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GKZ Hypergeometric functions and D-modules

Introduced by Gelfand, Kapranov and Zelevinsky.

Generalize classical hypergeometric functions using:

o Toric geometry

o A-hypergeometric systems
o Fuler—Mellin integrals

e Defined via an integer matrix A and parameter vector € €
2 dty A\ -+ AN dt,
757 /fl ) ktﬁ 1
A% 2k EE2

together|with |3 & (g, L. 18L) e lC? and t8|=1t5r | 38a.

n

Each f;(t) is a Laurent polynomial with support S; c Z"

= 2, wat”

meS,;

and integration is over a suitable cycle 4
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GKZ Hypergeometric functions and D-modules

A-matrix construction:

e For each polynomial f;(¢) enumerate exponents of monomials m € S;:
k
P S 1 TP W e i3 20 g 3 o i B2 171 84 A BB, R A
j=1

e A-matrix of size (n + k) x N is given by

A:—_ _’]-7]- i)rl E,’I"k E Z(n+k)xN
61 o o o 61 o o o ek

Bottom k£ rows is the selector matrix with €; € Z* being standard basis
vector (1 in position 5 and 0 elsewhere)

Example (2 variables and 2 polynomials):

Suppose: Then:
* f1(t) = U171 T U1,2t1 s U1,3t2, e 51 = {(070)7 (170)7 (O, 1)}
o f2(t) = uz1 + uz otits 15y = {(0:0), (211]}
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GKZ Hypergeometric functions and D-modules

and A-matrix is

g 10 p |2 4 rows: 2 variables + 2 polynomials
P 0 Y

I 11 Do 5 columns: 5u; ; coefficients

Q- O0Jop-pa

Determination of ¢ € C*+* vector:

e Fixing an index i € {1,...,n} and considering transformation w; 5 —
t™iu; » and variable change t. =tt; we get (t € C*):

(DL 81 ) B lha (8B ) =By Bl o (G- B 1)
j,m

where 6. - = u; -2 is Euler partial derivative.
.77 .77 8'11,]’”—1

e Scaling all coefficients u; 5 of f;(t) by s we get

(> 01,i)®ac(d)B;i) = 0u®as(a, ;i)

e Thus
¢ = (/817"'7/8143)@17“'70471)-
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GKZ Hypergeometric functions and D-modules

The complete GKZ A-hypergeometric system is given by the system of

equations:

e £+ n first-order Euler equations
0P 0P

1 N

e infinite set of equations of order N or less

where

and
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General holonomic )-modules

Other ways to obtain differential equations for Euler-Melin integrals:

e In the context of Feynman integrals it is the solution of momentum
space IBP relations with, for example, Laporta algorithm

e [BP relations can be also obtained in parametric representation with
parametric annihilators of integrand expression. For example, for

T'{d2) M 1dz ap
Il tpd/2
LIS B n d/z_w H/ g

and IBP ideal in parametric space is given by (1 <i < N):

GOy + d(a G) e Ann(G=1/2) .

Integral representation gives us an isomorphism betwen Weyl algebra in
parametric space and shift algebra in integral indices vy, ... v,.
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General holonomic )-modules

e The shift algebra relations can be also obtained by considering equations

o, =0 mpod RIT =117

where ¢ is multi-index and @Q; form a basis of ideal I for Weyl algebra R
in coefficients of monomials of G-polynomial or parameters they depend
on. It is the annihilator of Euler-Mellin integrals. For example, D-ideal
formed by GKZ A-hypergeometric system. Last, but not least, this way
we could obtain Pfaffian system associated to ideal I

e The solution of shift relations for example with Gauss elimination and
Laporta algorithm give us both a possibility to reduces indices of Euler-
Mellin integrals and general holomonic differential systems for the
latter.
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General holonomic )-modules

D-modules M are modules over Weyl
algebra A,, which is free algebra over C

Al Cle,l. )zl d64, .1 6L)
modulo relations
Gl F e, 00 5T ELELGT
Rational Weyl algebra:
V. *2R8 KL 35({ ol 18 SES SES U1 R, P2 F SES SSE &72 RA

D-modules are defined through the ideal
of differential operators Py,..., P,

i I8 2 T e S g R S € R e R Ren e AR
a,p

such that for any Q € D,
QP;f(z1,...,zn) =0, flz)e M

where f(z) are holonomic solutions.

In general, the solution space is
defined as

Soly(I):={m e M|[Pom=0,P € I}

There is an insomorphism

Homp (D,/D,I,M) = Soly(I)

allowing to study obstructions
for local solutions to become
global with Ezt?, groups

The C-vector space of solutions
for holonomic ideal I outside
singular locus of I has finite
dimension:

rank(I) = dimg g,

.....
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General holonomic )-modules

To find series solutions for D-modules we need to introduce the notion of
weight vectors:

(V, W) = (ViyeenyUpy Wiy eeryWy) € LT, PoiH=—-1-=2-0
for monomial orders: ord, ,)(2%0”) = > 7| via; + w; B;.

