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Introduction

The study of infrared singularities in gauge theories has a long
history.
It began with the ”infrared catastrophe” (divergences in
radiative corrections at low photon frequencies) in quantum
electrodynamics (QED).
The cancellation of divergences with account of emission of
any number of soft photons was demonstrated by Bloch and
Nordsieck in an approximate model.
F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937), 54-59.
In real QED, this cancellation was demonstrated in
D. R. Yennie, Steven C. Frautschi, H.!Suura, Annals Phys. 13
(1961) 379-452.
Note that in QED with massless electrons the singularities
much stronger, since besides the divergences at low photon
frequencies, so called collinear or mass singularities
(divergences of integrals at sero angles between momenta of
electrons and emitted by them photons) appear.
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Introduction

In this case, summation over the number of emitted photons in
the final state is insufficient to cancel the divergences;
averaging over all energy-degenerate initial states is also
required
T. Kinoshita, J. Math. Phys. 3 ( 1962) 650–677.
T. D. Lee and M. Nauenberg, Phys. Rev. 133 B (1964)
1549–B1562.
In quantum chromodynamics (QCD), the situation with
divergence cancellation is even more complicated, even if
quarks are considered massive, since gluons, whose
masslessness is required by gauge invariance, have a colour
charge and therefore emit. For our purposes, we only need
formulas for factoring virtual corrections, and we will not
discuss the problem of divergence cancellation in what follows.
We will also use the term ”infrared divergences” not only for
divergences in frequency of radiation but also in radiation
angle, as is usually done for brevity.
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The study of the analytical properties of scattering amplitudes
has an even longer history. The analytical properties of elastic
scattering amplitudes have been well known since the middle of
the last century, when a consistent theory of strong interactions
did not exist, and the main tools for their description were
dispersion relations
N. N. Bogolyubov, B. V. Medvedev and M. K. Polivanov,
UCRL-TRANS-499(L).
Since there was no acceptable field theory of strong
interactions before the advent of QCD, the analytic properties of
amplitudes were studied in axiomatic quantum field theory.
A. S. Wightman, Phys. Rev. 101 ( 1956) 860-866.
H. Lehmann, K. Symanzik, W. Zimmermann, Nuovo Cim. 1 (
1955) 205-225, 6 ( 1957) 319-332.
N. N. Bogolyubov, A. A. Logunov and I. T. Todorov, Nauka,
1969.
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These properties are important for construction of the
Regge-Gribov theory of complex moments J
Gribov, V. N., The theory of complex angular momenta: Gribov
lectures on theoretical physics, 2003
Cambridge Monographs on Mathematical Physics Cambridge
University Press.
In this theory, the asymptotics of the scattering amplitude
A(s, t) for s →∞ and a fixed t is determined by the position of
the poles (called Reggeons) in the j-plane of the partial wave
Al(t) analytically continued to complex j . The analytic
properties of the scattering amplitudes allow continuation from
either even or odd l , so reggeons have an additional quantum
number compared to particles, the signature. The contribution
of a reggeon with trajectory α ≡ α(t) and signature σ to the
amplitude of the process AB → A′B′ is given by the expression
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AA′B′
AB = ΓAA′(t)sαξαΓBB′(t), (1)

where ΓAA′(t) and ΓAA′(t) are the vertices of the
reggeon-particle interaction, s = (pA + pB)2, t = (pA − p′A)2,
ξα = e−iπα+σ

