

Modelling of light (hyper)nuclei production in heavy-ion collisions at NICA energies based on generator THESEUS Marina E. Kozhevnikova and Yuri B. Ivanov

JOINT INSTITUTE FOR NUCLEAR RESEARCH Veksler and Baldin Laboratory of High Energy Physics

INRTODUCTION

REFERENCES:

[1] Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006) [2] M. Kozhevnikova et al., Phys. Rev. C 103, no.4, 044905 (2021) [3] M. Kozhevnikova and Y. B. Ivanov, Phys. Rev. C 107, no.2, 024903 (2023) [4] T. Anticic et al. [NA49 Collaboration], Phys. Rev. C 94, no. 4, 044906 (2016) [5] M. Kozhevnikova and Y. B. Ivanov, Phys. Rev. C 109, no.1, 014913 (2024) [6] M. I. Abdulhamid [STAR], [arXiv:2311.11020 [nucl-ex]]. [7] D. Zhang et al. [STAR], Nucl. Phys. A 1005, 121825 (2021) ; JPS Conf. Proc. 32, 010069 (2020) [8] M. I. Abdulhamid et al. [STAR], Phys. Rev. Lett. 130, 202301 (2023) [9] M. Kozhevnikova and Y. B. Ivanov, Phys. Rev. C 109, no.3, 034901 (2024)

- collisions at the energy $\sqrt{s_{NN}} = 3$ GeV).
- Various 3D dynamical models describing light nuclei exist: with coalescence mechanism, microscopic dynamical approaches (SMASH, PHQMD).
- THESEUS (Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD (Ultrarelativistic Quantum Molecular Dynamics) final State interactions) generator uses **thermodynamical approach** for modelling of light (hyper)nuclei on the equal basis with hadrons. **No additional parameters are needed.**
- Main areas of research: study the light- (hyper)nuclei production at collision energies of the BES-RHIC, SPS, NICA and FAIR.

COLLISIONS

- Light-nuclei production is related to search for critical point in QCD phase diagram.
- Spinodal instability: abundant production of light nuclei due to density fluctuations in spinodal region.
- At moderately relativistic energies light nuclei give significant contribution to the total baryon charge of the system of colliding nuclei (≈30% in Au+Au

Model 3FD and generator THESEUS

1. Initial state & hydrodynamic evolution : 3FD uses hydrodynamical equations with friction terms modelling of the interaction between fluids

THESEUS allows to move from the description in terms of liquid to a kinetic description.

The 3FD [1] simulates the early, nonequilibrium stage of the collision and describes it until the freeze-out.

- **baryon-rich fluids:** nucleons of the projectile (p) and the target (t) nuclei;
- **fireball (f) fluid:** newly produced particles which dominantly populate the midrapidity region during the evolution process.
- **Problems: no afterburner, application.**

THESEUS [2] is based on the 3FD model, performs the procedure of particlization. The kinetic stage (or afterburning) is modeled by means of UrQMD, which describes hadronic rescatterings.

THESEUS = 3FD + Monte-Carlo hadron sampling + afterburner via UrQMD.

THESEUS uses 3FD output (T, μ_B , μ_S) to generate particles $(x, y, z, p_x, p_y, p_z, E, ...)$;

Fig.4: Particle ratios [9] in dependence of rapidity for t/p, 3 He/p, 3 H/Λ 4 He/Λ in comparison with STAR data (Yuanjing Ji, talk at QM 2023). Different EoS are used. For p and Λ the standard freeze-out ($\varepsilon_{\text{frz}} =$ 0.4 GeV/fm³) with UrQMD afterburner is used. For t and $^{3}_{\Lambda}$ He the late freeze-out $\varepsilon_{\text{frz}}=0.2$ GeV/fm³ is used. For ⁴He and $^{4}_{\Lambda}$ He the standard one is used.

It presents the output in terms of **a set of observed particles.**

It is suitable for application of experimental acceptance!

