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Introduction

The problem of field quantization in the presence of black holes is
widely discussed in the literature. However, many questions still
remain insufficiently clarified, one of the questions being whether
(or how) it is necessary to take into account the region below the
black hole horizon. In papers
� V. Egorov, M. Smolyakov, I. Volobuev, “Quantization of spinor

field in the Schwarzschild spacetime and spin sums for
solutions of the Dirac equation,” Class. Quant. Grav. 41
(2024) 045002 [arXiv:2309.06897]

� V. Egorov, M. Smolyakov, I. Volobuev, “Quantization of
electromagnetic field in the Schwarzschild spacetime,”
[arXiv:2410.07049].

it has been shown that a consistent procedure of canonical
quantization of the spinor and electromagnetic fields in the
Schwarzschild spacetime can be carried out without taking into
account the internal region of the black hole.
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The construction of quantum theories of the spinor and
electromagnetic fields in the Schwarzschild spacetime allows us to
move on to quantum electrodynamics in this spacetime, which
makes it possible to consider a quantum description of the fall of
charged particles towards the black hole with the emission of
photons. Such a description taking into account subtle quantum
effects could affect the results concerning the rate of accretion of
matter by the black hole or predict other observable effects.
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Massive spinor field

The standard metric of the Schwarzschild spacetime in
Schwarzschild coordinates looks like

ds2 =
(
1− r0

r

)
dt2 − dr2

1− r0
r

− r2 (dθ2 + sin2 θ dϕ2) ,
where r0 = 2M is the Schwarzschild radius and M is the black hole
mass. We restrict ourselves to the region r > r0 and consider a
massive spinor field.
For a remote observer, the wave functions of physical quantum
states of this field above the horizon are elements of the Hilbert
space of spinor functions with finite norm, i.e., of the field
configurations ψ(t, r , θ, ϕ), which satisfy the condition∫

r>r0

r2 sin θ dr dθ dϕ√
1− r0

r

ψ†(t, r , θ, ϕ)ψ(t, r , θ, ϕ) <∞.
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The integration goes over a hypersurface t = const in the
Schwarzschild spacetime with respect to the volume element
defined by the metric induced on this hypersurface from the
Schwarzschild metric. We emphasize that the physical states of a
quantum system are always normalizable. Since the normalization
integral should be convergent for the wave functions of the spinor
particle physical quantum states, they tend to zero at the event
horizon and at spatial infinity fast enough.
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The action of the massive spinor field in arbitrary curvilinear
coordinates is given by

S =

∫ √
−g
(
i

2

(
ψ̄γ(ν)eµ(ν)∇µψ −∇µψ̄ eµ(ν)γ

(ν)ψ
)
−Mψ̄ψ

)
d4x ,

where eµ(ν) denotes the tetrad and the covariant derivative is
defined as

∇µψ = (∂µψ + ωµψ) , ∇µψ̄ =
(
∂µψ̄ − ψ̄ωµ

)
,

ωµ =
1
8
ω(ν)(ρ)µ

[
γ(ν), γ(ρ)

]
.

The Dirac matrices satisfy the conditions{
γ(µ), γ(ν)

}
= 2η(µ)(ν) ⇔ eµ(ρ) e

ν
(σ)

{
γ(ρ), γ(σ)

}
= 2gµν .
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Varying it with respect to the spinor field ψ̄, we can drop the
surface terms at the event horizon and infinity and obtain the
corresponding equation of motion:

iγ(ν)eµ(ν) (∂µ + ωµ)ψ −mψ = 0.