sinπα – signature factor and is presented by the picture
pA pA′

pB pB′

The important thing is that the vertices of the reggeon-particle
interaction are real in the region of physical momentum transfer
t , so that the analytical properties of the amplitudes are
ehibited explicitly in the expression (1).
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The situation with the amplitudes of many-particle processes is
not so good, although the increasing role of multiple production
processes in strong interactions with increasing energy was
recognized already in those days, see, for example,
K. A. Ter-Martirosyan, Asymptotic behaviour of essentially
inelastic cross sections, Nucl.Phys, Vol. 68 (1965) p. 591-608.
and investigation of their analytical properties was started
already in the sixties of the last century.
Multiparticle amplitudes are necessary for:
direct description of processes with a large multiplicity
(whose role increases with the energy of colliding particles)
calculating amplitudes with a smaller number of particles using
unitarity relations.
In both cases, their analytical properties are important.
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At present, the generally accepted and widely used is the
statement of absence of simultaneous discontinuities of
multiparticle amplitudes in energy invariants of overlapping
channels. To justify this statement, the Steinmann relations are
used.
O. Steinmann, Uber den Zusammenhang zwischen den
Wightmanfunktionen und den retardierten Kommutatoren,
1960, Helv. Phys. Acta , Vol. 33, p. 267-298;
O. Steinmann, Wightmanfunktionen und den retardierten
Kommutatoren, 1960, Helv. Phys. Acta , Vol. 33, p. 347-362.
However, this statement is not correct and using the Steinmann
relations to prove it is illegal. In the case of infrared singular
parts of the amplitudes, existence of simultaneous
discontinuities in overlapping channels is quite natural. But it is
not limited to such parts, and is not limited to the existence of
infrared singularities at all, but occurs also in their absence.
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Infrared factorization

According to [Yennie:1961ad], the amplitudes of processes with
an arbitrary number of particles with momenta pi (all momenta
are considered incoming) are represented as

A({pi}) = exp

{
−
∑
i<j

QiQjV
(
pi ,pj

)}
Ans({pi}) ,

V
(
pi ,pj

)
= −e2

2

∫
d4k

i(2π)4
1

k2−λ2+i0

(
2pi−k

k2−2(kpi )+i0 +
2pj+k

k2+2(kpj )+i0

)2

,

(2)
where Qi = 1 for an electron (positron) in the initial (final) state
and Qi = −1 for an electron (positron) in the final (initial) state,
λ –introduced to regularize the infrared divergence of the
”photon mass”, and the amplitude Ans({pi}) is finite at λ→ 0.
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The expression for V
(
pi ,pj

)
integrated over d4k is well known.

Its infrared singular part is quite simple, especially in the
high-energy region of interest to us:

Vsing
(
pi ,pj

)
' α

2π

(
ln

(−sij

m2

)
− 1
)

ln

(
m2

λ2

)
, (3)

where sij = (pi + pj)
2.

In quantum chromodynamics (QCD), factorization is
complicated by the non-Abelian nature of the theory, which
leads to both additional singularities and to a matrix structure of
the emission vertices. By now, many papers have been
published in which these singularities have been studied in
QCD amplitudes. The standard set of references on this topic
includes the papers
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Stefano Catani, The Singular behavior of QCD amplitudes at
two loop order, Phys. Lett. B, 427:161–171, 1998 ,

George F. Sterman and Maria E. Tejeda-Yeomans, Multiloop
amplitudes and resummation, Phys. Lett. B, 552:48–56, 2003 ,

Lance J. Dixon, Lorenzo Magnea, and George F. Sterman,
Universal structure of subleading infrared poles in gauge theory
amplitudes, JHEP, 08:022, 2008 ,

Thomas Becher and Matthias Neubert, On the Structure of
Infrared Singularities of Gauge-Theory Amplitudes, JHEP,
06:081, 2009, Erratum: JHEP 11, 024 (2013) ,

Einan Gardi and Lorenzo Magnea, Factorization constraints for
soft anomalous dimensions in QCD scattering amplitudes,
JHEP, 03:079, 2009 .

V.S Fadin Factorization of infrared singularities and Steinmann relations



Infrared factorization

As usual in QCD, the analysis is carried out with the
regularization of divergences (both ultraviolet and infrared) by
the space-time dimension D = 4 + 2ε. At present, factorization
formulas representing amplitudes as a product Z H are
considered well established, where H is the so-called hard
amplitude, which has no singularities in ε, and all singularities
are contained in the factor Z. This representation is valid in
both QCD and QED, for both massless and massive electrons.
In the latter case, it is equivalent to the representation of
[Yennie:1961ad] with the regularization of infrared divergences
by the photon mass λ. But unlike QED, in QCD the factors Z
and H have a matrix structure.
For amplitudes with total number n of participating partons the
factorization is written as
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Mn

(
pi

µ
, αs(µ2)

)
= Zn

(
pi

µ
, αs(µ2)