> **Fig.6:** Directed flow of protons, light nuclei and hypernuclei as function of rapidity in semicentral ($b = 6$ fm) Au+Au collisions.

DISCUSSION

- Afterburner of almost all light (hyper)nuclei is modelled by the late freeze-out ($\varepsilon_{\rm frz} = 0.2$ GeV/fm³), while ⁴He, by standard one ($\varepsilon_{\rm frz} = 0.4$ GeV/ fm^3).
- Reasonable reproduction of data on bulk observables of the light nuclei in the energy range of $\sqrt{s_{NN}} = 3 19.6$ GeV.
- Ratio $N(t) \times N(p)/N^2(d)$ is considered. Accurate subtraction of weak-decays feed-down from proton yield is important.
- Good description of difference in the form of proton and light-nuclei distributions at $\sqrt{s_{NN}} = 3$ GeV and its dependence on the centrality. At $\sqrt{s_{NN}}$ = 3 GeV the choice of EoS does not affect on the rapidity distributions: no phase transition takes place.
- The directed flow: good agreement of p and Λ especially in midrapidity region, no dependence on EoS for (hyper)nuclei, for hypernuclei results are in agreement with experiment within statistical uncertainties. Standard stiffness with $K = 190$ MeV is the most suitable.

RESULTS

Contact: KOZHEVNIKOVA MARINA, JINR, LHEP, Baldin str. 4 Dubna, Russia kozhevnikova@jinr.ru DATE :20/01/2025

61st meeting of the PAC

for Particle Physics

gas), no phase transition

(Mishustin, Russkikh, Satarov)

hadronic states + QGP with a smooth transition (crossover) between phases (Khvorostukhin, Skokov, Toneev, Redlich)

1st-order phase transition

(Khvorostukhin, Skokov,

Toneev, Redlich)

- THESEUS gives generally good agreement of bulk observables and directed flow with experimental data. THESEUS simulations give reasonable results even for hypernuclei.
- For treatment of almost all studied (hyper)nuclei we need late freeze-out, so afterburner plays significant role in their production. An exception is ⁴He which requires standard freeze-out.
- Dominance of hadronic phase in evolution of the system at the collision energy of $\sqrt{s_{NN}} = 3$ GeV.
- THESEUS can be used for predictions for future experiments.

Fig.1: THESEUS and 3FD results [3] on rapidity distributions of deuterons in comparison with NA49 [4] data calculated for three different EoS and with late freeze-out ($\varepsilon_{frz} = 0.2$ GeV/fm³). For comparison, the result with standard freeze-out ($\varepsilon_{frz} = 0.4$ GeV/fm³) for crossover EoS is shown.

 10^{-}

Ratio

Particle

 10^{-4}

Fig.2: THESEUS results [5] on rapidity distributions of protons and light nuclei (deuterons, tritons, ³He, ⁴He) at $\sqrt{s_{NN}}$ = 3 GeV in comparison with STAR data [6] calculated for three different EoS and with late freeze-out (ε_{frz} = 0.2 GeV/fm³). The result with standard freeze-out ($\varepsilon_{\text{frz}} = 0.4$ GeV/fm³) for crossover EoS is shown.

Fig.3: Energy dependence of the midrapidity lightnuclei-yield ratio in central Au+Au and Pb+Pb collisions [3]. NA49 data [4] and STAR data(preliminary [7] and final [8]) are shown.

Fig.5: Directed flow of protons and light nuclei [5] as function of rapidity in semicentral ($b = 6$ fm) Au+Au collisions. Hadronic EoS with different stiffness *K* is used. Incompresibility: $K = 9n_0^2 \frac{d^2}{dn^2}$ dn^2 $\varepsilon(n,T=0)$ $n \quad \frac{1}{n} = n_0$, where $\varepsilon(n, T = 0)$ is the energy density of the nuclear matter at $T = 0, n_0$ is the normal nuclear density.