulomb interaction approxi-
mated as the interaction of a point charge with a uniformly

Table 8 Parameters of α-nucleon pseudopotential (82)

i Ui Ui Bi ai
(MeV) (MeV) (fm) (fm)
(i) (ii)

1 64.8 64.8 1.95 0.25

2 55.8 55.8 1.22 0.3

3 126.0 107.13 0.9 0.5

4 2.7 1.

Fig. 15 The graphs of pseudopotentials (82) with parameters from
Table 8 (with value (i) ofU3): Vα−n(r) (solid line) and Vα−p(r) (dashed
line)

charged sphere. The graphs of the pseudopotentials Vα−n(r),
Vα−p(r) are shown in Fig. 15. Expression (82) has the mean-
ing of a pseudopotential of strong interaction between an
α-cluster and a neutron or a proton, similar to the pseudopo-
tential [69] used in metal physics to describe the interac-
tion between external electrons (from the conduction band)
and atomic cores. The second term in (82) is positive due to
the presence of repulsive cores in the potentials of nucleon–
nucleon interaction and as consequence of the Pauli Exclu-
sion Principle. The energy of the ground state in the core-
nucleon system is close to that of the uppermost occupied
level in the nuclear shell model. In this case, the nucleon
states of the nuclear core corresponding to underlying levels
(1s, in spherical shell model) are excluded (forbidden).

The α-nucleon pseudopotentials, independent from the
choice of nucleon–nucleon potentials, may be determined
by studying the simplest stable α-cluster nucleus with only
one outer neutron, that is the 9Be nucleus (the 5He nucleus is
unstable). In the calculations of the 9Be nucleus we used α–α

potentials (52) with parameters (54), (55) corresponding to
interaction of the scattering α-particles, because polarization
and shell effects in the 9Be nucleus are less important than in
the 12C nucleus. For the 9Be (α+α+n) nucleus, the physical
distances proportional to the normalized Jacobi coordinates
(24), (25) are
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Table 9 The results of calculations of the ground state energy (MeV)
for 9Be nucleus (2α + n system) within the HSF method with spline
interpolation for DWS α–α potential (54), (55) together with α-neutron
pseudopotentials (82) with parameters from Table 8 (with value (ii)
of U3) and for different numbers of hyperradial equations with mesh
parameters Δρ = 0.2 fm, ρmax=20 fm

lxmax nmax Es,calc lxmax nmax Es,calc

2 2 −0.83556 6 8 −1.54727

4 4 −1.36632 6 10 −1.55502

6 6 −1.51832 6 12 −1.55769

8 8 −1.55780 6 14 −1.55853

10 10 −1.56902 6 16 −1.55882

12 12 −1.57259 6 18 −1.55894

14 14 −1.57377 6 20 −1.55899

x = rα2 − rα1 , y = rn − 1

2

(
rα2 + rα1

)
. (83)

For calculations of the 3-body system (2α + n), we used
the precise HSF method and the FPI method to estimate its
uncertainties. The separation energy for the 9Be(2α + n)
nucleus is Es,exp =1.572 MeV [3]. The results of calcula-
tions of the energy of the ground state for the system (2α+n),
E0 ≈ −Es,exp, for the parameters from Table 8 (with value
(ii) of U3) are given in Table 9. α-nucleon pseudopotentials
(82) with two values of the parameter U3 = 126 MeV and
U3 = 107.13 MeV are similar.

The results of calculations of the propagator b0
−1 ln K̃E

for pseudopotentials (82) with U3 = 107.13 MeV are shown
in Fig. 16a. The result of calculations of the ground state
energy using the FPI method, E0 ≈ 0.53± 0.1 MeV, is rather
different from the exact value because it is near the continuum
spectrum. In this case, the propagator KE(q, τ ;q, 0) may be
represented in the following asymptotic form:

KE (q, τ ;q, 0) → |ψ0(q)|2 exp
(
− E0τ

h̄

)

+ |Φ(q)|2 + · · · , τ → ∞,
(84)

where |Φ(q)|2 is a sum of the contributions of continuum
spectrum states with E ≈ 0. The approximate probability
density of the ground state |ψ0(q)|2 may be calculated as the
difference

KE (q, τ2;q, 0) − KE (q, τ1;q, 0)

≈ |ψ0(q)|2 exp
(
− E0(τ2−τ1)

h̄

)
.