)
Hn

(
pi

µ
, αs(µ2)

)
. (4)

Here H is a colour vector, which is finite as ε→ 0, and
represents a matching condition, to be determined order by
order in perturbation theory after the subtraction of divergent
contributions. The infrared operator Zn, on the other hand, is
an r × r matrix in colour space, generating all infrared and
collinear singularities of the amplitude; it satisfies a (matrix)
renormalization group equation, whose general solution can be
written in the form

Zn

(
pi

µ
, αs(µ2)

)
= P exp

[
1
2

∫ µ2

0

dλ2

λ2 Γn

(pi

λ
, αs(λ2)

)]
, (5)
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where Γn
(pi
λ , αs(λ2)

)
is the soft anomalous dimension matrix

and P denotes path ordering in colour space. For massless
particles, up to two loops, the n-parton soft anomalous
dimension matrix has a remarkably simple ”dipole” form,
proportional to the one-loop result, regardless of the number of
partons involved. The ”dipole formula” looks as

Γdip
n

(pi

λ
, αs(λ2)

)
=

1
4
γK

(
αs(λ2)

) ∑
(i,j)

ln

(−sij

λ2

)
Ti · Tj

−
n∑

i=1

γi

(
αs(λ2)

)
, (6)

where Ti are the colour group generators for the particle i .
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All dependence on on the coupling constant is contained in the
anomalous dimensions

γK

(
αs(λ2)

)
, γi

(
αs(λ2)

)
, (7)

The dipole formula is exact at least up to two loops.
The anomalous dimensions can be extracted from form factor
data.
Note that in higher orders the ”dipole formula” for Γn must be
supplemented by contributions of higher “multipoles”. These
are contributions containing sums over combinations of k
particles with k > 2. The quadrupole correction first appearing
in three loops was calculated relatively recently.

Ø. Almelid, C. Duhr and E. Gardi, Phys. Rev. Lett. 117 (2016)
no.17, 172002
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All poles in ε are generated through the integration of the
d-dimensional running coupling down to vanishing scale,
λ→ 0. ∫ µ2

0

dλ2

λ2 f (αs(λ2)) =

∫ αs(µ2)

0

dx
β(x , ε)

f (x)

x
, (8)

β(x , ε) = −ε−
∞∑

n=1

βn−1

( x
4π

)n
, β0 =

11
3

Nc −
2
3

nf , (9)

∫ µ2

0

dλ2

λ2

(
αs(λ2)

π

)n

=

(
αs(µ2)

π

)n [
− 1

nε
+

(
αs(µ2)

4π

)
β0

(n + 1)ε2

+

(
αs(µ2)

4π

)2( 1
(n + 2)ε2

)(
β1 −

β2
0
ε

)

+

(
αs(µ2)

4π

)3( 1
(n + 3)ε2

)(
β2 −

2β0β1

ε
+
β3

0
ε2

)]
, (10)
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∫ µ2

0

dλ2

λ2

(
αs(λ2)

π

)n

ln

(
µ2

λ2

)
=

(
αs(µ2)

π

)n [ 1
(nε)2−

(
αs(µ2)

4π

)

× β0

(n + 1)ε3
2n + 1

n(n + 1)
+

(
αs(µ2)

4π

)2 1
(n + 2)ε4

(
β2

0(
1
n

+
1

n + 1
+

1
n + 2

)

−εβ1(
1
n

+
1

n + 2
)

)
+

(
αs(µ2)

4π

)3 1
(n + 3)ε5

(
− β0(β2

0 − εβ1)

(
1
n

+
1

(n + 1)
+

1
(n + 2)

+
1

(n + 3)

)
−(β2ε

2−β0β1ε)

(
1
n

+
1

(n + 3)

))]
,

(11)
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The common feature of these formulas is the representation of
Z as an exponential with an index containing∑

i<j ln(−(pi + pj)
2) (all momenta are considered incoming)

over emitting particles i , j .
Such a representation contradicts the absence of in
overlapping channels.
Since the exponent in the infrared singular factor Z contains
the sum

∑
i<j ln(−(pi + pj)

2) over all channels, then when
expanding the exponential we obtain products of powers of
ln(−(pi + pj)

