Project "Studying neutrino properties in accelerator experiments"

Liudmila Kolupaeva

JINR PAC

Neutrino physics

- * Standard Model particle
- * Small but non zero mass
- * Neutrino interactions conserve flavor.
- * Interact only via weak (and gravity) force

Modern hot topics:

- * Study neutrino properties, incl. three-flavor oscillation parameters;
- * search for sterile neutrinos;
- * measurement of absolute neutrino masses,
- * search for neutrinoless double beta-decay (are neutrinos Dirac or Majorana particles);
- * detection of relic neutrinos;
- * detection of high energy astrophysical neutrinos and spotting their sources;
- ∗...

Accelerator neutrino beams

- * Artificial source of particles
- * Allows a good control of beam characteristics to emphasise sensitivity to target parameters
 - * Focused and intense beam with timing information to reduce backgrounds
 - * Can choose energy to work with and switch between neutrinos and antineutrinos (important for study of oscillations)
- * NOvA and T2K work with decay in flight neutrinos (p beam and fixed target to produce the flux) * FASER work with decay in flight neutrinos produced at ATLAS p+p collision point
- * DsTau is a beam dump experiment

Neutrino oscillations and mixing

Oscillation parameters and how precisely do we know them:

$\theta_{12} \approx 34^{\circ}$	(4.4%)	
$\theta_{23} \approx 49^{\circ}$	(5.2%)	
$\theta_{13} \approx 9^{\circ}$	(3.8%)	
$\Delta m_{21}^2 \approx 7.4$	$\times 10^{-5} \ \mathrm{eV}^2$	(2.2%)
$\Delta m_{32}^2 \approx +2$	$.5 \times 10^{-3} \text{ eV}^2$	(1.4%)

* Neutrino mass hierarchy (ordering) is Normal or Inverted? (neutrinoless double beta-decay searches, supernova simulations, relic neutrinos searches, absolute ν mass measurements etc)

NOvA and T2K

NOvA + T2K

Based on latest published analyses

* Full implementation of:

- * energy reconstruction and detector response;
- * detailed likelihood from each experiment;
- * consistent statistical inference across the full dimensionality.
- * In-depth review of:
 - * models, systematic uncertainties and possible correlations.
 - * different analysis approaches driven by contrasting detector designs.
 - * As a by-product: cross-check and review of each other analyses.
- * Result:
 - * More precise measurement of oscillation parameters if compare to individual results

* Strong constraint on Δm^2_{32} , strongly favour CP violation in IO.

* Firm foundation for further NOvA+T2K analyses

Publication prepared for Nature is under review by both collaborations

NOvA results Recent 2024 results

* NOvA's first large update since 2020

- * Doubled neutrino-mode dataset with 10 years of neutrino & antineutrino data.
 - * World's largest accelerator u sample
- * Various remarkable updates to the analysis procedures.
 * As a result:
 - * Most precise single-experiment measurement of Δm_{32}^2 (1.5%).
 - * Results are consistent with previous analysis.
 - ✤ Data favours region where matter, CP violation effects are degenerate.
 - * Reactor constraint on Δm_{32}^2 enhances Normal Ordering preference.

Publication prepared for PRL is under review by paper review committee of the NOvA experiment

JINR contribution

NOvA

- * Three-flavor oscillation analysis,
 - * including NOvA-T2K joint analysis effort,
- * supernova neutrino trigger and analysis development,
- * magnetic monopole search,
- * high-energy muon spectra,
- * atmospheric neutrino oscillations,
- * theory of neutrino interactions.

FTE: 10.5

For both experiments there was methodical contribution in the past

T2K:

- * Search for axion-like particles,
- * systematic uncertainties evaluation,
- * ND280 Machine Learning group,
- * theory of neutrino interactions.

FTE: 6.7

Infrastructure at JINR

* Computing: 1k CPU and 3.8 PB storage (group needs + experiment production jobs). * Remote Operation Center (ROC Dubna) for experiment running and taking shifts from JINR.

Future prospects in three-flavor oscillations DUNE and HyperK

JINR already made methodical contribution to the experiments:

* HyperK:

* SuperFGD optical studies and calibrations.

* Result: detector is collecting data as phase II of T2K

* DUNE:

*NDLAr: complete light readout system (modules, Front-End electronics (preamplifiers), ADC, power supply system, signal/ power lines, DAQ and Slow Control)

*Results: 2x2 prototype at Fermilab, full scale module *SAND: straw-tubes's R&D studies at CERN to evaluate the performance of different FE readout options/prototypes

Official participation of JINR is not confirmed neither in DUNE nor in HyperK

DsTau and FASER

DsTau (NA65), SPS

* Main goal of DsTau is ν_{τ} production cross-section measurement (to be reduced to ~10%)

* contribution to SHiP neutrino program, FASER and SND

* huge systematics for ν_{τ} flux prediction.

