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Goals

Review lecture: ”Discussing structure of effective action in supersymmetric
quantum field theory: some surprising (from my point of view) aspects”.

Quantum description of fields with a large number manifest and hidden, global
and local symmetries.

Chiral effective potential in 4D, N = 1 supersymmetric theoris

Non-holomirphic effective potential in 4D, N = 4 supersymmetric Yang-Mills
theory

Structure of divergences in the 6D, N = (1, 1) supersymmetric Yang-Mills
theory
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Effective action in quantum field theory

Effective action in quantum field theory from a bird’s eye view

Scalar field theory
Generating functionals

Z[J ] =

∫
Dφe i

ℏ (S[φ]+
∫
d4xJ(x)φ(x))

Z[J ] = e
i
ℏW [J], Φ =

W [J ]

δJ(x)
, Γ[Φ] = (W [J ]−

∫
d4xJ(x)Φ(x))J=J(x|Φ)

Quantum effective action Γ[Φ] = S[Φ] + Γ̄[Φ], Γ̄[Φ] = Σ∞
L=1ℏLΓ̄L[Φ].

Loop expansion:

e
i
ℏ Γ̄[Φ] =

( ∫
Dφe i

2 (S2[Φ]φ2+Σ∞
n=3

ℏ
n
2

−1

n! Sn[Φ]φn)
one particle irreducible

.

Sn[Φ]φ
n ≡

∫
d4x1 . . . d

4xn
δnS[Φ]

δΦ(x1) . . . δΦ(xn)
φ(x1) . . . φ(xn)

I.L. Buchbinder (BLTP, JINR, Dubna) Surprises in supersymmetric quantum field theory (lecture) 28th July, 2025 3 / 47



Effective action in quantum field theory

Gauge theory: background field method
1. Gauge theory:
a. Field φi,
b. Action S[φ],
c. Classical gauge transformations δφi = Ri

αξ
α,

d. Classical gauge invariance δS[φ]
δφi R

i
α = 0.

2. Effective action for gauge theory:
a. Effective action is constructed on the base of Faddeev-Popov prescription,
b. Manifestly covariant in background field special gauge fixing conditions
are used, which depend on the background gauge field Φi and the quantum
gauge field φi (it takes some art to do this in each concrete theory),
c. Loop expansion for effective action is constructed in the form similar with
scalar field theory,
d. Effective action is gauge invariant under the classical gauge

transformations δΓ[φ]
δφi R

i
α = 0.
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What is a supersymmetry

Supersymmetry is an extension of special relativity symmetry. In its essence,
the supersymmetry is a special relativity symmetry extended by the symmetry
between bosons and fermions

From mathematical point of view the relativistic symmetry is expressed in
terms of Poincaré group with the generators Pm and Jmn satisfying the
known commutation relations

[Pr, Ps] = 0,

[Jrs, Pm] = i(ηrmPs − ηsmPr),

[Jmn, Jrs] = i(ηmrJns − ηmsJnr + ηnsJmr − ηnrJms) (1)

ηmn is the Minkowski metric.
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What is a supersymmetry

Extension of special relativity in four dimensions means extension of the
Poincare algebra by the generators (supercharges) Qi

α, Q̄iα̇, i = 1, 2, ...,N
The relations among the supercharges (Poincaré superalgebra) are given in
terms of anticommutators

{Qi
α, Q

j
β} = ϵαβZ

ij

{Q̄iα̇, Q̄jβ̇} = ϵα̇β̇Z̄ij

{Qi
α, Q̄jα̇} = 2δijσ

m
αα̇Pm (2)

Zij , Z̄ij are the central charges (further they are assumed to be zeros);
α = 1, 2; α̇ = 1̇, 2̇; ϵαβ , ϵα̇β̇ are the invariant tensors of the Lorentz group,
σm = (σ0, σi).

Supersymmetric field model means a field model invariant under the above
superalgebra. Since the supercharges are the spin s = 1

2 Lorentz group
spinors one can expect that any supersymmetric field model must contain
both bosonic and fermionic fields
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Superspace and superfields

Minkowski space coordinates xm have the same tensor structure as the
generators of space-time translations Pm. Analogously ones introduce the
additional spinor coordinates θiα and θ̄iα̇ associated with the supercharges
Qi

α and Q̄iα̇. The additional coordinates have the fermionic structure as well
as the supercharges and anticommute among themselves.