2 over all channels, including overlapping ones, i.e.
terms having discontinuities in overlapping channels, which
contradicts the hypothesis of the absence of such
discontinuities.
It contradicts also the Steinmann relations in their usual
interpretation as justification of this hypothesis.
But there is a question: is this interpretation correct?
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As it was said already, the Steinmann relations are used to
justify the statement of absence of simultaneous discontinuities
of multiparticle amplitudes in energy invariants of overlapping
channels.
But originally the Steinmann relations have few common with
this statement.
The Steinmann’s papers were devoted to investigation of
connection between two approaches to axiomatic quantum field
theory: Wightman’s one and the LSZ
(Lehmann-Symanzik-Zimmerman) approach. In the first one,
the consequences of the basic postulates of the theory for the
system of the vacuum averages

W (x0, ....xn−1) =< A(x0)...A(xn)) >0 (12)

of the products of field operators at arbitrary points in
space-time were studied and it was shown that the system of
all W uniquely defines the theory.

V.S Fadin Factorization of infrared singularities and Steinmann relations



Steinmann relations

Unfortunately, the concept of S-matrix cannot be incorporated
into this formalism. The approach of Lehman, Simanczyk, and
Zimmerman is being made to construct the theory as a theory
of the S-matrix. In this approach, the vacuum averages

r(x ; x1, x2, ...xn) =< R(x ; x1, x2, ...xn) >0 (13)

from retarded products of field operators were studied. For
n + 1 operators this product is defined as

n = 0 : R(x) = A(x),

n ≥ 1 : R(x ; x1, x2, ...xn) = (−i)n
∑

P(x1,x2,...xn)

θ(x−x1)θ(x1−x2)....

θ(xn−1 − xn)[...[A(x),A(x1)]...A(xn)] (14)

The connection with the S-matrix is established using the
so-called asymptotic condition, a statement about the behavior
of the field in the limit of t →∞. From this condition, it is
possible to derive a complex system of equations
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r(x ; y , x1, x2, ...xn)− r(y ; x , x1, x2, ...xn) =
∑

i1,...ik

n∑
k=0

∑∞
l=0

(−i)l

(n − k)!l!

∫
du1...duldv1...dvl K̂ul ...K̂ul r(x ; xi1 ...xik u1...ul)

∆+(u1−v1)...∆+(ul−vl)K̂v1 ...K̂vl r(y ; xik+1 ...xinv1...vl)− (x ↔ y),
(15)

where

K̂z = −∂2
z −m2, i∆+(x − y) =

∫
d3ke−ik(x−y)