(85)

The examples of the propagators K̃E for two values of τ ,
τ̃ = 30, τ̃ = 45, and difference (85) are shown in Fig. 16b–
d. The approximate probability density of the ground state
corresponds to the distribution in Fig. 16d. The distributions
in Fig. 16b, c correspond to the excited breakup (or collision)
states 4He + 5He.

Fig. 16 a Dependence of the normalized logarithm of propagator K̃E
(23) on imaginary time τ for the 9Be nucleus. The propagators K̃E
(shades of grey; logarithmic scale) along with the potential landscape
(curves) in the case of the distances (83) x ‖ y for two values of τ :
τ̃ = 30 (b), τ̃ = 45 (c), and difference (85) (d). Calculations by the
FPI method were made for DWS α–α potential (54), (55) together
with α-neutron pseudopotentials (82) with parameters from Table 8
(U3 = 107.13 MeV). e The examples of the positions of a neutron
(small sphere) and α-clusters (large spheres). Configuration 1 is the
most probable and corresponds to the ground state; configurations 2
and 3 correspond to the excited breakup (or collision) states 4He + 5He

The examples of the probability density for the ground
state of the 9Be nucleus calculated as a 3-body system 2α+n
by the HSF method with cubic spline interpolation are shown
in Fig. 17. The narrow maximum of the probability density
and K̃E in Figs. 16d and 17a, b correspond to the most
probable configuration with a valence neutron between α-
clusters (α+n+α) in the ground state of the 9Be nucleus. We
note that for the linear configuration x ‖ y, HSF dispersion
(30) for the wave function has very slow convergense at θ = 0
because Pl(1) = 1.

Below we use α-nucleon pseudopotential (82) with
parameters from Table 8 (with value (i) ofU3) and the poten-
tials SX and DWS with parameters (56), (57) to calculate the
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Fig. 17 The probability density (shades of grey; logarithmic scale) for
the ground state of the 9Be nucleus as a 2α + n system along with the
potential landscape (curves) in the case of the distances (83) x⊥y (a) and
x ‖ y (b) calculated by the HSF method for DWS α-α potential (54),
(55) together with α-neutron pseudopotentials (82) with parameters
from Table 8 (U3 = 107.13 MeV)

ground state energies and to study the spatial structures for
the nuclei 10Be, 10,11B, 10,11C.

5.3 Spatial structures of the nuclei 10Be, 10B, 10C as
4-body systems

The experimental Es,exp and calculated (using the FPI
method) Es,calc = −E0 values of energy of separation of
the nuclei 10Be, 10,11B, 10,11C into α-clusters, nucleons, and
light nuclei are given in Table 10.

The results of calculations of the propagator b0
−1 ln K̃E

are presented in Fig. 18. The distribution of the probabil-
ity density for four-body configurations of 10Be (2α + 2n)
was studied in [48,64]. The configuration α + 2n + α

with the closely located valence neutrons (dineutron cluster
n2) between α-clusters is the most probable. The dinuclear
configuration α+6He is less probable. For the 10C nucleus
(α + 2p + α system), the physical distances proportional to
the normalized Jacobi coordinates are similar to those for the
10Be nucleus:

x = rα2 − rα1 , y = rp2 − rp1 ,

z = 1
2

(
rp1 + rp2

)− 1
2

(
rα2 + rα1

)
.