It is a common knowledge that this Dirac equation can be rewritten
in the Hamiltonian form. The Dirac Hamiltonian is Hermitian in
the Hilbert space of the physical quantum states of the spinor
particles in the Schwarzschild spacetime. However, the
eigenfunctions of the Dirac Hamiltonian need not to belong to the
Hilbert space of normalizable spinor functions. They may have
infinite norm, i.e., they can lie in the so-called rigged Hilbert space,
that is, they are generalized functions. This situation is similar to
the description of a free particle in non-relativistic quantum
mechanics, where the eigenfunctions of the free Hamiltonian are
usually chosen as plane waves, which are not normalizable.
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First we consider the Dirac equation in the isotropic coordinates,
which allows us to use the standard technique for working with
spherical spinors, and then return to Schwarzschild coordinates.
The transition from the isotropic coordinates {t, x , y , z} to
Schwarzschild coordinates {t, r , θ, ϕ} is carried out according to the
formulas

r = R +
M2

4R
+ M = R +

r2
0

16R
+

r0
2
, R =

√
x2 + y2 + z2.

We will look for solutions to the Dirac equation in the form

ψEjlm (t,R, θ, ϕ) =

(
Fjl (E ,R) Ωjlm (θ, ϕ)
iGjl ′ (E ,R) Ωjl ′m (θ, ϕ)

)
e−iEt ,

where l = j ± 1
2 , l

′ = j ∓ 1
2 , and the spherical spinors are defined as

follows:

Ωjlm (θ, ϕ) =

 C jm

l ,m−1
2 ,

1
2 ,

1
2
Y
l m−1

2
(θ, ϕ)

C jm

l ,m+
1
2 ,

1
2 ,−

1
2
Y
l m+

1
2

(θ, ϕ)

 .
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The asymptotic behavior of the obtained radial equations for
R →∞ looks like

d (RFjl (E ,R))

dR
+
κ

R
(RFjl (E ,R))−

(
E + m +

r0
2R

E
) (

RGjl ′ (E ,R)
)

= 0,

d
(
RGjl ′ (E ,R)

)
dR

− κ
R

(
RGjl ′ (E ,R)

)
+
(
E −m +

r0
2R

E
)

(RFjl (E ,R)) = 0,

where κ = l (l + 1)− j (j + 1)− 1
4 .

These equations coincide with those for an electron in the Coulomb
potential of an atomic nucleus. Comparing the signs in the last
terms, we see that, as in the case of the Coulomb field, the
resulting potential is attractive:

V (R) = − r0
2R

E = −M

R
E ,

where M = r0/2 is the black hole mass. This potential reproduces
the Newtonian one with the only difference that it is proportional
to the total energy E of the particle instead of its mass m, which is
due to the relativistic nature of the equation.
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Next we return to the Schwarzschild coordinates in the radial
equations for the spinor field outside the black hole horizon and
make the substitution

Fjl(E ,R) =
fjl(E , r)

r
(
1− r0

r

)1
4
, Gjl ′(E ,R) =

gjl ′(E , r)

r
(
1− r0

r

)1
4
.

After such substitution, the radial equations take the simpler form√
1− r0

r

(
σ(1)

κ

r
− iσ(2)

√
1− r0

r

d

dr
+ σ(3)M

)(
fjl
gjl ′

)
= E

(
fjl
gjl ′

)
.

On QED in the Schwarzschild spacetime 9 / 26



We pass to dimensionless variables µ = Mr0, ε = Er0, ρ = r
r0
,

z = ρ+ ln (ρ− 1) and obtain equations for ε > 0

−d2u

dz2 + V (u)
κ (ε, z) u = ε2u,

where the original functions fjl and gjl ′ can be expressed in terms of
u, and the quasipotential is given by the formula

V (u)
κ (ε, z) =

µ (ρ (z)− 1)
3
2 − κε ρ (z)

√
ρ (z)− 1

2ρ
9
2 (z)

(
ε+ µ

√
ρ(z)−1
ρ(z)

)
+
µ2 (ρ (z)− 1)− 2µε

√
(ρ (z)− 1) ρ (z)

16ρ5 (z)
(
ε+ µ

√
ρ(z)−1
ρ(z)

)2 +

+ µ2 ρ (z)− 1
ρ (z)

+ κ
(ρ (z)− 1)

3
2

ρ
7
2 (z)

+ κ2 ρ (z)− 1
ρ3 (z)

.