Manifold parameterized by the commuting (bosonic) coordinates xm and the
anticommuting (fermionic) coordinates θiα, θ̄iα̇ is called (conventional or
general or standard) superspace

Function defined on superspace is called superfield

Since the fermionic coordinates are anticommuting, any superfield is no more
then polynomial in these coordinates. The coefficients of such a polynomial
are the conventional bosonic and fermionic fields on Minkowski space. All
these coefficients are called the component fields of the superfield.

Consider the supersymmetry transformations (supertranslations):
θiα → θiα + ϵiα, θ̄iα̇ → θ̄iα̇ + ϵ̄iα̇, xm → xm + δxm. The ϵiα and ϵ̄iα̇ are the
anticommuting transformation parameters, δxm are expressed in special form
through the fermionic coordinates and the anticommuting parameters. The
supertranslations define the supersymmetry transformations of the
component fields.
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N = 1 supersymmetric field models

N = 1 superspace: coordinates (xm, θα, θ̄α̇).

Chiral scalar superfield Φ(x, θ, θ̄) = ei(θσ
mθ̄)∂mΦ(x, θ). Component content

Φ(x, θ) = A(x) + θαψα(x) + F (x)θ2

Antichiral scalar superfield Φ̄(x, θ, θ̄) = e−i(θσmθ̄)∂mΦ̄(x, θ̄). Component
content Ā(x, θ̄) = Ā(x) + θ̄α̇ψ̄

α̇(x) + F̄ (x)θ̄2

Supercovariant derivatives ∂m, Dα, D̄α̇

Dα = ∂α + i(σm)αα̇θ̄
α̇∂m,

D̄α̇ = −∂α̇ − iθα(σm)αα̇∂m.

Basic properties of chiral and antichiral superfields

D̄α̇Φ = 0,

DαΦ̄ = 0.
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N = 1 supersymmetric field models

Superfield model (Wess-Zumino model)

S[Φ, Φ̄] =

∫
d4xd2θd2θ̄Φ̄(x, θ, θ̄)Φ(x, θ, θ̄) + (

∫
d4xd2θW (Φ) + c.c.)

W (Φ) = m
2 Φ

2 + λ
3!Φ

3. Manifest supersymmetry.

Component form of Wess-Zumino model

S =

∫
d4x(−∂mĀ∂mA− i

2
ψασm

αα̇∂mψ̄
α̇ + F̄F + F (mA+

λ

2
A2)+

+F̄ (mĀ+
λ

2
Ā2)− 1

4
(m+ λA)ψαψα − 1

4
(m+ λĀ)ψ̄α̇ψ̄

α̇)

Non-manifest supersymmetry.
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N = 1 supersymmetric field models

Real scalar superfield V (x, θ, θ̄). Component content
V (x, θ, θ̄) = A(x) + θαψα(x) + θ̄α̇ψ̄

α̇(x) + θ2F (x) + θ̄2F̄ (x) +
(θσmθ̄)Am(x) + θ̄2θαλα(x) + θ2θ̄α̇λ̄

α̇(x) + θ2θ̄2D(x)

Superfield model (N = 1 supersymmetric Yang-Mills theory)

SSYM [V ] =
1

2g2

∫
d4xd2θtr (WαWα)

Superfield V takes the values in Lie algebra of gauge group,
Wα = − 1

8D̄
2(e−2VDαe

2V ) (Wα is a superfield strength), D̄2 = D̄α̇D̄
α̇,

Gauge transformations
e2V

′
= eiΛ̄e2V e−iΛ.

Manifest supersymmetry.

Component form of supersymmetric Yang-Mills theory

SSYM =
1

g2

∫
d4xtr(−1

4
GmnGmn − iλασm

αα̇∇mλ̄
α̇ + 2D2)

Non-manifest supersymmetry.

I.L. Buchbinder (BLTP, JINR, Dubna) Surprises in supersymmetric quantum field theory (lecture) 28th July, 2025 10 / 47



N = 1 supersymmetric field models

Chiral-antichiral superpopagators

G(z, z′) =
1

2−m2
Ô(D, D̄)δ4(x− x′)δ4(θ − θ′)

Gauge superfield superpropagator

D(z, z′) = − 1

2
δ4(x− x′)δ4(θ − θ′)

Grassmann delta-functions

δ4(θ − θ′) = δ2(θ − θ′)δ̄2(θ̄ − θ̄′) = (θ − θ′)2(θ̄ − θ̄′)2.

Property of Grassmann delta-functions

δ4(θ − θ′)|θ′=θ = 0!
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Superfield formulation vs component

The SUSY models can be formulated in terms of bosonic and fermionic
component fields. Supersymmetry is hidden. It is not very convenient in
quantum field theory: supersymmetry algebra is open, very many Feynman
diagrams, miraculous cancelations.

