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Motivation

• Multiloop integrals are complicated multivalues
branching functions of kinematic parameters. As
functions of space-time dimensions d , they are mero-
morphic functions on C.

• Monodromy describes how they change under an analytic
continuation along closed paths. Meanwhile, the differential
equations describes how they change under an analytic continuation
along any, not necessarily closed contour.

• Monodromy captures main properties of differential system with
regular singular points2 and its solutions.

Trivial monodromy group ⇔ rational function
Finite monodromy group ⇔ algebraic function

Discrete monodromy group ⇔ Calabi-Yau periods.

2NB: Only differential systems with regular singular points appear in multiloop
calculations.
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Monodromy of functions I

• Suppose we have algebraic function y = y(x) satisfying a polynomial
equation

P(y , x) = a0(x)y
n + a1(x)y

n−1 + an(x) = 0.

In general it has n solutions yk(x), (k = 1, . . . n). For some values
x ∈ D = x1, . . . , xk the distinct roots coalesce. If we move x along
some path in C\D, the roots also move in the complex plane. For a
closed path they can experience permutation. Therefore, we have
monodromy representation of the fundamental group π1(C\D, b):

ρ : π1(C\D, b) −→ Sn

E.g., let y satisfies
y2 − 2y + x = 0

Then y1,2 = 1±
√
1− x , D = {1,∞}. When going over a closed

loop around x = 1 the two solutions permute and the monodromy
group is S2.
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Monodromy of functions II

• Let y(x) = Li2(x). This function has a branch cut [1,∞). For a
loop around x = 1 it admits an additive term 2πi ln x , which has a
branching point at x = 0. When analytically continued around x = 0
it admits a constant term 2iπ. So the function space is now

3-dimensional, f = (Li2(x), ln x , 1)
⊺ . The monodromies are

ρ(γ0) = M0 =

1 0 0
0 1 2πi
0 0 1

 , ρ(γ1) = M1 =

1 2πi 0
0 1 0
0 0 1


f γ0−→ M0f , f γ1−→ M1f
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Monodromy of differential systems

The same notion of monodromies works for the solutions of linear
differential systems with entries being rational functions. Consider

∂x f = M(x)f ,

where M is a rational wrt x matrix. Suppose F is a fundamental matrix
of solutions, then upon the analytic continuation along a closed path we
have

F (x) → F (x)Mγ ,

where Mγ is a monodromy matrix depending on the path γ.

Monodromy representation

Monodromy matrix depends only on the equivalence class of γ, i.e.
we have monodromy representation of fundamental group

ρ : π1(C\S , b) −→ GL(n,C)
γ(b, b) −→ Mγ
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Monodromy via analytic continuation along the path

We cover our path with pair-wise
intersecting disks D0, . . . ,DN , non
of which includes any singular point.
In i-th disk we construct
fundamental matrix Fi (x) in terms
of (ordinary) series expansion. We
find constant matching matrices Ti ,
such that Fi (x) = Fi−1(x)Ti for
x ∈ Di ∩ Di−1. Then

Mγ = TN . . .T1

b γ
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Monodromy via evolution operator I

Fundamental matrix F can be written in terms of path-ordered exponent

Fb(x) = U[γ(x , b)] ≡ Pexp

[∫
γ(b,x)

dxM(x)

]

where by γ(b, x) we denoted the path starting and ending at b and x ,
respectively. This solution is normalized to identity matrix at x = b.3

Then the monodromies, corresponding to a loop γ = γ(b, b) are

Mγ = U[γ] = Pexp

[∫
γ

dxM(x)

]

As Pexp can rarely be calculated in closed form, there is no rigorous
way to calculate monodromy representation for a given differential
system. Finding monodromy is difficult!
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Monodromy via evolution operator II

Suppose for convenience that we have differential system in normalized
Fuchsian form:

∂x f =
∑

a∈S\∞

Ma

x − xa
f ,

where S = a0, . . . , ap ⊂ C and the matrices Ma are free from resonance
eigenvalues. The matrices M0

a = exp(2πiMa) are called local
monodromies. Then the monodromy matrix corresponding to an
elementary loop around point a is similar to M0

a:

Ma = C−1
a M0

aCa,

So the problem is to find connection matrices Ca.
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Monodromy via evolution operator III

