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The questions: BLTP

& Are renormalizable theories just low-energy efficient theories, or does the
principle of renormalizability limit the class of permissible interactions!?
& What to do with gravity which is not renormalizable!?

Non-renormalizable theories are not accepted due to:

& UV divergences are not under control - infinite number of new types of
divergences
& The amplitudes increase with energy (in PT) and violate unitarity

However:

& Quantum field theory is formulated for all types of interactions
independently on renormalizability

& R-operation equally works for NR theories and leads to local
counter terms resulting in finite amplitudes

We attempt to address these issues in NR theories and to
show that one can work with NR interactions beyond tree level
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Renormalization

Bogolyubov-Parasiuk Theorem: In any local quantum field theory to get the UV
finite S-matrix one has to introduce local counter terms to the Lagrangian in each
order of perturbation theory - R-operation

G B A
BPHZ R-operaion ~ RG = (1 — K)R'G

In renormalizable case this is equivalent to the operation of multiplication by a
renormalization constant Z

Z:1—§:KR@Q

In non-renormalizable case the BP theorem is still valid and the counter terms are
also local (at maximum are polynomial over momenta)

Kazakov,18

* Multiplication operation is replaced by acting of an operator / — /

A

/ is a function (polynomial) of momenta (s,t,u for the 4-point case) and/or the fields
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BPHZ R-operation

Locality:

G — + ——

1 loop 1 loop n—l.ibop
counter counter
term term
Algn) e terms appear after subtraction of (n-k) loop counter terms

Statement: R'G, is local,i.e.terms like log" u?/e™ should cancel for any k and m

* Due to locality all higher order divergences are related to the lower ones




The Local Counter Terms

Consequence:

A

Coeffici f 1/€"
i oefficients o /E «

The leading divergences are governed by | loop diagrams!

Leading divergences: A,gln) = (—1)”+1

2
n—1)

SublLeading divergences: B?gn) & ( ( Bén) S ngn)) Coeffcieniaiar 1/677,—1
n n

The sub leading divergences are governed by 2 loop diagrams!

& These properties allow one to write down the recurrence relations connecting the
subsequent orders of the counterterms and to evaluate them algebraically without
calculating the diagrams. This can be done in renormalizable and non-renormalizable
theories. The difference is a more complicated structure of these relations in NR case.

& These recurrence relations can be promoted to the RG equations for the scattering
amplitudes, effective potential, etc which sum up the leading divergences (logarithms)

and to find out the high energy/field behaviour
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Two loop example
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non-local terms to be cancelled

: : ger Il
Leading divergence is given by the one-loop term A = §(A§1))2

- These statements are universal and are valid in non-renormalizable theories as well.

- The only difference is that the counter term A%U depends on kinematics and has to be
integrated through the remaining one-loop graph.

« As aresult A§2) IS not the square of Agl) anymore but is the integrated square .

- This last statement is the general feature of any QFT irrespective of renormalizability
7



Leading divergences in Scattering Amplitudes

Quartic vertices

g
X TN B=el §

n-loop (n-1)-loop (n-1)-loop

(n-k-1)-loop

o terms with higher loop remaining diagrams

AP AP

Cubic vertices

n-loop (n-1)-loop (n-1)-loop k-loop (n-k-1)-loop

— terms with higher loop remaining diagrams
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The Recurrence Relation for the Scattering Amplitude BLTP

Kazakov,20

@D - D> @D Y @ O @

* This is the general recurrence relation that reflects the locality of the counter
terms in any theory

* In renormalizable theories A n is a constant and this relation is reduced to the
algebraic one

* In non-renormalizable theories A_n depends on kinematics and one has to
integrate through the one loop diagrams

Taking the sum Z An(—2)" = A(2) one can transform the recurrence relation

into integro-diff equation

This is the generalized RG equation validgin any (even non-renormalizable) theory!