(2ωk )(2π)3

The system of functions (14) as a whole also define the theory,
as well as the system .
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The functions r(x ; x1, x2, ...xn) (13) can be expressed
algebraically in terms of W (x ; x1, x2, ...xn) by definition. For
given W (x ; x1, x2, ...xn) the resulting expression satisfies all
required properties, except for (15, which follows from the
asymptotic conditions.
On the contrary, if {rn} is a system of functions with the correct
properties, including (15), which follows from the asymptotic
conditions then the corresponding field operator, and hence the
Wightman functions, can be calculated, that is, the equations
are solvable with respect to {Wn}. The solvability conditions
were investigated in this paper The Steinmann’s papers.
Actually, the problem which was considered in these papers is:
under what conditions is the connection between {rn} and
{Wn} solvable with respect to {Wn}? Are the properties of {rn}
without (15) sufficient? If not, what properties are needed?
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The Steinmann’s papers are devoted mainly to investigation of
properties of the retarded commutators {rn} resulting from the
following postulates:
1. The vectors of states form a Hilbert space with a positively
defined metric.
2. The theory of invariants with respect to an inhomogeneous
Lorentz proper group.
3. The theory is local, i.e. [A(x),A(y)] = 0 if x − y is spatially
similar.
4. There are no negative energy states. There is only one state
Ω (vacuum) with energy 0.
Note that the postulate 4. actually forbids massless particles.
There is an additional restriction:
The Lehman asymptotic condition or similar requirements are
not assumed.
Rejection of the asymptotic condition actually means rejection
of consideration of the S-matrix.
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The Steinmann relations were obtained for the retarded
commutators {rn}, and not for matrix elements of the S matrix.
Therefore, they can not be considered as justification of the the
absence of simultaneous discontinuities in overlapping
channels.
Actually, if such discontinuities are infrared singular, they can
not be prohibited at all in axiomatic quantum field theories It
was indicated by Steinmann himself. In particular, he wrote in
O. Steinmann, The Infrared Problem in Electron Scattering,
Acta Phys. Austriaca Suppl. 11 (1973), 167-198
”The axiomatic way of defining S also does not work. In the
known proofs of asymptotic conditions it is assumed that the
particles under consideration belong to isolated one-particle
hyperboloids in the energy-momentum spectrum of the relevant
superselection sector. This is not the case for electrons.”
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Thus, firstly,
usage of the Steinmann relations as justification of the
statement of the absence of simultaneous discontinuities of
multiparticle amplitudes in overlapping channels is not correct.
and secondly,
the statement of the absence of simultaneous discontinuities in
overlapping channels contradicts the factorization of infrared
singularities.
Nevertheless, this statement is used under the name
Steinmann relations in quantum chromodynamics, and in
supersymmetric theories, and even in cosmology:
P. Benincasa, A. J. McLeod and C. Vergu, Steinmann Relations
and the Wavefunction of the Universe, Phys. Rev. D 102
(2020), 125004.
In fact, what is meant here is not the Steinmann relations, but
the statement that there are no simultaneous discontinuities in
overlapping channels.
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The statement of the absence of simultaneous discontinuities in
overlapping channels arose during the creation of the Regge
theory of multiparticle processes.
To create this theory, knowledge of the analytical properties of
many-particle amplitudes was required. In the absence of any
reliably established properties of these amplitudes, various
models were used: the ladder model
I. T. Drummond, P. V. Landshoff, and W. J. Zakrzewski,
Signature in production amplitudes, Phys. Lett. B, 28:676–678,
1969,
the hybrid Gribov model,
I. T. Drummond, P. V. Landshoff, and W. J. Zakrzewski, The
two-reggeon/particle coupling, Nucl. Phys. B, 11:383–405,
1969,
I. T. Drummond, Multi-reggeon behavior of production
amplitudes, Phys. Rev., 176:2003–2013, 1968.,
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the dual resonance model
J. H. Weis, Factorization of multi-Regge amplitudes, Phys. Rev.
D, 4:1777–1787, 1971,
Carleton E. DeTar and J. H. Weis, Analytic structure of the
triple-regge vertex, Phys. Rev. D, 4:3141–3161, 1971.
It was recognized that the reggeon-reggeon-particle vertex
V D

R1R2
(q1,q2) in the direct generalization of the regge pole

contribution to the elastic amplitude (1) for the case of the
process AB → A′DB′

pA pA′

PD

pB pB′
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AA′DB′
AB = ΓAA′(t1)sα1

1 ξα1V D
R1R2

(q1,q2)sα2
2 ξα2ΓBB′(t2), (16)

in the Multi-Regge kinematics

s � si � |ti |, i = 1,2, s = (pA + pB)2, s1 = (p′A + pD)2,

s2 = (p′B + pD)2, t1 = (pA − p′A)2, t2 = (pB − p′B)2) (17)

has a complicated analytical structure. Finally, Regge theory for
multiparticle amplitudes was built on the system of postulates.
R. C. Brower, Carleton E. DeTar, and J. H. Weis, Regge Theory
for Multiparticle Amplitudes, Phys. Rept., 14:257, 1974.
One of the most important postulated properties of
many-particle amplitudes is the absence of simultaneous
discontinuities in the squares of the invariant masses of
overlapping channels
(Recall that two channels are said to overlap when they have
common particles but are not subchannels of each other).
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This property allows one to write a multi-Regge representation
for many-particle amplitudes in a form that explicitly shows all
their analytical properties. Contribution of Reggeons with
trajectories αi(t) and signatures τi to the amplitude of the
process AB → A′CB′

is presented in the form

AA′DB′
AB = ΓAA′(t1)

[
sα2ξα2sα1−α2

1 ξα1α2

]
VR(t1, t2, κ)

×
[
sα1ξα1sα2−α1

2 ξα2α1

]
VL(t1, t2, κ)

]
ΓBB′(t2), (18)

where κ = s1s2
s , ξα1α2 = e−iπ(α1−α2)+τ1τ2

sin(π(α1−α2))
.

