Harmonic Analyticity as a Basis of $\mathcal{N}=2$ Supersymmetric Higher Spins

Evgeny Ivanov (BLTP JINR, Dubna)

Advances in Quantum Field Theory (AQFT'25)

Dubna, August 11 - 15, 2025

Outline

Supersymmetry and superfields

 $\mathcal{N}=1,4D$ chirality: the simplest Grassmann analyticity

Harmonic superspace

 $\mathcal{N}=$ 2 spin 1 multiplet

Supersymmetry and higher spins

 $\mathcal{N}=2$ spin 2 multiplet

 $\mathcal{N}=2$ spin 3 and higher spins

Hypermultiplet couplings

Superconformal couplings

Towards AdS background

Summary and outlook

Supersymmetry and superfields

- ▶ Supersymmetry, despite lacking experimental confirmations, is in the heart of the modern of mathematical and quantum physics. It allowed to construct a lot of new theories with remarkable and surprising features: supergravities, superstrings, superbranes, $\mathcal{N}=4$ super Yang-Mills theory (the first example of the ultraviolet-finite quantum field theory), etc. It also exhibited unexpected relations between these theories, e.g., the "gravity/gauge" duality.
- The natural approach to supersymmetric theories is the superfield methods.
- ► The natural generalization of Minkowski space x^m to supersymmetry is \mathcal{N} extended Minkowski superspace

$$\mathcal{M}^{(4|4\mathcal{N})} = \left(\boldsymbol{x}^m \,,\; \boldsymbol{\theta}^{\alpha}_i \;,\; \boldsymbol{\bar{\theta}}^{\dot{\alpha}\,i} \right),\; i=1,\ldots,\mathcal{N}$$

where θ_i^{α} , $\bar{\theta}^{\dot{\alpha}i}$ are anticommuting Grassmann coordinates, $\{\theta, \theta\}, \{\theta, \bar{\theta}\} = 0$.

The supersymmetric theories are adequately formulated off shell in terms of superfields defined on various superspaces.

$$\mathcal{N}=1,4D$$
 chirality

 $\mathcal{N}=1,4D$ supersymmetry is an extension of the Poincaré symmetry by spinor generators $Q_{\alpha}, \bar{Q}_{\dot{\alpha}}$

$$\{Q_{\alpha},\bar{Q}_{\dot{\beta}}\}=4\,P_{\alpha\dot{\beta}}\,,\;\{Q_{\alpha},Q_{\beta}\}=\{\bar{Q}_{\dot{\alpha}},\bar{Q}_{\dot{\beta}}\}=0\,,\;[P_{m},Q_{\alpha}]=[P_{m},\bar{Q}_{\dot{\alpha}}]=0$$

 $\mathcal{N}=1,4D$ superspace is an extension of Minkowski space by a doublet of Grassmann anticommuting spinorial coordinates $\theta^{\gamma}, \bar{\theta}^{\dot{\mu}}$

$$\mathbf{X}^{\alpha\dot{\alpha}} \Rightarrow (\mathbf{X}^{\alpha\dot{\alpha}}, \theta^{\gamma}, \bar{\theta}^{\dot{\mu}}), \theta^{\gamma\prime} = \theta^{\gamma} + \epsilon^{\gamma}, \mathbf{X}^{\alpha\dot{\alpha}\prime} = \mathbf{X}^{\alpha\dot{\alpha}} - 2i(\theta^{\alpha}\epsilon^{\dot{\alpha}} - \epsilon^{\alpha}\bar{\theta}^{\dot{\alpha}})$$

 $\mathcal{N}=1,4D$ superfields are functions on $\mathcal{N}=1$ superspace, $\Phi(x,\theta,\bar{\theta})$, with the transformation law,

$$\Phi'(x',\theta',\bar{\theta}') = \Phi(x,\theta,\bar{\theta})$$

There is one very essential distinction between Minkowski space and $\mathcal{N}=1$ superspace. While the former does not include any subspace where the whole 4D Poincaré symmetry could be linearly realized, the latter contains such smaller supermanifolds, $\mathcal{N}=1,4D$ chiral superspaces $(x_L,\theta),(x_R,\bar{\theta})$ with twice as less Grassmann coordinates:

$$X_L^{\alpha\dot{\beta}} = X^{\alpha\dot{\beta}} + 2i\theta^{\alpha}\bar{\theta}^{\dot{\beta}}, \quad \delta X_L^{\alpha\dot{\beta}} = -4i\theta^{\alpha}\bar{\epsilon}^{\dot{\beta}}, \quad X_B^{\alpha\dot{\beta}} = (X_L^{\alpha\dot{\beta}})^{\dagger}$$

The chiral superfields are carriers of the basic matter $\mathcal{N}=1$ multiplet:

$$\varphi(\mathbf{x}_{\mathsf{L}},\theta) = \phi(\mathbf{x}_{\mathsf{L}}) + \theta^{\alpha}\psi_{\alpha}(\mathbf{x}_{\mathsf{L}}) + (\theta)^{2}F(\mathbf{x}_{\mathsf{L}}), S_{\mathsf{free}} \sim \int d^{4}\mathbf{x}d^{2}\theta d^{2}\bar{\theta}\,\varphi(\mathbf{x}_{\mathsf{L}},\theta)\bar{\varphi}(\mathbf{x}_{\mathsf{R}},\bar{\theta})$$

The chiral superfields can be looked upon as complex general $\mathcal{N}=1$ superfields subject to the covariant Grassmann analyticity condition (A. Galperin, E.I., V. Ogievetsky, 1981)

$$\varphi(\mathbf{x}_L,\theta) = \Phi_L(\mathbf{x}_L,\theta,\bar{\theta}), \quad \frac{\partial}{\partial \bar{\theta}^{\dot{\gamma}}} \Phi_L = \mathbf{0}$$

