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Dirac Singleton

Singleton S = Di+Rac was discovered by P.A.M. Dirac,

A Remarkable representation of the 3 + 2 de Sitter group

J. Math. Phys. 4 (1963), 901-909

Dirac observed that the wave equation

□ϕ(x) +
5

4
Λϕ(x) = 0

admits two types of solutions:

Class S slowly decrease at infinity and

Class B fastly decrease at infinity

S is a free conformal scalar field at the boundary of AdS4.

Scalar singleton is sometimes denoted Rac

There is also its spinor companion Di

Each forms a unitary representation of the conformal algebra o(3,2)
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Flato-Fronsdal Thm

A fundamental fact on singletons is the Flato-Fronsdal Thm

S
⊗

S =
∞∑

s=0

ϕd=4
s,m=0(x) . . . , 1978

3d conserved currents are holographically dual to 4d massless fields

Holography suggests that fields in AdSd+1

are dual to conformal operators on the d-dimensional boundary

Main question of this talk: what is dual to the singleton conformal field?

The answer will be unusual and may have some far going consequences

An infinite-dimensional Lorentz group IRREP in d+1 dimensions.

Related fact: at d = 3 S cannot be localised at a point in the 3d space.

From the 4d perspective it is nowhere (everywhere).

New issues:

• Lorentz covariant field equations and action for singleton in (A)dS4
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Plan

• Unfolding and holography

• Massless scalar field in d and singleton in d+1

• Speculations on physical applications
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Unfolded Dynamics

First-order form of differential equations

q̇i(t) = φi(q(t)) initial values: qi(t0)

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t) → WΩ(θ, x) = θn1 . . . θnpWΩ

n1...np
(x)

dWΩ(x) = GΩ(W(x)) , d = θn∂n MV 1988

GΩ(W ) : function of “supercoordinates” WΩ

GΩ(W ) =
∞∑

n=1

fΩΦ1...ΦnW
Φ1 . . .WΦn

Covariant first-order differential equations

d > 1: Compatibility conditions

d2 = 0 → GΦ(W )
∂GΩ(W )

∂WΦ
= 0
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Invariant functionals

The system is invariant under the gauge transformation

δWΩ = dεΩ + εΛ
∂GΩ(W )

∂WΛ
,

where the gauge parameter εΩ(x) is a (pΩ−1)-form if WΩ was a pΩ-form

The unfolded equations is useful to write in the Hamiltonian-like form

dF (W ) = Q(F (W )) , ∀F (W ) ,

where Q is homological vector field in the space of WΩ

Q = GΩ ∂

∂WΩ
, Q2 = 0

Invariant functionals

S =
∫
Σp

Lp , Lp ∈ Hp(Q) : QLp = 0 , Lp ̸= QMp−1 .
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Vacuum and Dynamical Fields

A particular example of an unfolded system: Maurer-Cartan equations

for a Lie algebra h with a basis {Tα}

dω + ωω = 0 , ω = ωαTα , ωω :=
1

2
ωαωβ[Tα, Tβ] .

The zero-curvature equations describe background geometry in a coor-

dinate independent way. Minkowski for h being the Poincareè algebra

ω(x) = en(x)Pn +
1

2
ωnm(x)Mnm ,

If the set Wα contains some p-forms Ci and Gi are linear in ω and C,

Gi = −ωα(Tα)
i
jCj ,

(Tα)ij form some representation T in an h−module V of Ci. Unfolded

equation: covariant constancy condition DωC = 0 with Dω ≡ d+ ω in V .

For different Lie algebras h one can describe a different background like,

e.g., AdSd for h = o(d− 1,2) or conformally flat for h = o(d,2).

7



Properties

Unfolded formulation has a number of remarkable properties:

Universaility

Coordinate independence due to the exterior algebra formalism

DOF: zero-forms CI(x0) ∈ {WΩ(x0)} at any x = x0, that realize an

infinite-dimensional module dual to the space of single-particle states

analogous to the phase space in the Hamiltonian approach.

Key fact: unfolded equation makes sense in space-time of any dimension

dWΩ(x) = GΩ(W (x)) , x → X = (x, z) , dx → dX = dx +dz , dz = dzu
∂

∂zu

X-dependence is reconstructed in terms of fields WΩ(X0) = WΩ(x0, z0)

at any X0. To take WΩ(x0, z0) in space MX with coordinates X0 is the

same as to take WΩ(x0) in the space Mx ∈ MX with coordinates x.
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Conformal Setup

Conformal algebra

[D ,Pa] = −Pa , [D ,Kb] = Kb , [D ,Lab] = 0 ,

[Pa ,Kb] = 2Lab − 2ηabD ,

Let Md be a d–dimensional conformally flat space-time with local coor-

dinates x and some o(d,2) flat connection

dxwx(x) + wx(x)wx(x) = 0

Flat connection corresponding to Cartesian coordinates is wx(x) = dxaPa .