(86)

Table 10 The experimental Es,exp and calculated Es,calc = −E0 values
of energy (MeV) of separation of nuclei into α-clusters, nucleons, and
light nuclei

Nuclei Es,exp Es,calc Method

10Be (2α + 2n) 8.380 8.48±0.12 FPI
10B (2α + n + p) 8.159 8.28±0.20 FPI
10B (α+ 6Li) 4.461 3.41±0.30 FPI
10C (2α + 2p) 3.728 2.67±0.15 FPI
10C (α+ 6Be) −0.03 −0.2 ± 0.13 FPI
11B (2α + 2n + p) 19.613 19.34±0.80 FPI
11C (2α + n + 2p) 16.848 16.51±0.80 FPI

Fig. 18 Dependence of the normalized logarithm of the propagator
K̃E (23) on imaginary time τ for nuclei consisting of α-clusters and
nucleons: (a) 10Be (2α +2n), 10B (2α +n+ p), 10C (2α +2p); (b) 11B
(2α + 2n+ p), 11C (2α + n+ 2p); (c) 12C (3α), 16O (4α). The straight
lines are the results of linear regression applied to the linear intervals
of the graphs

For the 10B nucleus (α + p + n + α system), the similar
physical distances are

x = rα2 − rα1 , y = rp − rn,

z = 1
2

(
rp + rn

)− 1
2

(
rα2 + rα1

)
,

(87)

where the masses of protons and neutrons are considered to
be equal. The triplet potential Vt (r) was used to describe
the interaction between a proton and a neutron in the 10B
nucleus.

Expression (20) is an explicit form of the square modulus
of the coordinate wave function depending on the potential
energy of the system. Therefore, calculations of the proba-
bility density using formula
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|Ψ0(x, y, z)|2 ≈ K̃E (x, y, z, τ ; x, y, z, 0) (88)

yield unnormalized coordinate wave function

Ψ0(x, y, z) ≈
√
K̃E (x, y, z, τ ; x, y, z, 0) (89)

which is symmetric with respect to permutation of α-clusters
for the nuclei 10B, 10C. The coordinate wave function (89) is
symmetric with respect to permutation of two protons with
the total spin S = 0 for the 10C nucleus.

The examples of the probability density distributions for
four-body configurations of 10C (2α + 2p) are shown in
Fig. 19. The value of KE is the combination (4) for the
probability density |Ψ0(x, y, z)|2 of the ground state and
|Ψ1(x, y, z)|2 for the first exited state of the system (2α+2p).
Narrow maximum 1 of K̃E in Fig. 19a and the most probable
configuration 1 with valence protons (diproton cluster p2)
between α-clusters (α + p2 + α) correspond to the ground
state of the 10C nucleus. Regions 2 and 3 correspond to con-
figurations 2 and 3 of the ground state with larger distances
between particles in the system. Maxima 4 and 6 in Fig.
19b and configurations 4 and 6 may correspond to the first
exited state with oscillatory relative motion of the α-cluster
and 6Be between the central repulsive core and the top of the
Coulomb barrier. The ground state partially corresponds to
broad maximum 4 in Fig. 19b.

The examples of the probability density distribution for
four-body configurations of 10B (2α + p + n) are shown in
Fig. 20; they are similar to the distributions for 10C (2α+2p).
Narrow maximum 1 of K̃E in Fig. 20a and the most probable
configuration 1 with a valence neutron and proton (deuteron
cluster d) between α-clusters (α + d + α) correspond to the
ground state of the 10B nucleus. The spread of the probability
density distribution for the 10B nucleus is less than for the 10C
nucleus because the energy of its separation into α-clusters
and nucleons is greater than that for 10C.

The comparison of dependence of the propagator
K̃E (x, y, z, τ ; x, y, z, 0) on τ̃ = τ/t0 near maxima for short
and long distances between α-particles (clusters) in the nuclei
10B and 10C is shown in Fig. 21. The energies of excited states
determined via linear regression on linear segments are given
in Table 10. They are close to the experimental values of
energies of nucleus separation: 10B → 4He + 6Li and 10C →
4He + 6Be, respectively (see, e.g., [3]). The topography of the
propagator K̃E (x, y, z; τ̃ ) in Jacobi coordinates x⊥y, z ‖ x
for large distances between the centers of mass of α-particles
and nucleons z = 7 fm shown in Fig. 22 allows us to find
the probability densities |Ψn|2 for individual excited states
of the system (2α + p + n). The local maxima correspond
to decay of the system into the deuteron and the 8Be nucleus
(configuration 1), 4He and 6Li nuclei (configurations 2 and
3). Extended region 4 corresponds to decay of the system
into two 4He nuclei and the deuteron.