The same constraint can be rewritten in the basis $(x, \theta, \bar{\theta})$ in terms of spinor covariant derivatives

$$\begin{split} \bar{D}_{\dot{\gamma}} \Phi_L(x,\theta,\bar{\theta}) &= 0 \,, \quad D_\alpha = \frac{\partial}{\partial \theta^\alpha} + 2i\bar{\theta}^{\dot{\alpha}} \partial_{\alpha\dot{\alpha}} \,, \\ \bar{D}_{\dot{\gamma}} &= -\frac{\partial}{\partial\bar{\theta}^{\dot{\gamma}}} - 2i'\theta^\alpha \partial_{\alpha\dot{\gamma}} \,, \\ \{D_\gamma,D_\beta\} &= \{\bar{D}_{\dot{\gamma}},\bar{D}_{\dot{\beta}}\} = 0 \,, \quad \{D_\gamma,\bar{D}_{\dot{\beta}}\} = -4i\partial_{\gamma\dot{\beta}} \end{split}$$

The vanishing of anticommutators of the same chirality spinor derivatives is just the integrability conditions for $\mathcal{N}=1$ chirality. This chirality underlies all the gauge and supergravity $\mathcal{N}=1$ theories: the interacting case just corresponds to replacing all covariant derivatives by the gauge-covariant ones through adding proper superfield gauge connections

$$D_{\gamma} \; \Rightarrow \; \mathcal{D}_{\gamma} = D_{\gamma} + i \mathcal{A}_{\alpha} \,, \; \bar{D}_{\dot{\gamma}} \; \Rightarrow \; \bar{\mathcal{D}}_{\dot{\gamma}} = \bar{D}_{\dot{\gamma}} + i \bar{\mathcal{A}}_{\dot{\gamma}} \,, \; \partial_{\gamma\dot{\beta}} \; \Rightarrow \; \mathcal{D}_{\gamma\dot{\beta}} = \partial_{\gamma\dot{\beta}} + i \mathcal{A}_{\gamma\dot{\beta}} \,,$$

still preserving the flat integrability constraints

$$\{\mathcal{D}_{\gamma},\mathcal{D}_{\beta}\}=\{\bar{\mathcal{D}}_{\dot{\gamma}},\bar{\mathcal{D}}_{\dot{\beta}}\}=0$$

The general $\mathcal{N}=1$ matter is also described by chiral superfields, implying a general Kähler target geometry for bosonic fields (Zumino, 1979).

For extended supersymmetries (with few sorts of Q generators) new kinds of Grassmann analyticities (different from chirality) can be defined. One of them, the harmonic SU(2) analyticity, just forms the basis of the Harmonic Superspace approach.

Harmonic superspace

- In 4D, the only self-consistent off-shell superfield formalism for $\mathcal{N}=2$ (and $\mathcal{N}=3$) theories is the harmonic superspace approach (Galperin, Ivanov, Kalitzin, Ogievetsky, Sokatchev, 1984, 1985).
- ▶ Harmonic $\mathcal{N} = 2$ superspace:

$$Z = (x^m, \ \theta_i^{\alpha}, \ \bar{\theta}^{\dot{\alpha}j}, u^{\pm i}), \quad u^{\pm i} \in SU(2)/U(1), \ u^{+i}u_i^- = 1$$

▶ Analytic harmonic $\mathcal{N} = 2$ superspace:

$$\zeta_{A}=(x_{A}^{m},\theta^{+\alpha},\bar{\theta}^{+\dot{\alpha}},u^{\pm i}),\ \theta^{+\alpha,\dot{\alpha}}:=\theta^{\alpha,\dot{\alpha}i}u_{i}^{+},\ x_{A}^{m}:=x^{m}-2i\theta^{(i}\sigma^{m}\bar{\theta}^{j)}u_{i}^{+}u_{j}^{+}$$

▶ All basic $\mathcal{N} = 2$ superfields are analytic:

$\mathcal{N}=2$ spin 1 multiplet

An instructive example is Abelian $\mathcal{N} = 2$ gauge theory,

$$V^{++}(\zeta_A)\,,\quad \delta\,V^{++}=D^{++}\Lambda(\zeta_A)\,,\; D^{++}=\partial^{++}-4i\theta^{+\alpha}\bar\theta^{+\dot\alpha}\partial_{\alpha\dot\alpha}$$

Wess-Zumino gauge (8 + 8 off-shell degrees of freedom):

$$V^{++}(\zeta_{A}) = (\theta^{+})^{2}\phi + (\bar{\theta}^{+})^{2}\bar{\phi} + 2i\theta^{+\alpha}\bar{\theta}^{+\dot{\alpha}}A_{\alpha\dot{\alpha}} + (\bar{\theta}^{+})^{2}\theta^{+\alpha}\psi_{\alpha}^{i}u_{i}^{-} + (\theta^{+})^{2}\bar{\theta}_{\dot{\alpha}}^{+}\bar{\psi}^{\dot{\alpha}i}u_{i}^{-} + (\theta^{+})^{2}(\bar{\theta}^{+})^{2}D^{(ik)}u_{i}^{-}u_{k}^{-}$$

Invariant action:

$$S \sim \int d^{12}Z \left(V^{++}V^{--}\right), \ D^{++}V^{--} - D^{--}V^{++} = 0, \ \delta V^{--} = D^{--}\Lambda,$$
$$[D^{++}, D^{--}] = D^{0}, \quad D^{0}V^{\pm\pm} = \pm 2 \ V^{\pm\pm}$$

Supersymmetry and higher spins

- Supersymmetric higher-spin theories provide a bridge between superstring theory and low-energy (super)gauge theories.
- Free massless bosonic and fermionic higher spin field theories: Fronsdal, 1978; Fang, Fronsdal, 1978.
- The natural tools to deal with supersymmetric theories are off-shell superfield methods. In the superfield approach the supersymmetry is closed on the off-shell supermultiplets and so is automatically manifest.
- ▶ The component approach to 4D, $\mathcal{N}=1$ supersymmetric free massless higher spin models: Courtright, 1979; Vasiliev, 1980.
- ► The complete off-shell $\mathcal{N}=1$ superfield Lagrangian formulation of $\mathcal{N}=1,4D$ free higher spins: Kuzenko et al, 1993, 1994.