Superfield formulation: manifest SUSY, comparatively small number of
supergraphs, origin of miraculous cancelations. Problem: how to formulate
the of N -extended SUSY models in terms of unconstrained N -extended
superfields. General solution for arbitrary N is unknown.

Why we want to get a formulation in terms of unconstrained superfields: (a).
In conventional field theory the fields must be the functionally independent
arguments of action. Otherwise there is no Lagrangian formulation. (b).
Conventional quantum field theory is constructed in terms of unconstrained
fields. Manifest supersymmetry, provided by superfield formulation, allows us
to control the calculations. Supersymmetry algebra is automatically closed.
(c). Superfield formulation provides the simple enough ways to construct the
various superinvariants that allows to describe the possible structure of
contributions to effective action or to S-matrix.
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N = 1 non-renormalization theorem

Power of superfield formulation for N = 1 supersymmetric
theories-non-renormalization theorem: any L-loop contribution to effective action
is written in the form of single integral over d4θ = d2θd2θ̄ (over full superspace
not over chiral (d2θ) or antichiral (d2θ̄) subspaces):∫

d4p1 . . . d
4pLd

4θF(p1, . . . , pL, θ).

This relation completely determines the possible counterterms in the N = 1
supergauge theories up to the coefficients. Complete explanations of miraculous
cancelations of possible divergences in component approach.

Main point of prove is a structure of the superpropagators. All of them
contain the delta-function of anticommuting coordinates that allows us to
perform integration over these coordinates in explicit form.

This allows us (also using the power counting) to write down immediately all
possible supersymmetric counterterms in explicit form.

This allows us to find in some case the possible finite supersymmetric
contributions to effective action practically up to numerical coefficients.
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Chiral effective potential

At first glance it seems that the non-renormalization theorem forbids chiral
quantum corrections to the classical chiral potential. In fact, such corrections
exist and do not contradict the non-renormalization theorem.

How it is possible?

The non-renormalization theorem does not forbid space-time non-local
contributions to the effective action. The divergences are local, but the finite
contributions are in general non-local.

There is an identity for chiral superfields that transforms an integral over the
full superspace into an integral over a chiral subspace.∫

d4xd4θu(Φ)(−D
2

42
)v(Φ) =

∫
d4xd2θu(Φ)v(Φ).

Chiral superfield propagators contain D and D̄ covariant derivatives, besides
the operator 2 in the denominators for massless theory. Thus, one can
expect that in principle, the chiral quantum corrections are admissible in
massless case and under condition that last loop integration is non-divergent.
Otherwise, the space-time non-locality is impossible.

These considerations are confirmed by direct calculations.
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Chiral effective potential

Direct two-loop calculations in Wess-Zumini model.

First chiral quantum correction arises at two loops from the following
supergraph

External lines are the background chiral superfields.

Two-loop correction
W (2) ∼ |λ|4Wclass

Although the theory contains divergences and requires renormalization,
two-loop chiral quantum corrections is finite in terms of bare coupling
constant and fields.
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Chiral effective potential

General chiral superfield model. Direct two-loop calculations

General chiral superspace model

S[Φ̄,Φ] =

∫
d4xd4θK(Φ̄,Φ) +

∫
d4xd2θWclass(Φ) +

∫
d4xd2θ̄W̄class(Φ̄).

K(Φ̄,Φ) is a real function (Káhler potential). Four-dimensional sigma-model.
Non-renormalizable theory.

Two-loop chiral quantum correction

W (2) ∼ W̄
′′′

class(0)(
W

′′

class(Φ)

K2
ΦΦ̄

(0,Φ)
)3.

In spite of non-renoromalizability, two-loop chiral correction is finite in terms
of bare parameters and fields.
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Chiral effective potential

Direct three-loop calculations in Wess-Zumini model

Three-loop chiral quantum corrections are given by the following supergraphs

External lines are background chiral superfields.

Two first supergraphs ate finite, third contains one-loop divergence due to
divergent one-loop subgraph. Last integration is finite in accordance with
qualitative analysis. After renormalization, one gets

W (3) ∼ |λ|6Wclass.

I.L.B, R.M. Iakhibaev,D.I. Kazakov, D.M. Tolkachev, 2025.

Chiral effective potential in gauge theories?
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Problem of N = 2 superfield formulation

Superfield Lagrangian formulation of N = 2 supersymmetric theories as well as of
higher N faces the fundamental problems in comparison with N = 1 case.

The simplest N = 2 multiplets are the hypermultiplet and vector multiplet.

On shell the hypermultiplet contains four scalar fields and two spinor fields.