Fig. 19 Topography (logarithmic scale) of the propagator K̃E (20) for
the 10C (2α+2p) nucleus at τ/t0 = 12 in the distances (86) x⊥y, z = 0
(a) and x⊥y, z ‖ x, z =2.5 fm (b) with the examples of the positions of
protons (small spheres) and α-clusters (large spheres). Configuration 1
is the most probable and corresponds to the ground state; configurations
4 and 6 may correspond to the first exited state with oscillatory relative
motion (along the arrow) of the α-cluster and the 6Be nucleus between
the central repulsive core and the top of the Coulomb barrier

5.4 Spatial structures of the nuclei 11B, 11C as 5-body
systems

For the 11B nucleus (α + 2n + p + α system), the physical
distances proportional to the normalized Jacobi coordinates
are (see Fig. 23)
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Fig. 20 Topography (logarithmic scale) of the propagator K̃E (20) for
the 10B (2α+ p+n) nucleus at τ/t0 =12 in the distances (87) x⊥y, z =
0 (a) and x⊥y, z ‖ x, z =2.5 fm (b) with the examples of the positions of
nucleons (small spheres) and α-clusters (large spheres). Configuration 1
is the most probable and corresponds to the ground state; configurations
4 and 6 may correspond to the first exited state with oscillatory relative
motion (along the arrow) of the α-cluster and the 6Li nucleus between
the central repulsive core and the top of the Coulomb barrier

Fig. 21 The normalized logarithm of the propagator as a function of
imaginary time for 10C (a) and 10B (b) in the vicinity of the maxima
corresponding to the ground states 1 (circles) and to the excited states
6 (squares) in Figs. 19, 20. The lines are the result of linear regression
applied to the linear parts of the plots

Fig. 22 Topography (logarithmic scale) of the propagator K̃E (20) at
τ/t0 =12 in the distances (87) x⊥y, z ‖ x, z =7 fm for a individual
excited states of the system (2α+ p+n) with b examples of the positions
of nucleons (small spheres) and α-particles (large spheres). Configura-
tion 1 corresponds to separation of the system into the deuteron and the
8Be nucleus; configurations 2 and 3 correspond to separation into 4He
and 6Li nuclei; configuration 4 corresponds to separation into two 4He
nuclei and the deuteron
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Fig. 23 The physical distances
proportional to the normalized
Jacobi coordinates (24), (25) for
the 11B nucleus (α + 2n + p+ α

system) along with the positions
of nucleons (small spheres) and
α-clusters (large spheres)

x = rα2 − rα1 , y = rn2 − rn1,

z = rp − 1
2

(
rn2 + rn1

)
,

s = 1
2

(
rn1 + rn2 + rp

)− 1
2

(
rα2 + rα1

)
.

(90)

The potential energy for the 11B nucleus

V11B = V (N)
p,n,n + Vp−α(|rp − rα1 |) + Vp−α(|rp − rα2 |)

+Vn−α(|rn1 − rα1 |) + Vn−α(|rn1 − rα2 |)
+Vn−α(|rn2 − rα1 |) + Vn−α(|rn2 − rα2 |)
+Vα2−α1(|rα2 − rα1 |)

(91)

includes nucleon–nucleon part (80). The examples of the
probability density distribution for five-body configurations
of 11B (2α+ p+2n) are shown in Fig. 24; they are similar to
the distributions for 11C (2α + n+ 2p). Narrow maximum 1
of K̃E in Fig. 24c and the most probable configuration 1 with
valence neutrons and a proton (triton cluster t in the form of
a regular triangle) between α-clusters (α+ t+α) correspond
to the ground state of the 11B nucleus. Similar to the config-
uration of 11B, a valence neutron and protons (3He-cluster)
between α-clusters (α + 3He+α) correspond to the ground
state of the 11C nucleus.

