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Introduction

Nuclear power plants usually used to determine properties of
neutrinos. Nuclear reactor experiments could be divided by
the oscillation base, distance between the nuclear core and
the detector of νe. The short baseline (SB) experiments have
oscillation base less then 100 m to be insensitive to neutrino
oscillation effect.
In this work impact of the detector and reactor sizes is studied
in a case of searching for sterile neutrinos parameters.

Neutrino oscillation

•Neutrino flavor eigenstates are
a superposition of mass eigen-
states.

•Neutrino mixing can be param-
eterized by the PMNS matrix.

•Commonly, neutrino oscillation
is parameterized by three-
neutrino mixing.
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•An additional state (sterile) that does not interact through
weak interaction but it could mix with active states.
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Usually, the reactor and detector considered to be point-based.
However, sterile oscillation changes rapidly on small distance
from reactor for the large values of ∆m2

41.
Gauss-Hermitian (GH) quadrature is used for the nu-
merical averaging of fast oscillation. Two figures above
demonstrate the distance distribution (distance passed by
νe between reactor and detector) and integration of it.
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Model

The following model was used in this study:

•The reactor has H = 4 m, R = 2 m, the detector is sphere
which R = 1 m;

•Energy resolution σ = 17%;

•Working time of the detector is 1 year;

•Nominal thermal power of reactor is 3 GW.

Gaussian CLs

CLs method [1] was used to pro-
duce sensitivity region:

•H0 : sin
2 2θ14 = 0, 3ν mixing

•H1 : sin
2 2θ14 ̸= 0, 4ν mixing

•∆χ2 = χ2
H1

− χ2
H0

•CLs =
CLs+b

CLb

•Exclusion rule: CLs < α
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Could be speed up with Gaussian approximation [2].

Results

Two oscillation bases were
used: 15 m and 30 m.

•A closer detector to the
reactor has a greater sen-
sitivity to the large values
of ∆m2

41;

•Taking into account sizes
of the reactor and the de-
tector decreases sensitiv-
ity to the large ∆m2
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Observations for 15 m and 30 m and their ratio are demon-
strated bellow (detector is non-point)
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