All these fields are the components of the superfield qi(z), where
z = (xm, θiα, θ̄

iα̇) and i = 1, 2, under constraints

D(i
α q

j) = 0, D̄
(i
α̇ q

j) = 0.

The above constraints put all the component fields on free mass shell. The
superfield Lagrangian formulation is impossible.

On shell the vector multiplet contains the vector field, a doublet of spinor
fields, and a complex scalar field. All these fields can be include to some
superfield satisfying constraints and off shell Lagrangian formulation in terms
of this superfield faces the difficulties.

Reason of difficulties is that there are too many anticommuting coordinates
in N = 2 superfields.
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Solution to the problem: harmonic superspace

Breakthrough was made in the pioneering works by A. Galperin, E. Ivanov, S.
Kalitsyn, V. Ogievetsky and E. Sokatchev where the quite new N = 2 superspace
has been introduced. This approach was also generalized to construct N = 3
supergauge theory.

Solution looked extremely quite paradoxical. Instead of finding a way to directly
reduce the number of fermion coordinates, it was proposed to increase the number
of bosonic coordinates. However, after this, the desired reduction in the number
of fermionic coordinates became possible.

The standard N = 2 superspace with coordinates zM = (xm, θiα, θ̄
i
α̇) is

extended by the commuting (harmonic) variables u±i (i = 1, 2) parameterizing
two-sphere. N = 2 harmonic superspace with coordinates (z, u).

Supercovariant derivatives Di
α, D̄

i
α̇ are decomposed into

D±
α = u±i D

i
α, D̄

±
α̇ = ui

±D̄i
α̇, (D

i
α = ∂

∂θα
i
+ ...).

The harmonic derivatives are introduces:

D±± = u±i ∂

∂u∓i
, D0 = u+i ∂

∂u+i
− u−i ∂

∂ui

Superfields in harmonic superspace are characterized by U(1) charge,
Φ(q)(z, u), D0Φ(q) = qΦ(q).
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Solution to the problem: harmonic superspace

Impose the supersymmetric conditions on the superfields

D+
αΦ

(q) = 0, D̄+
α̇Φ

(q) = 0.

Such superfields depend on coordinates (xmA , θ
+α, θ̄+α̇, u) = (ζA, u). Analytic

superfields. The number of fermionic coordinates has decreased to their
number in N = 1 case. The price for this is an increase of bosonic
coordinates.

Construction of off shell N = 2 supersymmetric models in terms of analytic
superfields.
Hypermultiplet theory in terms of unconstrained analytic superfield q+ with
action Sq[q

+] and super Yang-Mills theory in terms of unconstrained analytic
superfield V ++, taking the values in the Lie algebra of gauge group, with
action SSYM [V ++]. The dependence on harmonics disappears when moving
to the component formulation after using the equations of motion and gauge
conditions.

Hypermultiplet coupling to gauge multiplet is constructed
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D4,N = 4 SYM theory

Action of N = 4 SYM theory in terms of N = 2 superfields

S[V ++, q+] = − 1

4g2

∫
d8ζLtrW

2 − 1

2

∫
dζ(−4)trq+a(D++ + igV ++)q+a ,

where W is a chiral superfield strength constructed from V ++. The
superfields q+ and V ++ belong to adjoint representation of gauge group.
d8ζL = d4xd2θ+d2θ−du, dζ(−4) = d4xd4θ+du.

Manifest gauge invariance, manifest N = 2 supersymmetry and hidden
N = 2 on-shell supersymmetry rotating W and q+.

Field content of 4D, N = 4 SYM theory: one vector field, three complex
scalars, four Majorana fermions. All the fields are in adjoint representation.
Global symmetry group (R-symmetry) SU(4).
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D4,N = 4 SYM theory

Different formulations of N = 4 SYM theory:
1. Component formulation. All supersymmetries are hidden.
2. Formulation in terms of N = 1 superfields. One supersymmetry is manifest,
three are hidden.
3. Formulation in terms of N = 2 harminic superfields. Two supersymmetries are
manifest, two are hidden.
4. Formulation in terms of N = 3 harminic superfields. Three supersymmetries
are manifest, one is hidden.
The harmonic superspace formulation is the best we have at the moment.
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Finiteness of N = 4 SYM theory

Analysis of divergences in N = 2 harmonic superspace formulation.
Steps:

Background superfield formulation. Effective action is manifestly N = 2
supersymmetric and is manifestly invariant under the classical gauge
transformations.

N = 2 non-renormalization theorem: any L-loop contribution to effective
action is written in the form of single integral over full N = 2 superspace.
Proof is similar with N = 1 theories.