- An off-shell superfield Lagrangian formulation for higher-spin extended supersymmetric theories, with all supersymmetries manifest, was unknown for long even for free theories.
- ▶ This gap was filled in I. Buchbinder, E. Ivanov, N. Zaigraev, JHEP 12 (2021) 016. An off-shell manifestly $\mathcal{N}=2$ supersymmetric unconstrained formulation of 4D, $\mathcal{N}=2$ super Fronsdal theory for integer spins was constructed in the harmonic superspace approach.
- Manifestly N = 2 supersymmetric off-shell cubic couplings of 4D, N = 2 to the matter hypermultiplets were further constructed in I. Buchbinder, E. Ivanov, N. Zaigraev, 2022, 2023.
- ▶ Quite recently, we generalized HSS non-conformal construction to the case of $\mathcal{N}=2$ superconformal multiplets and their hypermultiplet coupling (arXiv:2404.19016 [hep-th], JHEP 08 (2024) 120).
- Our papers opened a new domain of applications of the harmonic superspace formalism, that time in $\mathcal{N}=2$ higher-spin theories.

$\mathcal{N}=$ 2 spin 2: linearized $\mathcal{N}=$ 2 supergravity

▶ Analogs of $V^{++}(\zeta_A)$ are the following set of analytic gauge potentials:

$$\begin{split} \left(h^{++m}(\zeta_A)\,,\;h^{++5}(\zeta_A)\,,\;h^{++\hat{\mu}+}(\zeta_A)\right),\quad \hat{\mu}&=\left(\mu\,,\dot{\mu}\right),\\ \delta_\lambda h^{++m}&=D^{++}\lambda^m+2i\big(\lambda^{+\alpha}\sigma^m_{\alpha\dot{\alpha}}\bar{\theta}^{+\dot{\alpha}}+\theta^{+\alpha}\sigma^m_{\alpha\dot{\alpha}}\bar{\lambda}^{+\dot{\alpha}}\big)\,,\\ \delta_\lambda h^{++5}&=D^{++}\lambda^5-2i\big(\lambda^{+\alpha}\theta^+_\alpha-\bar{\theta}^+_{\dot{\alpha}}\bar{\lambda}^{+\dot{\alpha}}\big),\delta_\lambda h^{++\hat{\mu}+}=D^{++}\lambda^{+\hat{\mu}} \end{split}$$

Wess-Zumino gauge:

$$h^{++m} = -2i\theta^{+}\sigma^{a}\bar{\theta}^{+}\Phi^{m}_{a} + \left[(\bar{\theta}^{+})^{2}\theta^{+}\psi^{mi}u_{i}^{-} + c.c. \right] + \dots$$

$$h^{++5} = -2i\theta^{+}\sigma^{a}\bar{\theta}^{+}C_{a} + \dots, \quad h^{++\mu+} = \dots$$

▶ The residual gauge freedom:

$$\lambda^m \Rightarrow a^m(x), \ \lambda^5 \Rightarrow b(x), \ \lambda^{\mu+} \Rightarrow \epsilon^{\mu i}(x)u_i^+ + \theta^{+\nu}l_{(\nu}^{\ \mu)}(x)$$

► The physical fields are Φ_a^m , ψ_μ^{mi} , C_a ((2,3/2,3/2,1) on shell). In the "physical" gauge:

$$\Phi_{a}^{m} \sim \Phi_{\beta\dot{\beta}\alpha\dot{\alpha}} \Rightarrow \Phi_{(\beta\alpha)(\dot{\beta}\dot{\alpha})} + \varepsilon_{\alpha\beta}\varepsilon_{\dot{\alpha}\dot{\beta}}\Phi$$

$\mathcal{N}=2$ spin 3 and higher spins

The spin 3 triad of analytic gauge superfields is introduced as :

$$\begin{split} \left\{h^{++(\alpha\beta)(\dot{\alpha}\dot{\beta})}(\zeta)\,,\;h^{++\alpha\dot{\alpha}}(\zeta),\;h^{++(\alpha\beta)\dot{\alpha}+}(\zeta),\;h^{++(\dot{\alpha}\dot{\beta})\alpha+}(\zeta)\right\}\,,\\ \delta h^{++(\alpha\beta)(\dot{\alpha}\dot{\beta})} &= D^{++}\lambda^{(\alpha\beta)(\dot{\alpha}\dot{\beta})} + 2i\big[\lambda^{+(\alpha\beta)(\dot{\alpha}\bar{\theta}^{+\dot{\beta})} + \theta^{+(\alpha}\bar{\lambda}^{+\beta)(\dot{\alpha}\dot{\beta})}\big],\\ \delta h^{++\alpha\dot{\alpha}} &= D^{++}\lambda^{\alpha\dot{\alpha}} - 2i\big[\lambda^{+(\alpha\beta)\dot{\alpha}}\theta_{\beta}^{+} + \bar{\lambda}^{+(\dot{\alpha}\dot{\beta})\alpha}\bar{\theta}_{\dot{\beta}}^{+}\big],\\ \delta h^{++(\alpha\beta)\dot{\alpha}+} &= D^{++}\lambda^{+(\alpha\beta)\dot{\alpha}}\,,\;\delta h^{++(\dot{\alpha}\dot{\beta})\alpha+} = D^{++}\lambda^{+(\dot{\alpha}\dot{\beta})\alpha} \end{split}$$