Let us consider the elementary loops
as paths going along the straight
line segment, loops around a
singular point along a small circle,
and returns back along the same
line. Then the three parts of this
contour exactly correspond to the
product Ma = C−1

a M0
aCa.

a1

a2

ap
. . .

b

γa0γa1

γa2

γap

a0

Here M0
a = exp(2πiMa) are local monodromies defined above. The

connection matrix are defined as

Ca = U(a, b) ≡ lim
x→a

(x − a)−Ma Pexp

 x∫
b

dxM(x)


3Strictly speaking, this defines single-valued function of x in a small vicinity of

regular point b provided that we take path γ(b, x) also belonging to this vicinity.
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Differential systems with given monodromy I

So, a differential system uniquely (up to common similarity) define
monodromy representation. To what extent the monodromy
representation define the differential system?
This is closely related to the celebrated 21st Hilbert problem formulated
in 1900

Hilbert’s 21st problem

Prove that for any monodromy representation there exists a linear
differential system with regular points of Fuchsian type.

The positive solution was given by Plemelj in 1908, however in late 1960s
the Plemelj‘s prove was criticized in relation to underlined part. In 1992
Bolibrukh has found a counter-example, so the 21st problem has, in
general, negative solution. But if we omit the underlined property,
Plemelj’s solution was correct.
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Differential systems with given monodromy II

But to what extent the differential system is unique?
Let us consider two systems

∂xF1 = M1(x)F1, ∂xF2 = M2(x)F2

with the same monodromy representation. Consider now the analitic
continuation of the ratio F1(x)F

−1
2 (x) over a closed loop. We have

F1(x)F
−1
2 (x)

γ−→ F1(x)Mγ(F2(x)Mγ)
−1 = F1(x)F

−1
2 (x)

So this ratio has trivial monodromy, thus being a rational function.

Differential system form monodromy

Monodromy representation defines differential system uniquely up
to linear transformations of functions, with rational in x coefficients.
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Monodromy from differential system

As we already mentioned, representing the monodromy via path-ordered
exponent does not help. Note that for multiloop calculation we have
additional complication: dependence on d .
As usual, if we don’t have a rigorous approach, we may try to guess the
correct answer. What we need:

• An ansatz for functional dependence on d .

• An ansats for suitable basis in which the monodromy
matrices have the suggested form.

• An efficient way to obtain high-precision numerical results for
the monodromy matrices for specified numerical value d .

• A way to recognize a function from its numerical value in a
single point.
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An ansatz for functional dependence on d I

Note that, in addition to differential system [Kotikov, 1991, Remiddi,
1997]

∂x j (x , d) = M(x , d)j (x , d)

there is always dimensional recurrence relations [Tarasov, 1996]

j (x , d + 2) = L(x , d)j (x , d),

where L(x , d) is a rational matrix (wrt d and x). The compatibility
condition of these two equations has the form

∂xL(x , d) = M(x , d + 2)L(x , d)− L(x , d)M(x , d)

can be explicitly check for each specific example. Then there exists a
fundamental matrix of solutions F (x , d) which satisfies both equations.
In particular,

F (x , d + 2) = L(x , d)F (x , d)
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An ansatz for functional dependence on d II

Let us see how this equation evolves upon analytical continuation around
a closed loop γ:

F (x , d + 2)ρ(d + 2) = L(x , d)F (x , d)ρ(d)

The we conclude that ρ(d + 2) = ρ(d), i.e., ρ is a periodic function of d
(with period 2). Periodic functions of d appear also in the DRA method
[RL, 2010], where the variable z = e iπd was introduced. Any function of
z is periodic wrt d .

Anzats for d dependence

There is a monodromy representation in Mn(Q(z)), i.e., the rep-
resentation with matrices whose entries are rational functions of
z = exp(iπd).
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An ansatz for suitable basis. I

We assume now that there is a basis in which monodromies are rational
functions of z .
Suppose that there is a non-degenerate eigenvalue λ = zn of one of the
monodromy generators. Note that the eigenvalues monodromy
generators can be found from local monodromies and have the form zk

with k ∈ Z. Then we can construct an appropriate basis using the
eigenvector v corresponding to this eigenvalue. Namely, we act on this
eigenvector by various products of monodromy generators until we find
the basis. By construction, this basis will consists of vectors of rational
functions in z . Then the transformation to this basic will retain rational
form of the monodromy matrices.
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Numerical monodromies from generalized power series

Let the system be Fuchsian at x = a, i.e.

