

Improving Particle Identification in SFGD for ND280 in T2K Using Neural **Networks**

V. Kiseeva on behalf of the JINR T2K group

Problem Statement

The T2K (Tokai to Kamioka) is a long-baseline neutrino oscillation experiment in Japan.

T2K experiment

Its primary objective is study of neutrino oscillations [1].

The Super-Fine-Grained Detector (SFGD) in the T2K experiment identifies particles such as protons, muons and pions [2].

Previous Approach

Boosted Decision Trees used for classification and momentum reconstruction [3].

Proposed Method

Neural Networks are highly effective to solve problems of this type as they can model complex, non-linear relationships between input features.

Input Data

Upgraded ND280

Upgraded SFGD

Accurate PID is critical for improving neutrino oscillation measurements.

Data Preprocessing

A more robust but straightforward way is to keep the information of only a few nodes of each track [4].

Baseline Models

Logistic Regression, Decision Trees, Random Forest and Support Vector Machine are used to establish baseline performance.

- code for PID
- momentum in MeV
- number of nodes
- order of the nodes
- coordinates of the nodes X,Y,Z-axis
- timestamps
- energy deposits of nodes
- length of the track

• track direction, polar/azimuth angle

Neutrino interaction ND280

Data Visualization

Future Steps

LogReg Confusion Matrixs

Decision Tree Confusion Matrixs

SVM Confusion Matrixs

Random Forest Confusion Matrixs

- 1. Feature engineering
- 2. Neural Network Architecture Design
- 3. Training and Optimization
- 4. Apply custom tool to compare performance

Baseline of neural network method has been analyzed to identify areas for improvement and will be fully implemented in the future.

Conclusion

[1] K.Abe et al 2011 Nucl.Instr.Meth.A 659, 106

[2] K.Abe et al., T2K ND280 Upgrade -- Technical Design Report, arXiv:1901.03750 [physics.ins-det], doi: 10.48550/arXiv.1901.03750.

[3] X. Zhao, BDTForTrackPIDAndPrecon, T2K Collaboration, November 1, 2024, https://www.t2k.org/nd280/physics/nd280-ai-ml-working-group/meetings/2024/november-1/BDTF orTrackPIDAndPrecon_20241101/view

[4] S. Alonso Monsalve, T2K Masterclass: AI and Machine Learning in Neutrino Experiments, T2K Collaboration, https://t2k.org/young/young-doc/young-masterclass/masterclassAI.