Power counting using background superfield formulation: the divergences are
absent beyond one loop.

One-loop divergences are directly calculated and canceled out.

4D, N = 4 SYM theory is UV finite quantum field theoretical model and
hence, is conformal invariant quantum gauge theory.
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Non-holomorphic effective potential

Consider N = 4 SYM theory formulated in terms of N = 2 harmonic
superfields as interacting theory of N = 2 vector multiplet anf hypermultiplet.

In general, effective action Γ[V ++, q+]. Theory is formulated within
background field method that provides invariance under the classical gauge
transformations. Begin with effective action in vector multiplet sector. Due
to gauge invariance, the effective action is a functional of N = 2 superfield
strength W . Assume SU(2) gauge group spontaneously broken down to
U(1) (Coulomb branch). W is Abelian strength superfield.

Approximation of slowly varying in space-time superfields. Effective action is
expressed through effective Lagrangian.

Γ[V ++] =

∫
d4xd8θLeff .

Leff = H(W, W̄ ) + . . . .

H is called non-holomorphic effective potential. Bosonic sector ∼ F 4.
Analogous to leading term in Heisenberg-Euler effective action in quantum
electrodynamics.

Dimensions: [W ] = 1, [H] = 0, H = H(WΛ ,
W̄
Λ ).
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Non-holomorphic effective potential

Due to conformal invariance of the theory, the effective action does not
depend on scale Λ

Λ
d

dΛ

∫
d4xd8θH(

W

Λ
,
W̄

Λ
) = 0.

General solution is

H(
W

Λ
,
W̄

Λ
) = c ln

W 2

Λ2
ln
W̄ 2

Λ2
+ . . . .

c is arbitrary numerical constant, should be found from quantum field
calculations. It was done many authors in one-loop approximation.

There are qualitative arguments that non-holomorphic potential gets neither
perturbative non-perturbative contribution beyond one-loop (E. Witten, N.
Seiberg, 1995; M. Dine, N. Seiberg, 1997). This was confirmed later by
direct two-, three- and four-loop calculations.
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Power of harmonic superspace: complete non-holomorphic effective
potential

The complete low-energy action depends on all the fields of N = 4 vector
multiplet, that is on V ++ and q+. Use the hidden N = 2 supersymmetry. Exact
result (I.L.B, E.A. Ivanov, 2002):

Γ[W, W̄ , q+] =

∫
d12zdu[H(W, W̄ ) + Lq(X)],

Lq(X) = c[(X − 1)
ln(1−X)

X
+ Li2(X)− 1],

X = −q
iaqia
WW̄

,

where Li2(X) is the Euler dilogarithm. Leading low-energy effective action is
exactly found.
Bosonic sector

Γ ∼
∫
d4x

F 4

(|φ|2 + f2)2
,

where the denominator is SU(4) invariant square of scalars from N = 4 vector
multiplet.
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Power of harmonic superspace: complete non-holomorphic effective
potential, harmonic supergraph calculations.

One-loop supergraphs for complete non-holomorphic effective potential. External
lines are background hypermultiplet, propagators exactly depend on constant W .
Result corresponds to analysis on the base of hidden supersymmetry
(I.L.B, E.A. Ivanov, A.Yu. Petrov, 2003).
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Quantum supergauge theories in various dimensions. Basic Motivations.

Study of supersymmetric field theories in various dimensions related to superstring
theory.

Specific feature of the superstring theory is existence of so called D-branes which
are the D + 1 dimensional surfaces in the ten-dimensional space-time. In the
low-energy limit the D-brane is associated with D + 1-dimensional extended
supersymmetric gauge theory. Therefore, study of low-energy limit of superstring
theory can be related to extended supersymmetric field theory in various
dimensions.

D3-brane is associated with D4, N = 4 SYM theory. D5-brane is associated with
D6, N = (1, 1) SYM theory.

Extension of D4, N = 4 SYM theory to higher dimensions.
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Higher-dimensional supergauge theories. Basic Motivation. General
Problems and Results

Some problems of higher dimensional supersymmetric gauge theories.

1. Describing the quantum structure of six-dimensional supersymmetric gauge
theories dimensionally reduced from superstrings.

2. Description of the interacting multiple M5-branes.

Hypothetic M -theory is characterized by two extended objects: M2-brane
and M5-brane in eleven dimensional space.

The field description of interacting multiple M2-branes is given by
Bagger-Lambert-Gustavsson (J. Bagger, N. Lambert, 2007; 2008. A.
Gustavsson, 2009) theory which is 3D, N = 8 supersymmetric gauge theory.