The bosonic physical fields in WZ gauge are collected in

$$h^{++(\alpha\beta)(\dot{\alpha}\dot{\beta})} = -2i\theta^{+\rho}\bar{\theta}^{+\dot{\rho}}\Phi^{(\alpha\beta)(\dot{\alpha}\dot{\beta})}_{\rho\dot{\rho}} + \dots \quad h^{++\alpha\dot{\alpha}} = -2i\theta^{+\rho}\bar{\theta}^{+\dot{\rho}}C^{\alpha\dot{\alpha}}_{\rho\dot{\rho}} + \dots$$

The physical gauge fields are $\Phi_{\rho\bar{\rho}}^{(\alpha\beta)(\dot{\alpha}\dot{\beta})}$ (spin 3 gauge field), $C_{\rho\bar{\rho}}^{\alpha\dot{\alpha}}$ (spin 2 gauge field) and $\psi_{\gamma}^{(\alpha\beta)(\dot{\alpha}\dot{\beta})i}$ (spin 5/2 gauge field). The rest of fields are auxiliary. On shell, $(\mathbf{3},\mathbf{5/2},\mathbf{5/2},\mathbf{2})$.

► The general case with the maximal integer spin **s** is spanned by the analytic gauge potentials

$$h^{++\alpha(s-1)\dot{\alpha}(s-1)}(\zeta), h^{++\alpha(s-2)\dot{\alpha}(s-2)}(\zeta), h^{++\alpha(s-1)\dot{\alpha}(s-2)+}(\zeta), h^{++\dot{\alpha}(s-1)\alpha(s-2)+}(\zeta),$$
 where $\alpha(s) := (\alpha_1 \dots \alpha_s), \dot{\alpha}(s) := (\dot{\alpha}_1 \dots \dot{\alpha}_s)$

- The relevant gauge transformations can also be defined and shown to leave, in the WZ-like gauge, the physical field multiplet (s, s 1/2, s 1/2, s 1).
- ▶ The on-shell spin contents of $\mathcal{N} = 2$ higher-spin multiplets;

$$\frac{spin \ 1}{spin \ 2}: \ 1, (1/2)^2, (0)^2$$

$$\frac{spin \ 2}{spin \ 3}: \ 3, (5/2)^2, \ 2$$
......
$$spin \ s: \ s, (s-1/2)^2, s-1$$

► Each spin enters the direct sum of these multiplets twice, in accord with the general Vasiliev theory of 4D higher spins. The off-shell contents of the spin s multiplet: $8[s^2 + (s - 1)^2]_B + 8[s^2 + (s - 1)^2]_F$.

Hypermultiplet couplings

- The construction of interactions in the theory of higher spins is a very important (albeit difficult) task.
- There is an extensive literature on the construction of cubic higher spin interactions (e.g., Bengtsson et al, 1983; Fradkin, Metsaev, 1991; Metsaev, 1993; Manvelyan, Mkrtchyan, Ruehl, 2010, 2011, and many others)
- ▶ Supersymmetric $\mathcal{N}=1$ generalizations of the bosonic cubic vertices with matter were explored in terms of $\mathcal{N}=1$ superfields by Gates, Koutrolikos, Kuzenko, I. Buchbinder, E. Buchbinder and many others.
- In JHEP 05 (2022) 104 we have constructed the off-shell manifestly $\mathcal{N}=2$ supersymmetric cubic couplings $(\frac{1}{2},\frac{1}{2},\mathbf{s})$ of an arbitrary higher integer superspin \mathbf{s} gauge $\mathcal{N}=2$ multiplet to the hypermultiplet matter in $4D,\mathcal{N}=2$ harmonic superspace.
- In our approach $\mathcal{N}=2$ supersymmetry of cubic vertices is always manifest and off-shell, in contrast, e.g., to the non-manifest light-cone formulations (Metsaev, 1905.11357, 1909.05241).

▶ The starting point is the $\mathcal{N} = 2$ hypermultiplet off-shell free action:

$$S = \int d\zeta^{(-4)} \, \mathcal{L}_{free}^{+4} = - \int d\zeta^{(-4)} \, \frac{1}{2} q^{+a} \mathcal{D}^{++} q_a^+, a = 1, 2$$

Analytic gauge potentials for any spin **s** with the correct transformation rules are recovered by proper gauge-covariantization of the harmonic derivative \mathcal{D}^{++} . The simplest option is gauging of U(1),

$$\begin{split} \delta q^{+a} &= -\lambda_0 J q^{+a}, \quad J q^{+a} = i (\tau_3)^a_{\ b} q^{+b}, \\ \mathcal{D}^{++} &\Rightarrow \mathcal{D}^{++} + \hat{\mathcal{H}}^{++}_{(1)}, \quad \hat{\mathcal{H}}^{++}_{(1)} = h^{++} J, \\ \delta_\lambda \hat{\mathcal{H}}^{++}_{(1)} &= [\mathcal{D}^{++}, \hat{\Lambda}], \quad \hat{\Lambda} = \lambda J \Rightarrow \delta_\lambda h^{++} = \mathcal{D}^{++} \lambda \end{split}$$

▶ In $\mathcal{N} = 2$ supergravity, that is for s = 2,

$$\begin{split} S_{(2)} &= -\int d\zeta^{(-4)} \; \frac{1}{2} q^{+a} \big(\mathcal{D}^{++} + \mathcal{H}_{(2)} \big) q_a^+, \quad \delta \mathcal{H}_{(2)} = [\mathcal{D}^{++}, \hat{\Lambda}_{(2)}], \\ \mathcal{H}_{(2)} &= h^{++M}(\zeta) \partial_M, \; \hat{\Lambda}_{(2)} = \lambda^M(\zeta) \partial_M, \; M := (\alpha \dot{\beta}, 5, \hat{\mu} +) \end{split}$$