Bork,Kazakov,Kompaneets,Vlasenko, 13
Borlakov,,Kazakov,Tolkachev,Vlasenko, 15 S Y M D

S-channel S, (s,t) T-channel i) T, (s, 0 =TS {ms)

Exact all-loop recurrence relation S3 = —s/3, T3 = —t/3

1 T
nSy(s,t) = —2s / dx / dy (Sp—1(s,t") + Tr-1(s,1"))
0 0

D=8 N=1
S-channel S, (S, t) T-channel s (3, t) T, (s, 1 =05}
Exact all-loop recurrence relation B = 1—12 T = 1—12

1 x
o MisE ) — —252/ d:z:/ dy y(1 — z) (Sp_1(s,t') + T, 1(s, ¢ )= e

n—22k—2 dp

+ /da;:z; Qw5 p+2' 7 (Sk(5,t) + Tk (s, 1)) x

klpO

dp
X T (S’n—l—k(syt/) I Tn—l—k(sat/))‘t’:—saz (s (Il
P 0




RG Equation
SYM_D D=6 N=2 X(s,t,2) =2 i(—z)“’s

d

2 1 X
d_z(satv Z) T _Z(Svtv Z) Bl 25/ dill'/ dy (E(S7t,7 Z) i E(tlv S, Z))‘t’:azt—kyu
Z Z 0 0

Linear equation

D=8 N=1 (s,t,2) = ) (~=
n=1
d / /
EZ(S b :———|—23 / dx/ dy y(1 —x) (X(s,t,2) + (1t 8, 2)) |t =tz yu

/ i & ) 2 Z pl(p+2)! dt/p (2(87t e E(t Sy ))‘t’Z—Sw)Q (tsx(1 — x))P.

Non-linear equation
| |



Solution of RG Equations - Genaral Case ‘Bﬁ

d
£ A(2) = bof~1 - 2/

A

A(z) - /O 42(2))

In the r.h.s. one has a second degree polynomial:

* Two real roots - solution is an exponent (decreasing or increasing depending on a
theory and kinematics) SYM 6

* Degenerate real root - solution with a pole at low (Asymptotic Freedom) or high

4
(Zero Charge) energies depending on a kinematics ¢D

* Two complex roots - solution with infinite number of periodic poles in both
directions SYM 8

Solution for the four-fermion theory in D=4 dimensions see talk by A.Borlakov



Effective Potential in Scalar Theory

Generating functional for Green functions

/ Do exp( / d*z L(¢, dp) + ng)

— —ilog Z ) IPI generating functional

Effective action

F(¢) = W(J) = /d4ajj(aj)¢($) Legendre transformation

ST(®) _ /Di) Li(S[@+B] - I [@))

Shifted Classical action

A : 1. 1 .
S[® + @] = S[®] + 5'[D] + 5 9°S"[®] + - °S"[®] +

Classical external field  Field dependent mass Interaction vertex
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Effective Potential in Scalar Theory

Veff Is the sum of all vacuum |PI diagrams

£ = 5(0:9)* — g%o(®)

.‘ ,, :
VﬁﬁiQifs v3() = 2 dqugqb)
e a,
“ C V4§ V4é Vg
| | Vo .. | Vo
V:;IO<>1{/3 .-

Shown are UV divergent vacuum diagrams in arbitrary scalar theory up to three loops

eff_gz
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Recurrence relations for the leading poles el

Kazakov, lakhibbaev, Tolkachev 22
Action of R’-operation on divergent diagram

n-loop (n-1)-loop (n-1)-loop (n-k-1)-loop
terms with higher loop remaining diagrams
1 1 n—2
1
nAVn = §UQD2AVTL_1 =c Z E DQAVkDQAVn_l_k, mn Z 2 AV = ZU%

k=1

(el
1
nAV, = - ) DoAViDrAViik, n21, Ah=V;
k=0



RG pole equation for arbitrary potential

2(z,6) = 3 (~2)"AVi() 7 =2
n=0
Kazakov, lakhibbaev, Tolkachev 22
RG pole equation JHEP v 2304 (2023) 128
d>. 1
— = ——(DQZ)Q Z(Ov ¢) T V0(¢)
dz 4

This a non-linear partial differential equation!