Lagrangian description of the interacting multiple M5-branes is not
constructed so far.
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Divergences in higher dimensional SYM theories

3. Problem of miraculous cancelation of some on-shell divergences in higher
dimensional maximally supersymmetric gauge theories (theories with 16
supercharges). All these theories are non-renormalizable by power counting.

Field limit of superstring amplitude shows that 6D,N = (1, 1) SYM theory is
on-shell finite at one-loop (M.B. Green, J.H. Schwarz, L. Brink, 1982).

Analysis based on on-shell supersymmetries, gauge invariance and field
redefinitions (P.S. Howe, K.S. Stelle, 1984, 2003; G. Bossard, P.S. Howe,
K.S. Stelle, 2009).

Direct one-loop and two-loop component calculations (mainly in on-shell and
in bosonic sector (E.S. Fradkin, A.A. Tseytlin, 1983; N. Marcus, A. Sagnotti,
1984, 1985.)

Direct calculations of on-shell scattering amplitudes in 6D,N = (1, 1) theory
up to five loops and in D8, 10 theories up to four loops (L.V. Bork, D.I.
Kazakov, M.V. Kompaniets, D.M. Tolkachev, D.E. Vlasenko, 2015).

Results: On-shell divergences in maximally extended 6D SYM theory start at
three loops. One-shell divergences in 8D and 10D SYM theories start at one loop.
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General aims and approaches

The problems we are dealing with is aimed at studying the off-shell divergence
structure. To understand, what is a reason that the divergences at one and two
loops are proportional to the classical equations of motion and why, starting from
three loops, this is violated.

Preservation of manifest supersymmetry: off-shell superfield formulation. Best
formulation for 6D supersymmetric gauge theories is a harmonic superspace
approach. In the case of N = (1, 1) theory it is provides explicit off-shell
N = (1, 0) supersymmetry and hidden on-shell N = (0, 1) supersymmetry.

Preservation of classical gauge invariance in quantum theory: harmonic superfield
background field method.

Preservation of explicit gauge invariance and N = (1, 0) supersymmetry at all
steps of loop calculations: superfield proper-time methods.

I.L.B., E.A. Ivanov, B.C. Merzlikin, K.V. Stepanyantz (2016 - 2024).
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6D,N = (1, 1) SYM theory, basic superfields

6D superalgebra is described by two independent supercharges. The simplest
representations corresponds to N = (1, 0) and N = (0, 1) supersymmetries. In
this sense, the maximally extended rigid supergauge theory is the N = (1, 1) SYM
theory.

N = (1, 0) harmonic superspace:
Bosonic (commuting) coordinates xM , (M = 0, 1, 2, 3, 4, 5); u±i (i = 1, 2).
Fermionic (anticommuting ) coordinates θai , (a = 1, 2, 3, 4).
Analytic subspace ζ = (xA

M , θ± a, u± i).
θ± a = θai u

± i.

N = (1, 0) harmonic superfields. The construction is very similar to
D4, N = 2 supersymmetric theory. Two basic multiplets: hypemultiplet and
vector multiplet.

Hypermultiplet is described by analytic superfield q+(ζ). On-shell field
contents: scalar field f i(x) and the spinor field ψa(x))

Vector multiplet is described by analytic superfield V ++. On-shell field
contents: vector field and spinor field.

Theory of N = (1, 0) non-Abelian vector multiplet coupled to hypermultiplet
(E.I. Ivanov, A.V. Smilga, B.M. Zupnik, 2005).

I.L. Buchbinder (BLTP, JINR, Dubna) Surprises in supersymmetric quantum field theory (lecture) 28th July, 2025 32 / 47



N = (1, 1) SYM theory

N = (1, 1) SYM theory can be formulated in terms of N = (1, 0) harmonic
superfields as the N = (1, 0) vector multiplet coupled to hypermultiplet in adjoint
representation. The theory is manifestly N = (1, 0) supersymmetric and possesses
the extra hidden N = (0, 1) supersymmetry.

Action
S[V ++, q+] = SSYM [V ++] + SHY PER[q

+, V ++]

The action is manifestly N = (1, 0) supersymmetric.

The action is invariant under the transformations of extra hidden N = (0, 1)
supersymmetry

δV ++ = ϵ+q+, δq+ = −(D+)4(ϵ−V −−)

where the transformation parameter ϵ±A = ϵaAθ
±A.
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General strategy

We start with harmonic superfield formulations of vector multiplet coupled to
hypermultiplet.