For higher **s** everything goes analogously. For s = 3

$$\begin{split} \mathcal{S}_{(3)} &= -\int d\zeta^{(-4)} \, \frac{1}{2} q^{+a} \big(\mathcal{D}^{++} + \mathcal{H}_{(3)} J \big) q_a^+, \\ \delta \mathcal{H}_{(3)} &= [\mathcal{D}^{++}, \hat{\Lambda}_{(3)}], \quad \mathcal{H}_{(3)} &= h^{++\alpha\dot{\alpha}\,M}(\zeta) \partial_M \partial_{\alpha\dot{\alpha}}, \quad \hat{\Lambda}_{(3)} &= \lambda^{\alpha\dot{\alpha}\,M}(\zeta) \partial_M \partial_{\alpha\dot{\alpha}} \end{split}$$

Superconformal couplings

- ► Free conformal higher-spin actions in 4D Minkowski space were pioneered by Fradkin & Tseytlin, 1985; Fradkin & Linetsky, 1989, 1991. Since then, a lot of works on (super)conformal higher spins followed (e.g., Segal, 2003, Kuzenko, Manvelyan, et al, 2017, 2023).
- (Super)conformal higher-spin theories are considered as a basis for all other types of higher-spin models. Non-conformal ones follow from the superconformal ones through couplings to the superfield compensators.
- ▶ In (Buchbinder, Ivanov, Zaigraev, arXiv:2404.19016 [hep-th]), we extended the off-shell $\mathcal{N}=2,4D$ higher spins and their hypermultiplet couplings to the superconformal case. Rigid $\mathcal{N}=2,4D$ superconformal symmetry plays a crucial role in fixing the structure of the theory.
- $\mathcal{N}=2,4D$ SCA preserves harmonic analyticity and is a closure of the rigid $\mathcal{N}=2$ supersymmetry and special conformal symmetry

$$\begin{split} &\delta_{\epsilon}\theta^{+\hat{\alpha}}=\epsilon^{\hat{\alpha}i}u_{i}^{+}\,,\;\delta_{\epsilon}X^{\alpha\hat{\alpha}}=-4i\left(\epsilon^{\alpha i}\bar{\theta}^{+\hat{\alpha}}+\theta^{+\alpha}\bar{\epsilon}^{\hat{\alpha}i}\right)u_{i}^{-}\,,\hat{\alpha}=\left(\alpha,\dot{\alpha}\right),\\ &\delta_{k}\theta^{+\alpha}=X^{\alpha\hat{\beta}}k_{\beta\hat{\beta}}\theta^{\hat{\beta}}\,,\;\delta_{k}X^{\alpha\hat{\alpha}}=X^{\rho\hat{\alpha}}k_{\rho\hat{\rho}}X^{\hat{\rho}\alpha}\,,\;\delta_{k}u^{+i}=\left(4i\theta^{+\alpha}\bar{\theta}^{+\hat{\alpha}}k_{\alpha\hat{\alpha}}\right)u^{-i} \end{split}$$

What about the conformal properties of various analytic higher-spin potentials? No problems with the spin 1 potential V⁺⁺:

$$\delta_{\mathsf{sc}} \textit{V}^{++} = -\hat{\Lambda}_{\mathsf{sc}} \textit{V}^{++} \,, \quad \hat{\Lambda}_{\mathsf{sc}} := \lambda_{\mathsf{sc}}^{\alpha \dot{\alpha}} \partial_{\alpha \dot{\alpha}} + \lambda_{\mathsf{sc}}^{\hat{\alpha} +} \partial_{\hat{\alpha} +} + \lambda_{\mathsf{sc}}^{++} \partial^{--}$$

► The cubic vertex $\sim q^{+a}V^{++}Jq_a^+$ is invariant up to total derivative if

$$\delta_{sc}q^{+a} = -\hat{\Lambda}_{sc}q^{+a} - \frac{1}{2}\Omega q^{+a}, \quad \Omega := (-1)^{P(M)}\partial_M\lambda^M$$

Situation gets more complicated for $\mathbf{s} \geq 2$. Requiring $\mathcal{N} = 2$ gauge potentials for $\mathbf{s} = 2$ to be closed under $\mathcal{N} = 2$ SCA necessarily leads to

$$\begin{split} \mathcal{D}^{++} &\to \mathcal{D}^{++} + \kappa_2 \hat{\mathcal{H}}^{++}_{(s=2)} \,, \\ \hat{\mathcal{H}}^{++}_{(s=2)} &:= h^{++M} \partial_M = h^{++\alpha\dot{\alpha}} \partial_{\alpha\dot{\alpha}} + h^{++\alpha+} \partial_{\alpha}^- + h^{++\dot{\alpha}+} \partial_{\dot{\alpha}}^- + h^{(+4)} \partial^{--} \\ \delta_{k_{\alpha\dot{\alpha}}} h^{(+4)} &= -\hat{\Lambda} h^{(+4)} + 4ih^{++\alpha+} \bar{\theta}^{+\dot{\alpha}} k_{\alpha\dot{\alpha}} + 4i\theta^{+\alpha} h^{++\dot{\alpha}+} k_{\alpha\dot{\alpha}} \end{split}$$

It is impossible to avoid introducing the extra potential $h^{(+4)}$ for ensuring conformal covariance. The extended set of potentials embodies $\mathcal{N}=2$ Weyl multiplet ($\mathcal{N}=2$ conformal SG gauge multiplet).