M(x) =
Ma

x − a
+ O (1)

Then in the vicinity of a there is a solution in the form

U(x , a) =

[ ∞∑
n=0

Ha
n · (x − a)n

]
(x − a)Ma ,

where Ha
n are some constant matrices.

Finite order recurrence forHa
n

In Ref. [RL, Smirnov, and Smirnov, 2018] an efficient algorithm
based on finite recurrence between the coefficients of these series
was introduced. This approach allows us to calculate a lot of expan-
sion terms in linear time, as opposed to the conventional quadratic
time. For O(103) terms that make a lot of difference!
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Guessing rational function from its value in a single point.

Suppose f (z) belongs to Q(z), i.e., can be represented as a ratio
P(z)/Q(z), where P(z) and Q(z) are polynomials with integer
coefficients. Can we guess its precise term from its numerical value at
one chosen point?
Yes, we can:

• Pick transcendental point z = z0, e.g. z = π.

• Evaluate f (z0) with high precision.

• Using PSLQ find integer relation between numbers

1, z0, z
2
0 , . . . , z

N
0 , f (z0), z0f (z0) . . . , z

N
0 f (z0),

where N is sufficiently large integer number.

• Express f (z0) from this relation, replace z0 → z .
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Monodromy from differential equations: heuristic algorithm

1 Pick a numeric d such that z = exp(iπd) is transcendental. E.g.,
take d = 12/π.

2 Find sufficiently many terms of generalized power series expansions
at each singular point. If necessary, add expansions around some
regular points, so that the union of convergence disks is connected.

3 Using these expansions, construct high-precision numeric matrices of
monodromy generators along the lines described in the previous
section.

4 Pick a vector v1 corresponding to a non-degenerate eigenvalue ∝ zk

(k ∈ Z) of one of the monodromy generators. Acting on this vector
by various elements of monodromy group obtain a basis.

5 Transform the monodromy generators to this basis by applying the
similarity transformation Ma → C−1MaC with C consisting of
these vectors as columns and try to recognize their matrix elements
as rational functions of z using PSLQ.
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Example: maximal cut of three-loop forward box I

∂x j =

[
M0

x
+

Ma+

x − a+
+

Ma−

x − a−

]
j

where a± = 1
2 (−11± 5

√
5). The

numerical values of a± differ by two
orders of magnitude, so we had to
calculate series expansion not only
at x = {0, a+, a−}, but in
a number of intermediate points: x =
{−37/9,−29/19,−5/9,−1/5,−1/13}.
The number of terms in each
expansion was 103, which gave us
about 250 digit precision result for
monodromies.
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Elliptic sector from Higgs@N3LO

[Mistlberger, 2018]
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Example: maximal cut of three-loop forward box II

Monodromy matrices

M0 =


z (z − 1)z (z − 1)z 1 − z

0
(z+1)

(
z2+1

)
z2

(z+1)
(
z2+1

)
z2

− z3+z2+1
z3

0 −1 −1 1
z

0 1 0 0

 ,

Ma+ =


1 0 0 0

1 z4 z2
(
z3 + z2 + z + 2

)
0

0 0 1 0
0 0 0 1

 ,

Ma− =


1 0 0 0
0 1 0 0

z2 + 1 − 2z3+z2+z+1
z

z4 z5+z3+2z2+1
z

0 0 0 1

 ,

M∞ =



1
z

0 z − 1 0

0 0 0 1

z3−z2+z+1
z5

−
(z+1)

(
z2−z+2

)
z5

z3−z2+2z+1
z3

(z+1)
(
2z2−z+1

)
z5

− 1
z2

1
z2

−1 0

 .
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Conclusion

• Monodromies capture the most nontrivial information about
differential systems.

• We have introduced a heuristic approach to calculate the
monodromies exactly in the parameter d .

• We have checked, in particular, that found monodromies bilinear
constraints dictated by twisted Riemann bilinear relations.

• Surprisingly, in all considered cases, the monodromies can be
repesented as matrices whose entries belong to Z[z , 1/z ], i.e., are
Laurent polynomials of z!

Thank you!
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