The initial form in(, , (P) of operator P € D, is the part with maximal (v, w)-
weight. Then

e The characteristic ideal of D-ideal T is

in(o,l)(I) — <|n(0’1)(P)‘P <€ I> - C[m17°°°7xn][€17°'°7€n]

The characteristic variety of ideal I is
Char(I) =V (ing,1)(I)) ={(z,&)|p(z, &) =0,p € ing 1) (1)}

Ideal is holonomic if dim Char(I) = n

The singular locus Sing(I) is the vanishing set of the ideal
(ingo,1) (L) = (&1, - -  &n ] A DIC el [ ] 2n]
solved with saturation + elimination
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General holonomic )-modules

Grobner deformations for Frobenius series expansions are considered with
weights (—w,w),w € R" and initial ideals

M L) =F Th o L ()
The indicial ideal of 1 is C[8,,...,0,]-ideal
indw(I):Rn-in_w,w(I)ﬂ(C[Hl,...,Hn], Hz:wzﬁz

Zeroes of ind,(I) in C™ are exponents of I, such that starting monomials of
solutions to I are of the form z4log(z)?® with A € V (ind, (I)).

From starting monomials algorithm of Saito, Strumfels and Takayama
construct Frobenius series solutions

dp(z) =z Z cp,ba:plogb(a:),

0<p-w<k,peCy
0<b;<rank(rl)

so &, € Nilson ring N,(I) with respect to weight w.

The convergence regions are determined by maximum cones in Grobner fan.
The latter are regions in weight space where in,(I) does not change
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Toric geometry and combinatorics of polyhedral fans

The toric geometry consideration of GKZ systems starts with primary
polytope in R? space defined by A-matrix:

P = A 4= conviAl = ¢ohvifal |+ tal HCIRE,

convex hull of A-matrix columns from which we build its normal fan. The
latter is the collection of normal cones

NP =Hb- - (R -Gz P otz =tmarar- o+ H

Normal cones live in the dual (R¢)* space and the toric variety described by
this fan is in general singular. Using height functions to produce regular
triangulations of the primary polytope (lifted to R¢*+! triangulation is
convex) induces the resolution of singularities of the original toric variety
by subdividing singular cones (affine charts of toric variety) to make them
regular.
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Toric geometry and combinatorics of polyhedral fans

Next, for any regular triangulation T = {o1,02,...} of P we define a point
gr € R® with coordinates qi7,...qn7:

4T = S volg(o), volg(o) = d!vol(o)

ceT, ajevertices(o)
The secondary polytope X(.A) is defined as convex hull
Y(A) =conv(S) d R"

of the set of points $ = {qr,,q7,,...} € R". The secondary fan (moduli space)
of GKZ system is build as the normal fan of the latter.

Now, the I'-series solutions of GKZ-system are build from the lattice L and

vector vy € C™

n 7"
1 E II J
@L,y(ml,...,mn)— . I‘(lj+7j+1)’

where A-L =0 and ¢= A - 7.
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Toric geometry and combinatorics of polyhedral fans

If ¢ is generic and A 4 admits unimodular triangulation, then the dimension
of the solution space is voly(A4).

For a maximal cone C of the secondary fan N(Z(A)) we take a
corresponding triangulation and construct T¢ as a list of subsets of indices
(1,...,n), such that each subset denotes the indices of the vertices of
maximal simplicies in this triangulation. Then we look for vectors 7 € C"
such that
a1y

gJ €T, suchthat v, € Z-y forj g J
If the number of such solutions is less then voly(A 4) the vector ¢ is
resonant. In the latter case to find logarithmic solutions we use
differentiation with rescpect to its components.
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Frobenius solutions of Pfaffian systems

These techniques were already partially implemented in public Mathematica
package PrecisionLauricella.

Consider the evaluation of and

1 4
FH ) 176; §ﬂ'_7jz
2 234 M| =

Choosing function basis as

S

A==+

£ |
y
g i
BT 1(ytz)
™ ee—1) Tty = €

2 — 2y (v41)(j=-¥) | 24y —PRy? y—1

5 5 Selecting the path z =% and y =%, the
J=3Fy,z-—F, y—F : . . .
{ i b ) i iR Y 1} M, differential system in the variable
the corresponding Pfaffian system t is given by the matrix
takes the form 0 > =
M, = 6_—127 _%1'))7 3it
dJ = (M,dx + M, dy) J, Te Te 16-7(2e+1)¢
32—=14¢ 67t =167

43z +(B-2&)zy+lz+(2¢- 1)y
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Frobenius solutions of Pfaffian systems

Analytical continuation

1 347 sh—ir
Fl (57176757571) =U (tp)
. = | :
X (U%_T(tig)) U%_Z(tg)
39 . —1 9
« (Uﬁ_z(tz)) Ut (23)

11

< (UtHe)) Ut (U°(0) b,

and final result

1 34—
F __.1 l_.____
1(27 a€727374)

= (1.1405189944 — 1.3603495231 1)
—(1.9381695438 + 1.50595641727%)¢
—(1.6764200809 — 2.0776109157%)e
+(1.6422823823 + 1.43969305211¢)¢

L]

w N
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Conclusion and future directions

e Development of general purpose expert system for the solution of
holomonic D-modules, in particular GKZ hypergeometric systems.

e Development of expert system for the reduction of indices of
general Euler-Mellin integrals

e Development of expert system for training neural networks
representing solutions of holonomic D-modules

e Further study of different combinatoric techniques provided by
toric geometry with applications to, in particular, variation of
mixed Hodge stuctures, calculation of intersection numbers,
twisted cohomology, monodromy groups, resolution of
singularities and asymptotic expansions of Euler-Mellin integrals
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