For $s \ge 3$ the gauge-covariantization of the free q^{+a} action requires adding the gauge superfield differential operators of rank s-1 in ∂_M ,

$$\mathcal{D}^{++} o \mathcal{D}^{++} + \kappa_s \hat{\mathcal{H}}^{++}_{(s)}(J)^{P(s)} \,, \quad P(s) = rac{1 + (-1)^{s-1}}{2} \,.$$

► For **s** = 3:

$$\hat{\mathcal{H}}_{(s=3)} = h^{++MN} \partial_N \partial_M + h^{++}, \quad h^{++MN} = (-1)^{P(M)P(N)} h^{++NM}$$

- $\mathcal{N}=2$ SCA mixes different entries of h^{++MN} , so we need to take into account all these entries, as distinct from non-conformal case where it was enough to consider, e.g., $h^{++\alpha\dot{\alpha}M}$.
- ► The spin **3** gauge transformations of q^{+a} and h^{++MN} leaving invariant the action $\sim q^{+a}(D^{++} + \kappa_3 \hat{\mathcal{H}}_{(s=3)})q_a^+$ are

$$\begin{split} \delta_{\lambda}^{(s=3)} q^{+a} &= -\kappa_3 \hat{\mathcal{U}}_{(s=3)} J q^{+a} \,, \\ \delta_{\lambda}^{(s=3)} \hat{\mathcal{H}}_{(s=3)}^{++} &= \left[\mathcal{D}^{++}, \hat{\mathcal{U}}_{(s=3)}\right], \end{split}$$

Here $\hat{\mathcal{U}}_{(s=3)}$ is some differential operator of rank 2.

All the potentials except $h^{++\alpha\dot{\alpha}M}$ can be put equal to zero using the original extensive gauge freedom:

$$S_{int\mid fixed}^{(s=3)} = -\frac{\kappa_3}{2} \int d\zeta^{(-4)} \ q^{+a} h^{++\alpha\dot{\alpha}M} \partial_M \partial_{\alpha\dot{\alpha}} J q_a^+ \tag{1}$$

• Using the linearized gauge transformations of $h^{++\alpha\dot{\alpha}M}$

$$\begin{split} \delta_{\lambda}h^{++(\alpha\beta)(\dot{\alpha}\dot{\beta})} &= \mathcal{D}^{++}\lambda^{(\alpha\beta)(\dot{\alpha}\dot{\beta})} + 4i\lambda^{+(\alpha\beta)(\dot{\alpha}}\bar{\theta}^{+\dot{\beta})} + 4i\theta^{+(\alpha}\bar{\lambda}^{+\beta)(\dot{\alpha}\dot{\beta})}, \\ \delta_{\lambda}h^{++(\alpha\beta)\dot{\alpha}+} &= \mathcal{D}^{++}\lambda^{+(\alpha\beta)\dot{\alpha}} - \lambda^{++(\alpha\dot{\alpha}}\theta^{+\beta)}, \\ \delta_{\lambda}h^{++(\dot{\alpha}\dot{\beta})\alpha+} &= \mathcal{D}^{++}\lambda^{+(\dot{\alpha}\dot{\beta})\alpha} - \lambda^{++\alpha(\dot{\alpha}}\bar{\theta}^{+\dot{\beta})}, \\ \delta_{\lambda}h^{(+4)\alpha\dot{\alpha}} &= \mathcal{D}^{++}\lambda^{++\alpha\dot{\alpha}} - 4i\bar{\theta}^{+\dot{\alpha}}\lambda^{+\alpha++} + 4i\theta^{+\alpha}\lambda^{+\dot{\alpha}++}, \end{split}$$

we can find WZ gauge for the spin 3 gauge supermultiplet

$$\begin{split} h^{++(\alpha\beta)(\dot{\alpha}\dot{\beta})} &= -4i\theta^{+\rho}\bar{\theta}^{+\dot{\rho}}\Phi^{(\alpha\beta)(\dot{\alpha}\dot{\beta})}_{\rho\dot{\rho}} + (\bar{\theta}^+)^2\theta^+\psi^{(\alpha\beta)(\dot{\alpha}\dot{\beta})i}u_i^- \\ &\quad + (\theta^+)^2\bar{\theta}^+\bar{\psi}^{(\alpha\beta)(\dot{\alpha}\dot{\beta})i}u_i^- + (\theta^+)^2(\bar{\theta}^+)^2V^{(\alpha\beta)(\dot{\alpha}\dot{\beta})ij}u_i^-u_j^- \,, \\ h^{++(\alpha\beta)\dot{\alpha}\dot{+}} &= (\theta^+)^2\bar{\theta}_{\dot{\nu}}^+P^{(\alpha\beta)(\dot{\alpha}\dot{\nu})} + (\bar{\theta}^+)^2\theta_{\nu}^+T^{(\alpha\beta\nu)\dot{\alpha}} + (\theta^+)^4\chi^{(\alpha\beta)\dot{\alpha}i}u_i^- \,, \\ h^{(+4)\alpha\dot{\alpha}} &= (\theta^+)^2(\bar{\theta}^+)^2D^{\alpha\dot{\alpha}} \end{split}$$

▶ In the **bosonic sector**: the spin **s** = 3 gauge field, *SU*(2) triplet of conformal gravitons, singlet conformal graviton, spin 1 gauge field and non-standard field which gauges self-dual two-form symmetry:

$$\Phi^{(\alpha\beta\rho)(\dot{\alpha}\dot{\beta}\dot{\rho})},\ V^{(\alpha\beta)(\dot{\alpha}\dot{\beta})(ij)},\ P^{(\alpha\beta)(\dot{\alpha}\dot{\nu})},\ D^{\alpha\dot{\alpha}},\ T^{(\alpha\beta\gamma)\dot{\alpha}}$$

In the **fermionic sector**: conformal spin 5/2 and spin 3/2 gauge fields:

$$\psi^{(\alpha\beta\rho)(\dot{\alpha}\dot{\beta})i}, \quad \chi^{(\alpha\beta)\dot{\alpha}i}$$