The advantage of this representation is that for ti < 0 the
functions VL and VR are real, which allows us to uniquely
separate the amplitude into real and imaginary parts. Similar
representations exist for the production of a larger number of
particles (with the number of vertices increasing with the
number of particles).
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The existence of simultaneous discontinuities in the energy
invariants of overlapping channels can be verified both in the
presence of infrared singularities and in their absence by
considering the two-loop radiative correction in QED to the
process with three charged particles in the final state (as, for
example, in the Bethe-Heitler process). We will consider only
diagrams with insertions of photon vertices into the external
lines of the Born approximation diagrams, neglecting the
photon momenta in the internal lines. Note that according to
the Landau criterion
[Landau:1959fi] L. D. Landau, On analytic properties of vertex
parts in quantum field theory, Nucl. Phys., 13(1):181–192,
1959.
the singularities of these diagrams are contained among the
singularities of the total amplitude, since the latter include the
singularities of diagrams in which some of the lines are missing,
i.e. the vertices they connect merge.
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Let us denote the momenta of the final particles as p1, p2, p3.
For simplicity, we will assume that the masses of the particles
are equal. Let

sij = (pi +pj)
2, S = (p1+p2+p3)2 = s12+s13+s23−3m2. (19)

Note that in the physical region (i.e. in the region where the
momenta of all particles have physical meaning) the sign of sij
coincides with the sign of (pipj), so the sign of the product
s12s13s23 is always positive. In this case, according to the
accepted terminology, any two of these channels are
overlapping. One of these channels and the s-channel are
non-overlapping, since it contains all 3 particles.
Let us investigate the presence of simultaneous discontinuities
in the channels s12 and s23. Such discontinuities can only be
given by diagrams in which one of the photons connects the
lines of particles with momenta p1 and p2, and the other with
momenta p3 and p2.
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One of this diagram is presented here.

pA

pB

p1

p3

p2

k1

k2

s12

s23

The contribution of such a diagram is proportional to the Born
amplitude multiplied by the factor

I ≡ I(s12, s23, s13) =

∫
d4k1

(2π)4i
1

d10d11d12
J3(s̃23; m̃2), (20)
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where
s̃23 = (p2 + p3 − k1)2, m̃2 = (p2 − k1)2;

J3(s̃23; m̃2,m2) =

∫
d4k2

(2π)4i
1

d20d21d22
, (21)

d10 = (k2
1 − λ2 + i0), d11 = ((k1 + p1)2 −m2 + i0),

d12 = ((k1 − p2)2 −m2 + i0), d20 = (k2
2 − λ2 + i0),

d21 = ((k2 + p3)2−m2 + i0), d22 = ((k1 + k1− p2)2−m2 + i0).
(22)

Let us consider the discontinuities of I with respect to the
invariant s12. There are only two such discontinuities: a
two-particle one, which occurs due to the simultaneous
vanishing of d11 and d12, and a three-particle discontinuity,
which occurs due to the simultaneous vanishing of d11, d22, and
d20. The second of them has no singularities, since the
vanishing of any of the remaining denominators would
contradict the law of conservation of energy-momentum. For a
two-particle discontinuity, using the Cutkoski rules, we obtainV.S Fadin Factorization of infrared singularities and Steinmann relations



Direct investigation of the discontinuities

∆s12 I =

∫
d4k

(2π)4i
(2πi)2δ((p1 + k)2 −m2δ((p2 − k)2 −m2))

k2 − λ2

×J3(s̃23; m̃2). (23)

We will use the Sudakov parametrization (light-cone variables).
Introducing the light-cone vectors l1 and l2 such that

p1 = l1 +
m2

s̃
l2, p2 = l2 +

m2

s̃
l1, l21 = 0, l22 = 0, (l1 + l2)2 = s̃,

s12 = s̃(1 +
m2

s̃
)2, s̃ = s12

(1 + v12)2

4
, v12 =

√
1− 4m2

s
, (24)

representing k as

k = −βl1 +αl2 +k⊥, (k⊥l1) = (k⊥l2) = 0, k2
⊥ ≡ −~k2 ≤ 0, (25)

so that
V.S Fadin Factorization of infrared singularities and Steinmann relations