Effective potential

Veff(97 ¢) = gZ(Z, ¢)‘z—>— 7 _ log gua /2 v (@) = TVo(9)

1672



RG Equations in Subleading Order

Scattering Amplitude
dS 7t7 n
(ZZ Z) = S(Sl -+ Tl) X (Sl -+ Tl) Coefficients of 1/€
eSSt 2 d P i
2( 5 ) e 3_(51 e Tl) 029 (SZ E TZ) Coefficients of
dz dz =

+82(S1 +T1) ® (S2 +T) ® (51 + T1) 17/ o
+s(51 +11) ® ®(S1 + T1)

& Equation for the subleading order function as well as for all the
subsequent orders is always linear!
& This seems to be in contradiction with the usual RG equation but is not!



RG Equations in Subleading Order

Effective potential
Zl - leading order

dEl (Z, ¢) 1 2 22 - subleading order
e (D>
d> A ( 2 1(27 Qb)) o P
d22(27 ¢) i

Do¥1 (2, 9)DaXa(2, 9) D231 (2, @)
/

>
+ D221(Z7¢)D322(Z,¢)D321%Z/7@
+  D2Xi(z,9)Ds31(2, ¢)D2Xia(2, @)
& Equation for the subleading order function as well as for all the
subsequent orders is always linear!
& This seems to be in contradiction with the usual RG equation which is
non-linear, however, the proper form of the usual RG equation is also

linear!!
RG Equations in subleading orders see talk by D.Tolkachev
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Structure of UV divergences in NR Theories
Y6 (Local Counter Terms)

Loop Expansion (non-renormalizable case)

1
AL ~ X (s+t+uw)dP*(= +cnp) Momentum space
UV divergences :

I 1
within dim reg N )\232q>2q>2(z L) Coordinate space

Four-point function

>

AL = N2820202 4+ N[0'020% +  82020%0%)|+  AM[.]+  MN[.]
1 1 1 1 1
(;+011) (6—2+;+012) (6—2+;+013)

N\ N\
+  M[o*0'D*  + 5P




How to fix the (infinite) arbitrariness?

- In renormalizable models: fix the four-point function at one point - 1 constraint
["4(s0,t0, U0, go) = go <+ fixed

This allows to fix the coupling and to calculate the four-point amplitude at arbitrary

kinematics and to calculate the other amplitudes.

s F4(57t7u790)7r67r87“'

- In non-renormalizable models: fix the four-point function at some interval of s, t and u

(for an analytical function this means to fix the whole function)

F4 (S, t, u, g) <4— fixed infinite # of constraints
This fixes the infinite # of arbitrary coefficients (one dimensional, the first raw), however,
the whole massive of coefficients is two dimensional. To fix the other coefficients in
multi-point amplitudes one considers the contributions of these amplitudes to the four-

point function and figures out their values from there. Then one can calculate

— FG,FS,...



dSh

Resume BLTP

¢ The UV divergences in nhon-renormalizable theories are local and can be
removed by local counter terms like in renormalizable ones

¢ The main difference is that the renormalization constant Z depends on
kinematics and acts like an operator rather than simple multiplication

¢ Based on locality of the counter terms due to the Bogoliubov-Parasiuk
theorem one can construct the recurrence relations that define all loop
divergences starting from one loop

¢ The recurrence relations can be converted into the generalized RG
equations just like in renormalizable theories

¢ The RG equations allow one to sum up the leading (subleading, etc)
divergences in all loops and define the high-energy/field behaviour

¢ The arbitrariness of subtractions can be reduced to ONE amplitude as a
function of kinematical variables. Then the other amplitudes are calculated
unambiguously.
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