

FAST NEUTRINO OSCILLATION IN SB REACTOR ANTINEUTRINO EXPERIMENTS

Vitalii Zavadskyi (zavadskyi@jinr.ru) Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems

 m^2

 ν_3

 ν_2

 ν_1

 Δm^2_{21}

Introduction

•Neutrino flavor eigenstates are a superposition of mass eigenstates. Δm^2_{32} Δm^2_{41} 41 $\begin{array}{|c|c|c|c|c|}\n\hline\n41 & 110 \\
44 & 24\n\end{array}$

Nuclear power plants usually used to determine properties of neutrinos. Nuclear reactor experiments could be divided by the oscillation base, distance between the nuclear core and the detector of $\overline{\nu}_e$. The short baseline (SB) experiments have oscillation base less then 100 m to be insensitive to neutrino oscillation effect.

In this work impact of the detector and reactor sizes is studied in a case of searching for sterile neutrinos parameters.

Usually, the reactor and detector considered to be point-based. However, sterile oscillation changes rapidly on small distance from reactor for the large values of Δm^2_{41} .

Neutrino oscillation

- •Neutrino mixing can be parameterized by the PMNS matrix.
- Commonly, neutrino oscillation is parameterized by threeneutrino mixing. $\overline{\nu_e}$ $\overline{\nu_\mu}$ $\overline{\nu_\tau}$ $\overline{\nu_s}$
- An additional state (sterile) that does not interact through weak interaction but it could mix with active states.

 CL_s method [1] was used to produce sensitivity region:

• H_0 : $\sin^2 2\theta_{14} = 0$, 3ν mixing • H_1 : $\sin^2 2\theta_{14} \neq 0$, 4ν mixing • $\Delta \chi^2 = \chi^2_{H_1} - \chi^2_{H_2}$ H_0 \bullet $CL_{s} = \frac{\mathrm{CL}_{s+b}}{\mathrm{CL}_{b}}$ CL_b

$$
P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\alpha}) = 1 - 4 \sum_{k < j}^{N_{\nu}} |U_{\alpha j}|^2 |U_{\alpha k}|^2 \exp\left(-i \frac{\Delta m_{jk}^2}{4E} L\right)
$$

Vertex Distribution

• Exclusion rule: $CL_s < \alpha$ CL_{s+b} CL_{b} Could be speed up with Gaussian approximation [2].

- •A closer detector to the reactor has a greater sensitivity to the large values of Δm^2_{41} ;
- Taking into account sizes of the reactor and the detector decreases sensitivity to the large Δm_{41}^2 .

Gauss-Hermitian (GH) quadrature is used for the numerical averaging of fast oscillation. Two figures above demonstrate the distance distribution (distance passed by

Great thanks to the dag-flow development References team (git.jinr.ru/dag-computing), whose framework was used for modeling, and Maxim Gonchar especially for a fruitful discussion. [1] *J. Phys. G* **28** (2002) 2693-2704. [2] NIM-A 827 (2016) 63- 78.

Model

The following model was used in this study:

- The reactor has $H = 4$ m, $R = 2$ m, the detector is sphere which $R = 1$ m;
- Energy resolution $\sigma = 17\%$;
- Working time of the detector is 1 year;
- Nominal thermal power of reactor is 3 GW.

Gaussian CL_s

 $\Delta \chi$

obs

 $\Delta \chi$

2

 H_1

2

 $H_0\,$

 $\Delta\chi^2$

Results

Two oscillation bases were used: 15 m and 30 m.

 $\Delta\chi^2_{\rm o}$

Observations for 15 m and 30 m and their ratio are demonstrated bellow (detector is non-point)

 $\overline{\nu}_e$ between reactor and detector) and integration of it.

Acknowledgements