Similar equations can be derived for ε < 0.
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Figure 1: V (u)
κ (ε, z) for µ = 1, κ = −1, ε = 0.5 and µ = 1, κ = 2, ε = 2.

The solutions for E > 0 are given by the formulas

φEjlm (r , θ, ϕ) =
1

r
(
1− r0

r

) 1
4

(
fjl (E , r) Ωjlm (θ, ϕ)
igjl ′ (E , r) Ωjl ′m (θ, ϕ)

)
,

φ
(p)
Ejlm (r , θ, ϕ) =

1

r
(
1− r0

r

) 1
4

(
f
(p)
jl (E , r) Ωjlm (θ, ϕ)

ig
(p)
jl ′ (E , r) Ωjl ′m (θ, ϕ)

)
, p = 1, 2.

The solutions χ(p)
Ejlm (r , θ, ϕ) for E < 0 are obtained by

interchanging the functions as follows: fjl ↔ gjl ′ , f
(p)
jl ↔ g

(p)
jl ′ .
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The expansion of the spinor field in the complete system of
one-particle stationary states looks like

ψ (t, r , θ, ϕ) =
∞∑
j=

1
2

j∑
m=−j

∑
l=j± 1

2 m∫
0

dE
(
e−iEtφEjlm (r , θ, ϕ) ajlm (E ) + eiEtχEjlm (r , θ, ϕ) b†jlm (E )

)
+

+
2∑

p=1

∞∫
m

dE
(
e−iEtφ(p)Ejlm (r , θ, ϕ) a

(p)
jlm (E ) + eiEtχ(p)

Ejlm (r , θ, ϕ) b
(p)†
jlm (E )

) ,

where {
ajlm (E ) , a†j′l′m′ (E ′)

}
= δjj′ δll′ δmm′ δ (E − E ′) ,{

bjlm (E ) , b†j′l′m′ (E ′)
}

= δjj′ δll′ δmm′ δ (E − E ′) ,{
a
(p)
jlm (E ) , a

(p′)†
j′l′m′ (E ′)

}
= δpp′ δjj′ δll′ δmm′ δ (E − E ′) ,{

b
(p)
jlm (E ) , b

(p′)†
j′l′m′ (E ′)

}
= δpp′ δjj′ δll′ δmm′ δ (E − E ′) .
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One can prove that the following anticommutation relations hold{
ψα (t, r , θ, ϕ) , ψ†β (t, r ′, θ′, ϕ′)

}
= δαβ

√
1− r0

r

r2 δ (r − r ′) δ (cos θ − cos θ′) δ (ϕ− ϕ′) ,

{ψα (t, r , θ, ϕ) , ψβ (t, r ′, θ′, ϕ′)} =
{
ψ†α (t, r , θ, ϕ) , ψ†β (t, r ′, θ′, ϕ′)

}
= 0.

The Hamiltonian takes the form

H =
i

2

∫
r2 sin θ√
1− r0

r

:
(
ψ†ψ̇ − ψ̇†ψ

)
: dr dθ dϕ

=
∞∑
j=

1
2

j∑
m=−j

∑
l=j±1

2

 m∫
0

E
(
a†jlm (E ) ajlm (E ) + b†jlm (E ) bjlm (E )

)
dE

+
2∑

p=1

∞∫
m

E
(
a
(p)†
jlm (E ) a

(p)
jlm (E ) + b

(p)†
jlm (E ) b

(p)
jlm (E )

)
dE

 .
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We see that the binding energy of the states of finite motion may
be of the order of the particle mass, whereas the binding energy of
electrons in atoms is of the order α2me . This means that for
charged particles in the states of finite motion the electromagnetic
interaction can be viewed as a perturbation that induces transitions
between the energy levels of the particles in the gravitational field
of a black hole. The situation looks very much like the Furry
picture in QED. However, it turns out that it is impossible to use
the standard QED for describing such transitions. To this end, we
consider the quantization of electromagnetic field in the
Schwarzschild spacetime.
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Electromagnetic field