Direct investigation of the discontinuities

k2 = −s̃αβ − ~k2, (p1 + k)2 −m2 = s̃α(1− β)−m2β − ~k2,

(p2 − k)2 −m2 = s̃β(1− α)−m2α− ~k2, (26)

and using d4k = s̃
4dαdβd~k2

⊥dφ, where φ is the azimuth angle
of ~k⊥, we obtain, passing to the integration variable
z = β/(1−m2/s̃),

∆s12 I = − 2i
(4π)2

√
s12(s12 − 4m2)

∫ 1

0

dz

z + λ2

s12−4m2

∫ 2π

0
dφJ3(s̃23; m2),

(27)

J3(s̃23; m2) = − 1
(4π)2

∫ 1

0
dx
∫ 1

0

ydy
(y2p̃2

x + λ2(1− y))
, (28)

where p̃x = x(p2 − k)− (1− x)p3, and

(p2−k)2 = m2, k = −z(p1−p2)+k⊥, ~k2
⊥ = (s12−4m2)z(1−z).

(29)
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Direct investigation of the discontinuities

Here it should be said that s̃23 = (p3 + p2 − k)2 we must
calculate in the physical region, since we use Sudakov’s
parametrization.
We obtain

p̃2
x = m2 − x(1− x)(s13z + s23(1− z) + 2(~p3⊥~k⊥)). (30)

The most singular contribution to ∆s12 I comes from z = 0 to
J((p3 + p2 − k)2), so that for this contribution we have

∆
sing
s12

I = − 4πi
(4π)2

√
s12(s12 − 4m2)

∫ 1

0

dz

z + λ2

s12−4m2

J3(s23), .

(31)
The presence of a discontinuity ∆s23J3(s23) makes obvious the
existence of a double discontinuity in overlapping channels.
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Direct investigation of the discontinuities

The singular part of the double discontinuity is

∆s23∆
sing
s12

I = ∆s12J3(s12)∆s23J3(s23) (32)

according to infrared factorization.
It is worth noting that the double discontinuity (by s12 and s23)
may be not only from the contribution I under consideration, but
also from the contribution I′ corresponding to the diagram in
which the vertices of the interaction of photons with a particle
with momentum p2 change places. But the calculation of the
double discontinuity depends on the order in which the
discontinuities are calculated. As already mentioned, ∆s23 I has
no singularities; similarly ∆s12 I′. Therefore (32) gives the full
discontinuity.
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Direct investigation of the discontinuities

Thus, infrared singularity destroys the hypothesis of the
absence of simultaneous discontinuities in overlapping
channels.
The representation (27) can be used also for analysis of
nonsigular contributions to double discontinuities. Using the
Feynman parametrization

1
d20d21d22

=

∫ 1

0
dx
∫ 1

0

2ydy[
(1− y)d20 + y

(
xd22 + (1− x)d21

)]3

(33)
and performing in (20) integration over d4k2, we obtain

J3(s̃23; m2) = − 1
(4π)2

∫ 1

0
dx
∫ 1

0

ydy
(y2p̃2

x + λ2(1− y))
, (34)
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Direct investigation of the discontinuities

where p̃x = x(p2 − k)− (1− x)p3,

(p2−k)2 = m2, k == −z(p1−p2)+k⊥, k2
⊥ = (s12−4m2)z(1−z),

(35)
so that

p̃2
x = −x(1− x)(p3 + p2 − k)2 + m2,

(p3 + p2 − k)2 = s13z + s23(1− z) + 2(p3⊥k⊥). (36)

Performing in (27) integration over φ, one has

∆s12 I =
i

(4π)3
√

s12(s12 − 4m2)

∫ 1

0

dz

z + λ2

s12−4m2

∫ 1

0
dx
∫ 1

0

ydy
D

,

(37)
where

D =

√(
λ2(1− y) + y2

(
m2 − x(1− x)

(
s23(1− z) + s13z

)))2
− B2,

(38)
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Direct investigation of the discontinuities

B2 − 4(y2x(1− x))2p2
3⊥k2

⊥

= 4(y2x(1− x))2z(1− z)
[
s23s13−

m2

s12
(s23 + s13 + s12−4m2)2

]
.