Effective action is formulated in the framework of the harmonic superfield
background field method. It provides manifest N = (1, 0) supersymmetry and
gauge invariance of effective action under the classical gauge transformations.

Effective action can be calculated on the base of superfield proper-time
technique. It provides preservation of manifest N = (1, 0) supersymmetry
and manifest gauge invariance at all steps of calculations.

The effective action can also be calculated perturbatively on the base of
Feynman diagrams in superspace (supergraph technique).

One-loop analysis. We study the model, where the N = (1, 0) vector
multiplet interacts with hypermultiplet in the arbitrary representation of the
gauge group. Then, we assume in the final result for one-loop divergences,
that this representation is adjoint what corresponds to N = (1, 1) SYM
theory. Finite one-loop effective action without renormalization.

Two-loop analysis. All the possible divergences can be listed, using the the
superfield power counting and then they can be calculated in the framework
of the background field method.
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Manifestly covariant one-loop calculation

Calculating the one-loop divergences of superfield functional determinants is
carried out in the framework of proper-time technique (superfield version of
Schwinger-De Witt technique). Such technique allows us to preserve the manifest
gauge invariance and manifest N = (1, 0) supersymmetry at all steps of
calculations.
General scheme of calculations

Proper-time representation

TrlnÔ ∼ Tr

∫ ∞

0

d(is)

(is)1+ε
eisÔ1δ(1, 2)|2=1

Here s is the proper-time parameter and ε is a parameter of dimensional
regularization.
Typically the δ(1, 2) contains δ8(θ1 − θ2), which vanishes at θ1 = θ2
Operator Ô is associated with quadratic part of action and depends on
background field. This operator contains some number of spinor derivatives
D+

a , D
−
a which act on the Grassmann delta-functions δ8(θ1 − θ2) and can kill

them. Non-zero result will be only if all these δ-functions are killed.
To get divergences, only these terms are taking into account which have the
pole 1

ε after integration over proper-time. The other terms generate the finite
contributions.
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One-loop divergences

Results of calculations

Γ
(1)
div[V

++, Q+] =
C2 − T (R)

3(4π)3ε
tr

∫
dζ(−4)du(F++)2−

− 2if2

(4π)3ε

∫
dζ(−4)duQ̃+m(C2δm

n − C(R)m
n)F++Q+

n.

The quantities C2, T (R), C(R) are defined as follows

tr(TATB) = T (R)δAB

tr(TA
AdjT

B
Adj) = fACDfBCD = C2δ

AB

(TATA)m
n = C(R)m

n.

In N = (1, 1) SYM theory, the hypermultiplet is in the same representation as

the vector multiplet. Then C2 = T (R) = C(R). Then Γ
(1)
div[V

++, Q+] = 0!
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Two-loop divergences

Procedure of calculations: gauge multiplet sector

Two-loop divergences are calculated within background field method and
proper-time technique like in one-loop case.

We begin with only gauge multiplet background.

Power counting shows that the only possible two-loop divergent contribution
in the gauge superfield sector has the following structure

Γ
(2)
div[V

++] = a

∫
dζ(−4) du tr

(
F++ ⌢

2 F++
)

with some constant a, which diverges after removing a regularization. F++ is
a left hand side of classical equation of motion.

Within background field method, the two-loop contributions to superfield
effective action are given by two-loop vacuum harmonic supergraphs with
background field dependent lines.

The background field dependent propagators (lines) are represented by
proper-time integrals.

Constant a in principle should have the following structure a = d1

ε + d2

ε2 with
arbitrary real parameters d1 d2.
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Two-loop supergraphs

Figure: Two-loop Feynman supergraphs with gauge self-interactions vertices.

Figure: Two-loop Feynman supergraphs with hypermultiplet and ghosts vertices.
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Two-loop divergences

Procedure of calculations

One can prove that the in the case under consideration the only two-loop
divergent contribution comes from the ‘∞’ supergraph.

Contribution of this supergraph contains the product of two Green functions
G(2,2)(z1, u1; z2, u2) at z1 = z2.

Divergent part of such Green function can be calculated and has the form
∼ 1

εF
++. Therefore G(2,2)(z1, u1; z2, u2)|z1=z2 ∼ 1

εF
++ + g++ where g++

is some finite functional.

It means that full two loop contribution of the ‘∞’ supergraph looks like

b

∫
dζ(−4) du (

1

ε
F++ + g++)

⌢
2 (

1

ε
F++ + g++).

with some constant b. Therefore there are two types of contributions, one
containing 1

ε and another one containing 1
ε2 .

The terms with simple pole 1
ε has the form ∼ 1

εF
++ ⌢

2 g++.

