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Introduced by Gelfand ,  Kapranov  and Zelevinsky .

Generalize classical  hypergeometric functions using:

Toric geometry
-hypergeometric systems

Euler–Mellin integrals
Defined via an integer matrix  and parameter vector .

Φ ​(α , β ; u) =A , c ​ f ​( t) ⋯ f ​( t) t ​∫
γ

1
α ​1

k
α k ​β

t ​ ⋯ t ​1 n

dt ​ ∧ ⋯ ∧ dt ​1 n

together with  and .

Each  is  a  Laurent  polynomial  with support  

f ​( t) =j ​u ​t

∈S ​m j

∑ j ,m
m

and integration is  over a suitable cycle 

A

A ∈c Cn+k

​ =β (β ​, … β ​) ∈1 n Cn t =​β t ​ … t ​1
β ​1

n
β ​n

f ​( t)j S ​ ⊂j Zn

γ
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-matrix construction:

For each polynomial   enumerate exponents of  monomials :

S ​ =j { ​, … , ​}, r ​ =m j , 1 m j , r ​j j ∣S ​∣ ,   N ≡j ​r ​

j = 1

∑
k

j

-matrix of  size  is  given by

A = ​ ​ ​ ​ ​ ∈(
​m 1 , 1

​e 1

⋯
⋯

​m 1 , r ​1

​e 1

⋯
⋯

​m k , r ​k

​e k
) Z (n+ k ) ×N

Bottom  rows is  the selector matrix with  being standard basis
vector (  in posit ion  and  elsewhere)

Example (  variables and  polynomials):

Suppose:

,

Then:

,

A

f ​( t)j ∈m S ​j

A (n + k ) × N

k ​ ∈e j Z k

1 j 0

2 2

f ​(t) =1 u ​ +1 , 1 u ​t ​ +1 , 2 1 u ​t ​1 , 3 2

f ​(t) =2 u ​ +2 , 1 u ​t ​t ​2 , 2 1
2

2

S ​ =1 {(0, 0), (1, 0), (0, 1)}

S ​ =2 {(0, 0), (2, 1)}
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and -matrix is

A = ​ ​ ​ ​ ​ ​ ​

0
0
1
0

1
0
1
0

0
1
1
0

0
0
0
1

2
1
0
1

 rows:  variables +  polynomials

 columns:   coefficients

Determination of  vector:

Fixing an index  and considering transformation 
 and variable change  we get  ( ) :

( ​m ​θ ​)Φ ​( , ​; ) =
j ,m

∑ i j ,m A , c α β u β ​Φ ​( , ; )i A , c α β u

where  is  Euler  part ial  derivative.

Scaling al l  coefficients   of   by  we get

( ​θ ​)Φ ​( , ​; ) =
∈S ​m l

∑ l ,m A , c α β u α ​Φ ​( , ​; )l A , c α β u

Thus
=c (β ​, … , β ​, α ​, … , α ​) .1 k 1 n

A

4 2 2

5 5u ​i , j

∈c Cn+ k

i ∈ {1, … , n} u ​ →j ,m

t u ​

m ​i
j ,m t ​ =i

′ t t ​i t ∈ C ×

θ ​ =j ,m u ​j ,m ∂ u j , m

∂

u ​l ,m f ​( t)l s
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The complete GKZ -hypergeometric system is  given by the system of
equations:

 f irst-order Euler  equations

​u ​ ​ +a 1 1 ∂u ​1

∂ Φ
… + ​ ​ =aN ∂u ​N

∂ Φ
Φc

infini te set  of  equations of order  or  less

​ ​ Φ =
l ​< 0i

∏ (
∂u ​i

∂
)

− l ​i

​ ​ Φ
l ​> 0i

∏ (
∂u ​i

∂
)
l ​i

where

L = { =l ( l ​, … , l ​) ∈1 N Z ∣A ⋅N =l 0}

and
A = ( ​, … , ​) .a ​1 a ​N

A

k + n

N
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Other ways to obtain differential  equations for Euler-Melin  integrals:

In the context  of  Feynman  integrals  i t  is  the solution of momentum
space IBP relat ions with,  for  example,  Laporta  a lgori thm

IBP relat ions can be also obtained in parametric representat ion with
parametric annihilators of  integrand expression.  For example,  for

I ​ =ν ​, … , ν ​1 n
​ ​ ​ ​ G

Γ(d/2 − ω )
Γ(d/2)

i= 1

∏
N

∫
0

∞

Γ(ν ​)i

z ​dz ​i
ν ​− 11

i − d / 2

and IBP ideal  in parametric space is  given by ( ) :

G ∂ ​ +i ​ (∂ ​G ) ∈
2
d

i Ann(G ) .− d / 2

Integral  representat ion gives us an isomorphism betwen Weyl  a lgebra in
parametric space and shif t  algebra in integral  indices .