(39)
Let us consider the simplest case of a finite ”photon mass” and
zero electron mass. In this case, the denominator in (37) is

Dm=0) =
√

t2(s12z − s23(1− z))2 + l2 − 2lt(s12z + s23(1− z)),

(40)
where t = y2x(1− x), l = λ2(1− y). At negative s13 and s23, as
well as when s13 and s23 have different signs, the expression
under the root is positive in the entire range of change of the
integration variables x , y , z. At positive s13 and s23 it negative
at b+ > s23 > b−,
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Direct investigation of the discontinuities

b± =
1

1− z
[√

b0 ±
√

s13z
]2
, (41)

where b0 = l/t . Its negativity means that there is a discontinuity
in s23. At z = 0 and fixed x , y , the discontinuity is at a single
point (delta-shaped singularity). When x , y change in the area
of integration, this point runs through the entire real positive
semiaxis. At z 6= 0, the points b±, as well as the difference
b+ − b−, also run through all values on the real semiaxis with a
change in x , y , which indicates the presence of a discontinuity
at s23 > 0.
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Connection with the BFKL approach

Violation of the hypothesis of the absence of simultaneous
discontinuities in overlapping channels turns out to be
important for further development of the BFKL approach.
The BFKL approach is founded on the gluon Reggeization.
In the dispersive method, used for the derivation of the BFKL
equation, the unitarity relations are used for the calculation of
imaginary parts of elastic amplitudes. Regge form of
multiparticle amplitudes is used in unitarity relations.
In the unitarity relations, multiple production amplitudes in the
multi-Regge kinematics (MRK) must be taken into account.
MRK is the kinematics where all particles have limited
transverse momenta (with respect to momenta of colliding
particle) and are combined into jets with limited invariant mass
of each jet and large (increasing with s) invariant mass of any
pair of jets.
The muli-Regge form was used for these amplitudes.
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Connection with the BFKL approach

pA

pB

pA′

pB′

n

The s-channel discontinuity.

The fallacy of the hypothesis of the absence of simultaneous
discontinuities in overlapping channels, and hence of the
multi-Regge form of multiparticle amplitudes based on this
hypothesis, may cast doubt on the derivation of the BFKL
equation.
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Connection with the BFKL approach

However, these doubts are unfounded both in the LLA and in
the NLLA since in these approximations only the real part of the
amplitudes included in the unitarity relations was used in
deriving the BFKL equation.
It is quite clear in the LLA, where imaginary parts of the
multiparticle amplitudes are neglected.
This is also true in the NLLA.
The reason is that in this approximation one of two amplitudes
in the unitarity relations can lose ln s, while the second one
must be taken in the LLA. The LLA amplitudes are real, so that
only real parts of the NLLA amplitudes are important in the
unitarity relations.
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Connection with the BFKL approach

Unfortunately, it is not so in the NNLLA. In this approximation
two powers of ln s can be lost compared with the LLA in the
product of two amplitudes in the unitarity relations. It can be
done losing one ln s in each of the amplitudes, so that their
analytical properties become important.
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Summary

Factorization of infrared singularities is incompatible with
the statement of absence of simultaneous discontinuities in
energy invariants of overlapping channels of multiparticle
amplitudes.
Steinmann relations are relations between vacuum
expectation values of retarded commutators of field
operators derived in axiomatic quantum field theory. They
have no relations to S-matrix and perturbation theory.
They can not be used for justification of the statement of
absence of simultaneous discontinuities.
This statement arose during creation of the Regge theory
of multiparticle processes.
Simultaneous discontinuities exist in the absence of
infrared singularities as well.
Existence of of simultaneous discontinuities means that
the commonly accepted Regge form of the multiparticle
amplitudes is not valid in QCD.
It must be taken into account in dispersive derivation of the
BFKL equation in higher approximations.
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