The action has the form

S = −1
4

∫
FµνF

µν√−g d4x ,

where Fµν = ∂µAν − ∂νAµ.
By varying the action with respect to the vector field and taking
into account that the surface terms at the event horizon and
infinity do not contribute, as well as the Schwarzschild metric being
Ricci-flat, we obtain the equations of motion in the form

∇µFµν = ∇µ∇µAν − ∂ν∇µAµ = 0,

where ∇µ is the covariant derivative, and the Greek indices take
values t, r , θ, ϕ for the Schwarzschild coordinates.
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Next we impose the condition At = 0 and consider the equations of
motion with At = 0 for ν = t, which reads

r0
r2 ∂tAr + ∂t (∇µAµ) = 0

(note that ∇tAt 6= 0 for At = 0). From this equation it follows that

∇µAµ +
r0
r2Ar = f (r , θ, ϕ) ,

i.e., ∇µAµ + r0
r2
Ar does not depend on time t. The last formula

suggests the gauge condition

∇µAµ +
r0
r2Ar = 0.

One can prove that it is possible to impose this gauge condition
preserving the condition At = 0.
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In what follows we use the gauge condition

A0 = 0, ∇µAµ +
r0
r2Ar = 0.

The physical meaning of this condition becomes clear in the
isotropic coordinates t, ~R , in which the gauge condition takes the
form

div ~A +
r0
(
r0
4R − 2

)
2R3

(
1−

(
r0
4R

)2)(~R ~A) = 0.

Thus, we see that for R →∞ we get the Coulomb gauge div ~A = 0.
and for R → r0/4 we get the Poincaré gauge (~R ~A) = 0.
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We look for solutions to the field equations in the form

~Ajm (E , t, r , θ, ϕ) = e−iEt
∑

λ=−1,0,1

F
(λ)
j (E , r) ~Y

(λ)
jm (θ, ϕ),

where ~A = (Ar ,Aθ,Aϕ) and ~Y
(λ)
jm (θ, ϕ) are spherical vectors

~Y
(−1)
jm (θ, ϕ) = (1, 0, 0)Yjm (θ, ϕ) ,

~Y
(0)
jm (θ, ϕ) =

i√
j (j + 1)

(
0,

1
sin θ

∂ϕ,− sin θ ∂θ

)
Yjm (θ, ϕ) ,

~Y
(1)
jm (θ, ϕ) =

1√
j (j + 1)

(0, ∂θ, ∂ϕ)Yjm (θ, ϕ) .
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One can show that the functions F (−1)
j (E , r) and F

(1)
j (E , r) can be

expressed in terms of the function F
(0)
j (E , r) = Fj(E , r), which

satisfies the equation

−
d2Fj
dz2 + Vj(z)Fj = r2

0E
2 Fj ,

где z = r
r0

+ ln
(

r
r0
− 1
)
и Vj(z) = j(j + 1)

r(z)
r0
−1(

r(z)
r0

)3 .
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For fixed E , j , m, and p there exist two independent solutions of
the original equations of motion, which have the form

e−iEt ~A
(a)
jmp (E , ~r) = e−iEt

√
j(j + 1)

E


1
r2Fjp (E , r)Yjm (θ, ϕ)

(1− r0
r )

j(j+1) ∂rFjp (E , r) ∂θYjm (θ, ϕ)

(1− r0
r )

j(j+1) ∂rFjp (E , r) ∂ϕYjm (θ, ϕ)

 ,

e−iEt ~A
(b)
jmp (E , ~r) = e−iEt

i√
j (j + 1)

Fjp (E , r)

 0
1

sin θ ∂ϕYjm (θ, ϕ)
− sin θ ∂θYjm (θ, ϕ)

 .