However, the power counting tells us that the two loop divergence has the

form ∼ F++ ⌢
2 F++. Therefore, we must assume that g++ = 0 or

g++ ∼ F++.
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Two-loop divergences

Results of calculations in gauge multiplet sector

Further we consider only the case g++ = 0.

In this case, the divergent part of two-loop effective action has the form

Γ
(2)
div =

8f2

(4π)6ε2
(C2)

2tr

∫
dζ(−4) duF++ ⌢

2 F++,

where F++ = 0 is the classical equation of motion in the case when the
hypermultiplet is absent.

Coefficient c2 looks like

c2 =
8f2

(4π)6ε2
(C2)

2.

I.L. Buchbinder (BLTP, JINR, Dubna) Surprises in supersymmetric quantum field theory (lecture) 28th July, 2025 40 / 47



Field redefinition and cancelation of divergences

Consider the off-shell transformation of the superfield V ++ in the classical

action V ++ → V ++ − a
⌢
2 F++.

The corresponding transformation of the classical action is

δS = −a
∫
dζ(−4) du trF++ ⌢

2 F++. That allows to cancel completely
off-shell the two-loop divergence of the effective action in the gauge multiplet
sector.

Thus, one can state that the theory under consideration is off-shell finite at
one- and two-loops (at least in gauge multiplet sector).
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Two-loop divergences

Hypermultiplet dependence of the two-loop divergences: indirect analysis.

The hypermultiplet-dependent contribution to two-loop divergences can be
obtained by the straightforward quantum computations of the two-loop
effective action taking into account the hypermultiplet background.

The general form of hypermultiplet dependent divergences can in principle be
found without direct calculations, assuming the invariance of the effective
action under the hidden N = (0, 1) supersymmetry.

The result has an extremely simple form

Γ
(2)
div[V

++, q+] = a

∫
dζ(−4) du trE++ ⌢

2 E++,

where E++ = F++ + i
2 [q

+A, q+A ] is the left hand side of classical equation of
motion for vector multiplet superfield coupled to hypermultiplet.

Two-loop divergences vanish on-shell as expected.
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Two-loop divergences

Hypermultiplet dependence of the two-loop divergences: direct calculations:

Γ
(2)
div[V

++, q+] =
f2(C2)

2

8(2π)6ϵ2

∫
dζ(−4) du trE++ ⌢

2 E++

+terms proportional to e.o.m for hypermultiplet.
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Effective action in higher derivative 6D, N = (1, 0) SYM theory

Aspects higher derivative field theories (e.g. review by A.V. Smilga, 2017).
Superfield quantum formulation (I.L.B, E.A. Ivanov, B.C. Merzlikin, K.V.
Stepanyantz, 2020).

The six-dimensional N = (1, 0) supersymmetric higher-derivative gauge theory
describes a self-interacting non-Abelian gauge multiplet (E.A. Ivanov, A.V.
Smilga, B.M. Zupnik, 2005). Action

S0 = ± 1

2g2
tr

∫
dζ(−4)du (F++)2 ,

The action is invariant under the gauge transformation

δλV
±± = −D±±λ− i[V ±±, λ] , δλF

++ = i[λ, F++] .

with the Hermitian analytic superfield parameter λ
Bosonic component sector

S ∼ 1

g2
tr

∫
d6x (∇MFMN )2,

FMN is standard Yang-Mills strength. Coupling constant g is dimensionless.
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Effective action in higher derivative 6D, N = (1, 0) SYM theory

General scheme:

Background field method

Power counting. Theory is renormalizable.

One-loop effective action in terms of functional determinants on superspace.

Superfield proper-time technique

One-loop divergences

Γ
(1)
div = −11

3

C2

(4π)3ε
tr

∫
dζ(−4)du(F++)2 .

Manifestly N = (1, 0) supersymmetric result. Bosonic and fermionic sectors
are included.

Coincides with earlier component calculations (E.A. Ivanov, A.V. Smilga,
B.M. Zupnik, 2005; L. Casarin, A.A. Tseytlin, 2019).

Asymptotic freedom at some sign in classical action. Another sign leads to
null-charge problem.
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Some aspects of supersymmetric quantum field theory were discussed:

Chiral effective potential in 4D, N = 1 supersymmetric theories has
considered.

The construction of a non-holomorphic effective potential in 4D, N = 4
supersymmetric Yang-Mills theory, depending on all fields of the multiplet
N = 4 has considered.

Structure of divergences in the 6D, N = (1, 1) supersymmetric Yang-Mills
theory has considered and its one-loop finiteness shown.
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THANK YOU VERY MUCH!
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