6 Conclusion

Calculations of the probability densities of the ground states
for α-cluster nuclei 12C(3α), 16O (4α), 20Ne (5α), 24Mg (6α),
28Si (7α) were performed by the Feynman Path Integral (FPI)
method. The Hyperspherical Functions (HSF) method with
cubic spline interpolation was used to calculate the ground
state and the Hoyle state of the 12C nucleus. It was shown that
the structure of the Hoyle state corresponds to oscillations of
α-clusters between the most probable compact regular trian-
gle configuration and the linear dinuclear configuration near
the top of the multi-dimensional Coulomb barrier. The spatial
structures of the ground states of 12C and 16O correspond to
simple geometric shapes, a regular triangle and a tetrahedron,
respectively, with wide α-cluster clouds in their vertices. The
24Mg nucleus has the shape of a pair of equal regular tri-
angles with wide α-cluster clouds in their vertices as well.
These results of the α-cluster model are similar to the results
of the simple shell model of compact nuclei. The structures

Fig. 24 Topography (logarithmic scale) of the propagator K̃E (20),
which is approximately equal to the probability density |Ψ0(x, y, z)|2
of the ground state of the 11B (2α + p + 2n) nucleus, at τ/t0 =10
for the distances (90) x⊥y⊥z, z ‖ s, z = y

√
3/2, s = 3 (a), s =2 fm

(b), s =0 fm (c) with the examples of the positions of nucleons (small
spheres) and α-clusters (large spheres) (d). Configuration 1 with valence
neutrons and a proton (triton cluster t in the form of a regular triangle)
between α-clusters (α + t + α) corresponds to the ground state of the
11B nucleus; configurations 2, 3, and 4 are less probable

of the nuclei 10Be, 10B, 10C, 11B, 11C were studied using
the FPI method. These nuclei have molecular structure with
valence neutrons and/or protons between two α-clusters. The
used pairwise α-α, α-nucleon, and nucleon-nucleon poten-
tials reproduced the experimental binding energies of N -
body system rather than data on 2-body elastic scatterng.

It must be admitted that the FPI method has limited capa-
bilities: it provides the possibility of calculating the energies
and the probability densities only for the ground states of
few-body systems. However, in some cases, the FPI method
may be applied to studying the excited states with the dis-
tribution of the probability density not overlapping with that
for the ground state. This method may be useful in the cases
when the use of more exact methods is very laborious, par-
ticularly, for the systems with the number of particles more
than four and for realistic potentials with repulsive cores.

Acknowledgements The author thanks the HybriLIT team for the
technical support of parallel calculations on the Heterogeneous Cluster
of the Joint Institute for Nuclear Research and Dr. M.A. Naumenko for
assistance in the development of software for parallel calculations.

123



  117 Page 22 of 23 Eur. Phys. J. A           (2022) 58:117 

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data.]

A Simulating a random vector with the
multidimensional Gaussian distribution

A standard algorithm for simulating a random vector Q dis-
tributed according to (12) consists in sequential generation
of the values of its components from the conditional distribu-
tionsW1 (q1|q0),W2 (q2|q0, q1), . . .,WN−1(qN−1|q0, q1, q2,

. . . , qN−2), where

W = Wk (qk |q0, q1, q2, . . . , qk−1) (92)

is the probability density for the values of qk for the given
values of q0, q1, q2, . . . , qk−1. The one-dimensional distri-
bution for k = 1,

W1 (q1|q0) = ∫ dq2 . . .
∫
dqN−1W

= 1√
2πσ1

exp
{
− 1

2σ1

[
(q1 − q0)

2]
}

,
(93)

is a normal distribution with expectation

Mq1 = q0 (94)

and variance

σ1 = Δτ h̄

m

(
1 − 1

N

)
. (95)

The two-dimensional distribution for k = 2 is the product of
the normal distributions for q1 and q2,
∫

dq3 . . .