- ▶ They carry total of 40 + 40 off-shell degrees. Starting from s = 3, all the component fields are gauge fields, no auxiliary fields are present.
- ► The sum of conformal spin 2 and spin 3 actions

$$S = -rac{1}{2} \int d\zeta^{(-4)} \ q^{+a} \left(\mathcal{D}^{++} + \kappa_2 \hat{\mathcal{H}}^{++}_{(s=2)} + \kappa_3 \hat{\mathcal{H}}^{++}_{(s=3)} J
ight) q^+_a$$

is invariant with respect to the (properly modified) spin **3** transformations to the leading order in κ_3 and to any order in κ_2 . Thus the cubic vertex $(\mathbf{3}, \frac{1}{2}, \frac{1}{2})$ is invariant under the gauge transformations of conformal $\mathcal{N}=2$ SG and we obtain the superconformal vertex of the spin **3** supermultiplet on *generic* $\mathcal{N}=2$ Weyl SG background.

- ► The whole consideration can be generalized to the general integer higher-spin s case: $8(2s-1)_B + 8(2s-1)_F$ d.o.f. off shell.
- The superconformal cubic vertices $(\mathbf{s}, \frac{1}{2}, \frac{1}{2})$ can in fact be made invariant with respect to gauge transformations of the whole tower of the higher-spin $\mathcal{N}=2$ gauge superfields.
- ▶ The action of an infinite tower of integer $\mathcal{N}=2$ superconformal higher spins interacting with the hypermultiplet in an arbitrary $\mathcal{N}=2$ conformal supergravity background reads:

$$S_{ extit{full}} = -rac{1}{2} \int d\zeta^{(-4)} \, q^{+a} \left(\mathcal{D}^{++} + \hat{\mathcal{H}}^{++}
ight) q_a^+$$

where

$$\hat{\mathcal{H}}^{++} := \sum_{s=1}^{\infty} \kappa_s \hat{\mathcal{H}}_{(s)}^{++} (J)^{P(s)}$$

Ascribing the proper gauge transformation to $\hat{\mathcal{H}}^{++}$, one can achieve gauge invariance to any order in the couplings constants

$$\delta_{\lambda} q^{+a} = -\hat{\mathcal{U}}_{hyp} q^{+a} \tag{2}$$

$$\delta_{\lambda}\hat{\mathcal{H}}^{++} = \left[\mathcal{D}^{++} + \hat{\mathcal{H}}^{++}, \hat{\mathcal{U}}_{gauge}\right], \qquad \hat{\mathcal{U}}_{gauge} := \sum_{s=1}^{\infty} \kappa_{s} \hat{\mathcal{U}}_{s}$$

- It mixes different spins, so it is a non-Abelian deformation of the spin s transformation laws. In the lowest order, it is reduced to the sum of linearized transformations of all integer spins s > 1.
- ▶ The invariance under $\mathcal{N}=2$ conformal supergravity transformations is automatic. So we have constructed the fully consistent gauge-invariant and conformally invariant interaction of hypermultiplet with an infinite tower of $\mathcal{N}=2$ higher spins in an arbitrary $\mathcal{N}=2$ conformal supergravity background.

Towards AdS background

- It is most interesting to explicitly construct N = 2 higher spins in the AdS background, with the superconformal symmetry SU(2,2|2) being broken to the AdS supersymmetry OSp(2|4; R).
- ▶ One way is to start from the covariant formalism on the AdS_4 , $\mathcal{N}=2$ superspace defined as the coset $OSp(2|4;R)/[SO(2)\times SL(2,C)]$, thus generalizing the AdS_4 , $\mathcal{N}=1$ duperfield approach by Ivanov & Sorin, 1979, 1980. This way was chosed by Kuzenko, Tartaglino-Mazzucchelli, 2008, based on the so called projective superspace techniques. No clear connection with the harmonic analiticity was found on this way.
- Our approach proceeds from the realization of the superconformal symmetry in N = 2 HSS (as described on the previous slides) and identifies AdS supersymmetry OSp(2|4; R) as its subalgebra, OSp(2|4; R) ⊂ SU(2, 2|2). So the super AdS supersymmetry is already implied by the superconformal symmetry. Once again, the harmonic Grassmann analyticity plays the defining role.

▶ The embedding of the $\mathcal{N}=2$ AdS superalgebra into SU(2,2|2) is realized through the identification (Bandos, Ivanov, Lukierski, Sorokin, 2002)

$$egin{aligned} \Psi_{lpha}^i &= oldsymbol{Q}_{lpha}^i + c^{jk} oldsymbol{S}_{klpha}, & ar{\Psi}_{\dot{lpha}}^i &= ar{\Psi}_{lpha}^i &= ar{oldsymbol{Q}}_{\dot{lpha}i} + c_{ik} ar{oldsymbol{S}}_{\dot{lpha}}^k, \ c^{ik} &= c^{ki} & ar{oldsymbol{c}}^{ij} &= c_{jk} = arepsilon_{il} arepsilon_{il} arepsilon^{lj} \end{aligned}$$

▶ The SU(2,2|2) commutation relations imply for super AdS generators

$$\begin{split} \{\Psi_{\alpha}^{i},\Psi_{\beta}^{k}\} &= c^{ik}L_{(\alpha\beta)} + 4i\varepsilon_{\alpha\beta}\varepsilon^{ik}T, \quad T := c_{lm}T^{lm}\,, \quad [T,\Psi_{\alpha}^{i}] \sim c^{ik}\Psi_{k\alpha}\,, \\ \{\Psi_{\alpha}^{i},\bar{\Psi}_{\dot{\beta}k}\} &= 2\delta_{k}^{i}\,R_{\alpha\dot{\beta}}\,, \quad R_{\alpha\dot{\beta}} = P_{\alpha\dot{\beta}} + \frac{1}{2}c^{2}\,K_{\alpha\dot{\beta}}\,, \quad c^{2} := c^{ik}c_{ik} \sim \frac{1}{R_{AdS}^{2}}, \\ [R_{\alpha\dot{\alpha}},R_{\gamma\dot{\gamma}}] \sim c^{2}(\varepsilon_{\alpha\gamma}L_{\dot{\alpha}\dot{\gamma}} + \varepsilon_{\dot{\alpha}\dot{\gamma}}L_{\alpha\gamma})\,, \quad [R_{\alpha\dot{\beta}},\Psi_{\beta}^{i}] \sim \varepsilon_{\alpha\beta}\,\bar{\Psi}_{\dot{\beta}}^{i} \text{ (and c.c.)} \end{split}$$