The dilatation generator D induces standard Z grading on o(d,2)

[D ,TA] = ∆(TA)TA ,

where ∆(TA) is conformal dimension of TA,

∆(L) = 0 , ∆(D) = 0 , ∆(K) = 1 , ∆(P ) = −1 .
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Holography

Introduce an additional coordinate z and differential dz so that x = (x, z)

be local coordinates of AdSd+1. A conformally flat foliated connection

in (a local chart of) AdSd+1:

WA
x (x)TA = z∆(TA)wA

x (x)TA , Wz(x)D = −z−1dzD .

Analogously, unfolded equations

DxCi(x) = 0 , Dx := dx +WA
x TA , dx := dxn

∂

∂xn

in Md for a set of fields Ci(x) of conformal weights ∆i extend to the

fields and equations

Ci(x) = z∆iCi(x) , DxCi(x) = 0 , Dx := dx +WA
x TA .

Important comment: if a system was off-shell in Md this is not so in

the extended d+1-dimensional space: the dependence on the additional

coordinate z is reconstructed in terms of that on x.
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Generators of AdSd+1

To identify the d + 1-dimensional space with (a local chart of) AdSd+1

it suffices to redefine o(d,2) generators as

Pn =
(
(Pa+λ2Ka) ,2λD

)
, Mnm =

(
Lab,

1

2λ
(Pa−λ2Ka)δ

d
n,−

1

2λ
(Pb−λ2Kb)δ

d
m

)
with a, b = (0 , . . . , d − 1) n,m = (0 , . . . , d), interpreting Pn and Mnm as

AdSd+1 translation (transvection) and Lorentz generators, respectively.

AdSd+1 connection is

W = hnPn +
1

2
ωnmMnm

In particular

ea = ha +2λωad .

λ is related to the cosmological constant Λ = −λ2

real and pure imaginary in AdSd+1 and dSd+1 respectively.
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Conformal Scalar within Unfolded Formalism

Singleton |Rac⟩ is a massless conformal scalar field in any d. Its unfolded

formulation is described in terms of a zero-form C(y|x), that depends on

the space-time coordinates xn and auxiliary variables yn (n = 0, . . . d− 1):

dxC(y|x) + dxn
∂

∂yn
C(y|x) = 0 , dx := dxn

∂

∂xn

This equation relates the coefficients Ca1...an(x) of the expansion

C(y|x) =
∞∑

n=0

1

n!
Ca1...an(x)y

a1 . . . yan

to higher derivatives in xa,

Ca1...an(x) = (−1)n∂a1 . . . ∂anC(x) , ∂a :=
∂

∂xa
,

C(x) is the ground component of C(y|x)

C(x) := C(0|x)

The system is off-shell: no differential conditions on C(x).
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To put the system on shell of a massless field it suffices to impose the

constraint

□yC(y|x) = 0 , □y := ηab
∂2

∂ya∂yb
.

The system is equivalent to

DxC(y|x) = 0 ,

Dx := dx + eaPa + faK
a +

1

2
ωabLab + bD

with particular connection with f = ω = b = 0, ea = dxa

In terms of ya, conformal generators are

Pa =
∂

∂ya
, Lab = ya

∂

∂yb
− yb

∂

∂ya
, D = ya

∂

∂ya
+∆ ,

Ka = y2
∂

∂ya
− 2yay

b ∂

∂yb
− 2∆ya ,

Conformal weight ∆ is a number.
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Representation Theory Interpretation

If C(Y |x) obeys the constraint □yC = 0 then it is obeyed for TAC(Y |x) for

all generators TA provided that conformal weight is canonical

∆ =
d

2
− 1

for a massless scalar in d dimensions. That □yC = 0 respects the unfolded

equation, implies conformal invariance of the massless KG equation.

There are two components of C(y) annihilated by the special conformal

generators Ka. One is the vacuum (lowest weight) component C(x).

Another is the singular vector, associated with the trace component

C′(x) := Ca
a(x) = □xC(x) .