∫
dqN−1W = W2 (q2|q0, q1)W1 (q1|q0) , (96)

where

W2 (q2|q0, q1) = 1√
2πσ2

exp

{
− 1

2σ2

[
(q2 − Mq2)

2
]}

,

(97)

Mq2 =
(

1 − 1

N − 1

)
q1 + 1

N − 1
q0, (98)

σ2 = Δτ h̄

m

(
1 − 1

N − 1

)
. (99)

In general, the distribution Wk (qk |q0, qk−1) is also a normal
distribution with expectation

Mqk = (1 − Ak) qk−1 + Akq0, Ak = 1

N − k + 1
(100)

and variance

σk = Δτ h̄

m
(1 − Ak) . (101)

When simulating a trajectory, the next random value qk is
calculated by the formula:

qk = Mqk + ζkΔqk, k = 1, N − 1, (102)

where Δqk = √
σk is the root-mean-square deviation and ζk

is a normally distributed random variable with zero expecta-
tion and a unity variance.
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Nucl. Sci. Technol. World 5, 265 (2015)

17. M.V. Zhukov, L.V. Chulkov, B.V. Danilin, A.A. Korsheninnikov,
Nucl. Phys. A 533, 428 (1991)

18. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thomp-
son, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

19. B.V. Danilin, I.J. Thompson, J.S. Vaagen, M.V. Zhukov, Nucl.
Phys. A 632, 383 (1998)

20. I.J. Thompson, B.V. Danilin, V.D. Efros, J.S. Vaagen, J.M. Bang,
M.V. Zhukov, Phys. Rev. C 61, 024318 (2000)

21. Yu. Ts. Oganessian, V.I. Zagrebaev, J.S. Vaagen, Phys. Rev. C 60,
044605 (1999)

22. K.-I. Kubo, M. Hirata, Nucl. Phys. A 187, 186 (1972)
23. J. Bang, C. Gignoux, Nucl. Phys. A 313, 119 (1979)
24. V.I. Kukulin, V.M. Krasnopol’sky, V.T. Voronchev, P.B. Sazonov,

Nucl. Phys. A 417, 128 (1984)
25. A. Diaz-Torres, I.J. Thompson, C. Beck, Phys. Rev. C 68, 044607

(2003)
26. C. Beck, N. Keeley, A. Diaz-Torres, Phys. Rev. C75, 054605 (2007)
27. R.P. Feynman, A.R. Hibbs,QuantumMechanics andPath Integrals

(McGraw-Hill, New York, 1965)
28. P. Descouvemont, C. Daniel, D. Baye, Phys. Rev. C 67, 044309

(2003)
29. E.M. Tursunov, J. Phys. G Nucl. Part. Phys. 27, 1381 (2001)

123

http://nrv.jinr.ru/
http://nrv.jinr.ru/
http://cdfe.sinp.msu.ru/services/radchart/radmain.html
http://cdfe.sinp.msu.ru/services/radchart/radmain.html


Eur. Phys. J. A           (2022) 58:117 Page 23 of 23   117 

30. E.M. Tursunov, D. Baye, P. Descouvemont, Nucl. Phys. A 723, 365
(2003)

31. V.I. Kukulin, V.M. Krasnopol’sky, M.A. Miselkhi, V.T. Voronchev,
Sov. J. Nucl. Phys. 34, 11 (1981)

32. E.M. Tursunov, K.D. Razikov, V.I. Kukulin, V.T. Voronchev, V.N.
Pomerantsev, Phys. Atom. Nucl. 57, 2075 (1994)

33. Y. Suzuki, M. Takahashi, Phys. Rev. C 65, 064318 (2002)
34. M. Hesse, D. Baye, J. Phys. B 32, 5605 (1999)
35. M. Hesse, Phys. Rev. E 65, 046703 (2002)
36. H. Suno, Y. Suzuki, P. Descouvemont, Phys. Rev. C 91, 014004

(2015)
37. H. Suno, Y. Suzuki, P. Descouvemont, Phys. Rev. C 94, 054607

(2016)
38. D.V. Fedorov, A.S. Jensen, Phys. Lett. B 389, 631 (1996)
39. A. Cobis, D.V. Fedorov, A.S. Jensen, Phys. Rev. Lett. 79, 2411

(1997)
40. N. Barnea, M. Viviani, Phys. Rev. C 61, 034003 (2001)
41. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87,

192501 (2001)
42. Y. Kanada-En’yo, H. Horiuchi, A. Ono, Phys. Rev. C52, 628 (1995)
43. Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 52, 647 (1995)
44. N.K. Timofeyuk, Phys. Rev. C 78, 054314 (2008)
45. A.A. Slavnov, L.D. Faddeev, Gauge Fields: An Introduction to