- ▶ The first step toward constructing an off-shell $\mathcal{N}=2$ AdS higher spin theory is to define the super AdS invariant Lagrangian of hypermultiplet, such that it respects no full superconformal invariance, but only the super AdS.
- ▶ One needs to define the AdS covariant version of the analyticity-preserving harmonic derivative \mathcal{D}^{++} . The appropriate \mathcal{D}^{++}_{AdS} acting on $q^{+a} = (q^+, \tilde{q}^+)$ has the structure

$$\begin{split} \mathcal{D}_{AdS}^{++} &= \partial^{++} - 4i\hat{\theta}^{+\alpha}\hat{\bar{\theta}}^{+\dot{\alpha}}\nabla_{\alpha\dot{\alpha}} + h^{++}\hat{T} + \mathcal{O}(c) \\ \nabla_{\alpha\dot{\alpha}} &= \big(1 + \frac{1}{2}c^2x^2\big)\partial_{\alpha\dot{\alpha}}, \quad h^{++} = i|c|\big[(\hat{\theta}^+)^2 - (\hat{\bar{\theta}}^+)^2\big] + \mathcal{O}(c), \\ \hat{T}\left(q^+, \, \tilde{q}^+\right) &= (q^+, \, -\tilde{q}^+), \end{split}$$

where $\hat{\theta}^+_{\alpha}$, $\hat{\bar{\theta}}^+_{\dot{\alpha}}$ are some redefinitions of the original Grassmann coordinates and $\mathcal{O}(c)$ stand for terms vanishing in the limit $c^{ik} \to 0$.

An extra term $\sim \hat{T}$ in \mathcal{D}_{AdS}^{++} is necessary for breaking superconformal invariance and it produces a mass of q^+ proportional to $1/R_{AdS}^2$. In the properly defined flat limit this term becomes the central charge extension of flat D^{++} and \hat{T} goes just into the derivative ∂_5 .

- More details on the AdS invariant q^+ Lagrangians will be given in our work with Nikita Zaigraev (to appear soon).
- An interesting new result is the analyticity-preserving Weyl transformation of the hypermultiplet Lagrangian.
- ▶ We start from the free q^+ action, $S_{free} = -\frac{1}{2} \int d\zeta^{(-4)} q^{+a} \mathcal{D}^{++} q_a^+$. It is superconformally invariant and hence invariant under super $\mathcal{N} = 2$ super AdS₄ group. Then we make Weyl-type rescaling of q^+ ,

$$q^{+a} = G^{rac{1}{2}} \, \hat{q}^{+a} \,, \quad G = rac{\left(1 + rac{(c^{+-})^2}{m^2}
ight)}{\left(1 + rac{m^2 x^2}{2}
ight)^2} \left(1 + heta ext{ terms}
ight), c^{+-} = c^{ik} u_i^+ u_k^- \,,$$

so that \hat{q}^{+a} is a scalar under the $\mathcal{N}=2$ super AdS₄ group. The \hat{q}^{+} action takes the form manifestly invariant under this group

$$S_{\text{free}} = -rac{1}{2} \int d\zeta^{(-4)} \; G \, \hat{q}^{+a} \mathcal{D}^{++} \hat{q}^{+}_{a} \, , \quad \delta_{\text{osp}} \hat{q}^{+a} = 0 \, ,$$

- The new integration measure $d\zeta^{(-4)}G$ is invariant under OSp(2|4;R). So one can add to the Lagrangian any proper function of \hat{q}^{+a} without breaking of OSp(2|4;R).
- ▶ In particular, one can add an arbitrary $\mathcal{L}^{+4}(\hat{q}^{+a}, u^{-})$ and so gain a wide class of the hyper-Kähler sigma model actions on the AdS₄ background.

Summary and outlook

The theory of $\mathcal{N}=2$ supersymmetric higher spins $s\geq 3$ opens a new promising direction of applications of the harmonic superspace approach which earlier proved to be indispensable for description of more conventional $\mathcal{N}=2$ theories with maximal spins $s\leq 2$. Once again, the basic property underlying these new higher-spin theories **is the harmonic Grassmann analyticity** (all basic gauge potentials are unconstrained analytic superfields involving an infinite number of degrees of freedom off shell before fixing WZ-type gauges).

Under way:

- The linearized actions of conformal higher-spin $\mathcal{N}=2$ multiplets $(\mathcal{N}=2)$ analogs of the square of Weyl tensor)?
- Quantization, induced actions,...
- $\sim N = 2$ supersymmetric half-integer spins?
- ▶ An extension to AdS background? Superconformal compensators? The $\mathcal{N}=2$ AdS₄ supergroup $OSp(2|4;R)\subset SU(2,2|2)$, so the conformal invariance already implies AdS₄ invariance (in progress).
- From the linearized theory to its full nonlinear version? At present, the latter is known only for $s \le 2$ ($\mathcal{N}=2$ super Yang Mills and $\mathcal{N}=2$ supergravities). This problem seemingly requires accounting for **ALL** higher $\mathcal{N}=2$ superspins simultaneously. New supergeometries?