The expansion of the field in the complete system of stationary
sates can be written as

~A (t, ~r) =
2∑

p=1

∞∑
j=1

j∑
m=−j

∞∫
0

dE√
2E

(
e−iEt ~A

(a)
jmp (E , ~r) ajmp (E )

+e−iEt ~A
(b)
jmp (E , ~r) bjmp (E ) + h.c.

)
,

где[
ajmp (E) , a

†
j′m′p′

(
E ′
)]

=
[
bjmp (E) , b

†
j′m′p′

(
E ′
)]

= δpp′ δjj′ δmm′ δ
(
E − E ′

)
.
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The Hamiltonian looks like

H =
1
2

∫ ∑
k

:
(
Ak∂

2
0Ak − (∂0Ak)2

)
: gkkg00√−g d3x

=
2∑

p=1

∞∑
j=1

j∑
m=−j

∞∫
0

dE E
(
a†jmp (E ) ajmp (E ) + b†jmp (E ) bjmp (E )

)
.
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Electromagnetic interaction

Electromagnetic interaction in the Schwarzschild spacetime can be
derived from the principle of local gauge invariance and has the
standard form.
Electromagnetic radiation processes at the lowest order are
described by the first-order S-matrix

S (1) = i

∫
jµAµ r

2 sin θdtdrdθdϕ,

where jµ = eψ̄γ(ν)eµ(ν)ψ and the tetrad in the Schwarzschild
coordinates is chosen to be

eµ(ν) =


(1 − r0

r
)−1/2 0 0 0

0 (1 − r0
r
)1/2 sin θ cosϕ 1

r
cos θ cosϕ − 1

r sin θ
sinϕ

0 (1 − r0
r
)1/2 sin θ sinϕ 1

r
cos θ sinϕ 1

r sin θ
cosϕ

0 (1 − r0
r
)1/2 cos θ − 1

r
sin θ 0

 .
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It is convenient to represent the matrix γ(ν)ek(ν), k = r , θ, ϕ, in the
form

γ(ν)ek(ν) =

(
0 Λk

−Λk 0

)
,

where
Λr = 2

√
1− r0

r

√
π
3

(
Y10σ3 +

√
2Y1−1σ+ −

√
2Y11σ−

)
Λθ = 2

r

√
π
3
∂
∂θ

(
Y10σ3 +

√
2Y1−1σ+ −

√
2Y11σ−

)
Λϕ = 2

r sin2 θ

√
2π
3

∂
∂ϕ (Y1−1σ+ − Y11σ−) .
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We need to calculate the probability of transition of a charged
particle, which is in the state of finite motion with energy E1 and a
set of quantum numbers j1, l1,m1, in the gravitational field of a
Schwarzschild black hole, to a state with a lower energy E2 and
quantum numbers j2, l2,m2 with the emission of a photon with
energy ω, total momentum j , projection of total momentum m,
extra quantum number p and polarization either a or b,
� |i〉 = |E1, j1, l1,m1〉 - initial state
� |f 〉 = |E2, j2, l2,m2;ω, j ,m, p, a〉 - final state.

The corresponding matrix element can be written as

< f |S (1)|i >= (2πi)Uδ(E2 − E1 + ω),

where the electromagnetic radiation amplitude is given by

U =
∫
φ̄E2j2l2m2 (r , θ, ϕ) γ(ν)ek(ν) (r , θ, ϕ)φE1j1l1m1 (r , θ, ϕ)

A
(a)∗
jmp,k (ω, r , θ, ϕ) r2 sin θdθdϕ.
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Conclusion

� Quantum electrodynamics can be consistently formulated in
the Schwarzschild spacetime above the horizon.

� Selection rules for electromagnetic transitions can be found
exactly.

� To calculate the amplitudes and probabilities one needs at least
approximate analytic expressions for the radial wave functions.
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Thank you!

The talk is based on the results of a study conducted within the scientific
program of the National Center for Physics and Mathematics, section #5
”Particle Physics and Cosmology”.
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