Quantum Theory (Westview Press, Boulder, CO, 1993)
46. E.V. Shuryak, O.V. Zhirov, Nucl. Phys. B 242, 393 (1984)
47. D.I. Blokhintsev, Principles of Quantum Mechanics (Allyn and

Bacon, Boston, 1964)
48. V.V. Samarin, M.A. Naumenko, Phys. Atom. Nucl. 80, 877 (2017)
49. M.A. Naumenko, V.V. Samarin, Supercomp. Front. Innov. 3, 80

(2016)
50. NVIDIA CUDA, http://developer.nvidia.com/cuda-zone/

51. J. Sanders, E. Kandrot, CUDA by Example: An Introduction
to General-Purpose GPU Programming (Addison-Wesley, New
York, 2011)

52. Heterogeneous Cluster, Joint Institute for Nuclear Research, http://
hybrilit.jinr.ru/

53. G.I. Marchuk, Methods of Numerical Mathematics (Springer-
Verlag, New York, 1982)

54. V.V. Samarin, M.A. Naumenko, IL Nuovo Cimento 42C, 130
(2019)

55. S. Ali, A.R. Bodmer, Nucl. Phys. 80, 99 (1966)
56. V.V. Samarin, J. Phys. Conf. Ser. 1555, 012030 (2020)
57. V.V. Samarin, Bull. Russ. Acad. Sci. Phys. 76, 866 (2012)
58. W.J. Vermeer, M.T. Esat, J.A. Kuehner, R.H. Spear, A.M. Baxter,

S. Hinds, Phys. Lett. B 122, 23 (1983)
59. V.I. Zagrebaev, V.V. Samarin, Phys. Atom. Nucl. 67, 1462 (2004)
60. V.V. Samarin, Phys. Atom. Nucl. 78, 128 (2015)
61. I.R. Afnan, Y.C. Tang, Phys. Rev. 175, 1337 (1968)
62. R.A. Arndt, R.H. Hackman, L.D. Roper, Phys. Rev. C 15, 1002

(1977)
63. V.V. Samarin, M.A. Naumenko, Bull. Russ. Acad. Sci. Phys. 83,

411 (2019)
64. V.V. Samarin, Bull. Russ. Acad. Sci. Phys. 84, 981 (2020)
65. G. Erens, J.L. Visschers, R. van Wageningen, Ann. Phys. (NY) 67,

461 (1971)
66. T.K. Das, H.T. Coelho, M. Fabre de la Ripelle, Phys. Rev. C 26,

2281 (1982)
67. W. Oehm, S.A. Sofianos, H. Fiedeldey, M. Fabre de la Ripelle,

Phys. Rev. C 42, 2322 (1990)
68. H. Kanada, T. Kaneko, S. Nagata, M. Nomoto, Prog. Theor. Phys.

61, 1327 (1979)
69. W.A. Harrison, Pseudopotentials in the Theory of Metals (W.A.

Benjamin, New York, 1966)

123

http://developer.nvidia.com/cuda-zone/
http://hybrilit.jinr.ru/
http://hybrilit.jinr.ru/

	Study of spatial structures in α-cluster nuclei
	Abstract 
	1 Introduction
	2 Feynman path integral method
	3 Hyperspherical functions method
	4 α-Cluster nuclei 12C, 16O, 20Ne, 24Mg, 28Si 
	4.1 Pairwise potentials and energies of the ground states for Nα systems
	4.2 2α System in self-consistent molecular orbit model 
	4.3 Spatial structure of the 12C nucleus in 3α model 
	4.4 Spatial structures of the 16O and 24Mg nuclei in 4α and 6α models

	5 Spatial structures of the nuclei 9Be, 10Be, 10,11B, 10,11C in 2α model 
	5.1  Nucleon–nucleon potentials
	5.2 α-Nucleon potentials and spatial structure of the 9Be nucleus 
	5.3 Spatial structures of the nuclei 10Be, 10B, 10C as 4-body systems
	5.4 Spatial structures of the nuclei 11B, 11C as 5-body systems

	6 Conclusion
	Acknowledgements
	A Simulating a random vector with the multidimensional Gaussian distribution
	References