To prove conformal invariance of a functional built from C(x) and C′(x)

it suffices to check its invariance under the action of Pa, Lab and D.
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Conformally Invariant Lagrangian in d
Dimensions

Dipole Lagrangian in d + 1 dimensions that is a d + 1-form with huge

gauge symmetry Flato and Fronsdal 1987 ... A.Starinets 1999

Alternative proposal of this talk: the conformally invariant Lagrangian

for a scalar field is a closed d-form

L =
1

2
ϵa1...ade

a1(x) . . . ead(x)C(x)C′(x) , C′(x) = □xC(x) .

Indeed, L is Q-closed since

special conformal gauge field fa is absent in dea, D(C) and D(C′),

Lorentz connection cancels by Lorentz invariance,

b cancels since L has proper scaling dimension,

contribution of eb cancels by antisymmetrization over d+1 indices a.

The fields C(y|x) still obey the unfolded equations, that are off-shell

which means that they just express higher components Ca1...an(x) via

derivatives of C(x) imposing no differential conditions on the latter.
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AdSd+1 Extension

To extend the d-dimensional singleton to a d+1-dimensional space with

the same o(d,2) symmetry consider unfolded equations in d+1 dimensions

DxC(x) = 0 , DxCα(x) = 0 , Dx := dx +W

WA
x (x)TA = z∆(TA)wA

x (x)TA , Wz(x)D = −z−1dzD .

The (A)dSd+1 invariant Lagrangian has the form

L =
1

2
ϵa1...ade

a1(x) . . . ead(x)C(x)C′(x) , ea = ha +2λωad

Now L is a closed d-form in (A)dSd+1 invariant up to exact forms (i.e., total

derivatives) under the symmetries that leave invariant the background

connections, i.e., (A)dSd+1 symmetries.
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Unusual Features

The (A)dSd+1 unfolded equations are no longer off-shell reconstructing

the dependence on z. This is why the seemingly non-invariant form of

L in view of ea = ha + 2λωad still respects Lorentz invariance in AdSd+1:

d+1-dimensional Lorentz transformations act on the singleton nonlocally

relating fields ϕ(x, z) at different z, acting in the infinite-dimensional

module.

Being a local field in d dimensions, from the d+1-dimensional perspective

singleton is nowhere (equivalently, everywhere).

λ in the (A)dS connection is pure imaginary in the dS case. Naively, the

Lagrangian is not Hermitian in dS. This problem can be resolved by

introducing doublets of mutually conjugated fields C± associated with

λ = ±iλ′ at real λ′. This allows one to consider singletons as fields in

the dark energy dS regime. The modes associated with the evolution

along z are either increasing or decreasing that is not too surprising in

the expansion regime.
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Observe or not observe?

The field equations are three-dimensional rather than four-dimensional

Direct scattering is unlikely observable: good news for SM. However

Flato-Fronsdal Thm:

S
⊗

S =
∞∑

s=0

ϕs,m=0(x) = graviton+ neutral massless scalar + . . .

implying that bilinears of singletons contain graviton, that may have

direct dark matter type consequences via additional induced gravity.

That S admits a Lorentz covariant formulation allows one to introduce

interactions with gravity via usual covariantization of derivatives

Also singletons may be related to another long standing problem of

baryon asymmetry: fit the Sakharov conditions necessary for baryon

asymmetry: positive cosmological constant may provide a non-equilibrium

regime. Moreover, singletons endowed with appropriate inner structure

may induce violation of the baryon number conservation. The presence

of complex coefficients in the Lagrangian may induce CP violation.
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Conclusion

New type of relativistic matter in presence of dark energy

Interesting to explore in the context of long-standing problems including

dark matter and even baryon asymmetry induced by the appropriately

charged singletons.
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Singleton is described as a field in AdS4 with auxiliary variables y+α , y−β

|ϕ(y+|x)⟩ = ϕ(y+|x)|0⟩

[yα , y+β ] = εαβ , y−|0⟩ = 0 .

Field equations are

D|ϕ⟩ = 0 , ϕ(y+|x) =
∞∑

n=0

1

n!
ϕα1...αn(x)y

+α1 . . . y+αn

where

D = dx +
i

z
dxαβy−α y−β −

dz

2z
y−α y+α , dx := dxαβ̇

∂

∂xαβ̇

xαα̇ = (xαα̇,−
i

2
ϵαα̇z−1) ,

AdS4 connection in Poincaré coordinates

eαα̇ =
1

2z
dxαα̇ , ωαβ = −

i

4z
dxαβ , ω̄α̇β̇ =

i

4z
dxα̇β̇ .
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