* Emulsion detector (big experience of JINR group in this technology)

$FASER(\nu)$

- * Located 480m from ATLAS interaction point
- * Designed to detect neutrinos and search of dark photons
- * 100's GeV few TeV scale energies
 - * First ever u cross-section measurements at these energies
 - * Can measure all neutrino flavors \to can increase the number of reconstructed ν_{τ} 's in the world (so far ~dozen)

JINR contribution to FASER and DsTau

Physics

* Data collection and analysis (data simulation and distributed data mass processing responsibility)
 * Development of new software for effective very high track density data analysis as well as the physics analysis.

Detector related

* R&D of electromagnetic calorimeter for FASER

FTE: 6.5

Complementarity and synergy From the JINR contribution to these experiments point of view

NOvA and T2K:

- ban on simultaneous participation in both experiments: * Three-flavor oscillations analysis
 - * NOvA and T2K joint analysis (previously participation was on NOvA side)
 - analyses these models should be reviewed coherently in both experiments
 - * Search for exotic objects and non-standard interactions

FASER and DsTau:

the nuclear photoemulsion technique

FASER and T2K:

detector operation and data analysis will be useful

DsTau and NOvA:

* The presence of experts in the elements of NOvA and T2K data analysis at JINR can play a synergetic role even with

* Neutrino interaction cross-section model tuning for better understating the systematics and proper unification in

* Both experiments are aimed at studying various aspects of the production and interaction of tau neutrinos using

* SuperFGD technique is already used at T2K and also considered for the next upgrade of FASER, so, experience in

* Measured neutrino production cross-section is important for atmospheric neutrino and muon studies in NOvA

13

Project personnel

* DLNP (43):

L. Kolupaeva, A. Olshevsky, Yu. Gornushkin, O. Samoylov, N. Anfimov, A. Sheshukov, V. Tchalyshev, A. Sadovsky, S. Dmitrievsky, I. Chirikov-Zorin, A. Antoshkin, A. Selyunin, A. Rybnikov, O. Klimov, A. Bolshakova, S. Vasina, D. Korablev, A. Kalitkina, A. Gridina, A. Stepanova, V. Sharov, A. Ivanova, D. Fedoseev, V. Gromov, S. Sokolov, V. Kozhukalov, A. Chetverikov, K. Kuznetsova, O. Geytota, A. Sotnikov, Yu. Davydov, V. Tereschenko, I. Suslov, V. Lyubushkin, V. Baranov, N. Khomutov, I. Zimin, I. Vasilyev, V. Kiseeva, O. Atanova, V. Glagolev, B. Popov, S. Tereschenko

* BLTP (6):

I. Kakorin, K. Kuzmin, G. Kozlov, V. Matveev, V. Naumov, D. Shkirmanov

***** MLIT (1):N. Balashov

Theme: 1099 Project NOvA opened in 2014 Project T2K 2022-2023

In total: 50 people with FTE=23.7

14

Project personnel

* 3 PhD thesis were defended on NOvA, expect +2 in 2025–2026, several more at longer distance

- * Management positions:
 - * NOvA's exotics co-convener,
 - * NOvA's three-flavor analysis co-convener,
 - * DsTau collaboration board chair

Project resources

Expenditures, resources, funding sources

International cooperation

Materials

Equipment and Third-party

company services

Commissioning

R&D contracts with other research organizations

Software purchasing

Design/construction

Service costs (planned in case of direct project affiliation)

RESOURCES

Workshop and Design bureau

accelerator/installation

reactor etc

Bu

JINR Budget

EXTRA BUDGETA

Contributions by partners

Funds under contracts with customers

Other sources of funding

		$\mathbf{Cost/Resources},$			
	Cost (thousands	distribution by years			
	of US dollars)	1st year	2nd year	3rd year	
	450	150	150	150	
	90	30	30	30	
	60	20	20	20	
	30	10	10	10	
	30	10	10	10	
REQUIRED (STANDARD-HOURS)					
	150	50	50	50	
DGETARY RESOURCES					
	660	220	220	220	
ARY (SUPPLEMENTARY ESTIMATES)					
s					

Summary

- fundamental discoveries. We have just entered a precision era for many directions.
- * JINR has a long tradition and expertise of studying the wide scope of neutrino physics subjects.
- careful measurements of neutrino properties as intrinsic characteristics of this particle.
- * This proposal aims to gather JINR participation in accelerator neutrino experiments into one project. This interactions and others.
- all these experiments and prepare for the future research in this area.

* Neutrino physics is very exciting and rapidly developing area of high energy physics, with a good chance on

* Contemporary neutrino physics includes various searches beyond Standard Model phenomena as well as

includes the present state-of-the-art: NOvA, T2K, DsTau and FASER experiments, in which different neutrino properties will be studied comprehensively: mass ordering, leptonic CP violation, lepton universality, neutrino

* Project is proposed to be opened for three years starting in 2026 to continue the JINR successful participation in