1 ≤ i ≤ N

ν ​, … ν ​1 n
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The shif t  algebra relat ions can be also obtained by considering equations
∂ Q ​ ≡a

i 0 mod  RI , i = 1, … , r

where  is  mult i- index and  form a basis  of  ideal   for  Weyl  a lgebra 
in coefficients  of  monomials of  -polynomial  or  parameters they depend
on.  I t  is  the annihilator  of  Euler-Mellin  integrals .  For example,  - ideal
formed by GKZ -hypergeometric system. Last ,  but  not  least ,  this  way
we could obtain Pfaffian  system associated to ideal  

The solution of shif t  relat ions for example with Gauss  e l imination and
Laporta  a lgori thm give us both a possibil i ty to reduces indices of  Euler-
Mellin  integrals  and general  holomonic differential  systems for the
lat ter.

a Q ​i I R

G

D

A

I
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-modules  are modules over Weyl
algebra ,  which is  free algebra over 

A ​ :=n C [x , … , x ​] ⟨∂ ​, … , ∂ ​⟩1 n 1 n

modulo relat ions
[∂ ​, x ​] =i j ∂ ​x ​ −i j x ​∂ ​, i , j =j i 1, … , n

Rational  Weyl  a lgebra:
R ​ :=n C(x ​, … , x ​)⟨∂ ​, … , ∂ ​⟩1 n 1 n

-modules are defined through the ideal
of differential  operators 

I = ⟨P ​, … , P ​⟩ , P ​(x , ∂ ) =1 n i ​c ​x ∂
α ,β

∑ α ,β
α β

such that  for  any 
QP ​f (x ​, … , x ​) =j 1 n 0, f (x) ∈ M

where  are holonomic solutions.

In general ,  the solution space is
defined as
S ol ​(I ) :=M {m ∈ M ∣P ∘ m = 0, P ∈ I }

There is  an insomorphism
Hom ​(D ​/D ​I , M ) ≅D ​n n n S ol ​(I )M

allowing to study obstructions
for local  solutions to become
global  with  groups

The -vector space of solutions
for holonomic ideal   outside
singular  locus of  has f ini te
dimension:

rank(I ) = dim ​(R ​/R ​I )C (x ​, … ,x ​)1 n n n

D M

A ​n C

D

P ​, … , P ​1 r

Q ∈ D ​n

f (x)

Ext ​D ​n

i

C
I

I
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To find series solutions for -modules we need to introduce the notion of
weight  vectors:

(v , w ) = (v ​, … , v ​, w ​, … , w ​) ∈1 n 1 n Z , v ​ +2n
j w ​ ≥j 0

for  monomial  orders:  .

The ini t ial  form  of  operator  is  the part  with maximal -
weight .  Then

The characterist ic  ideal  of  - ideal   is
in ​(I ) =( 0 , 1 ) ⟨ in ​(P ) ∣P ∈( 0 , 1 ) I ⟩ ⊂ C [x ​, … , x ​] [ξ ​, … , ξ ​]1 n 1 n

The characterist ic  variety of  ideal   is
Char(I ) = V ( in (I )) =( 0 , 1 ) {(x , ξ ) ∣p(x , ξ ) = 0, p ∈ in ​(I )}( 0 , 1 )

Ideal  is  holonomic if  

The singular  locus  is  the vanishing set  of  the ideal
( in ​(I ) :( 0 , 1 ) (ξ ​, … , ξ ​) ) ∩1 n

( ∞ ) C [x ​, … , x ​]1 n

solved with saturat ion + el imination

D

ord ​(x ∂ ) =( v ,w )
α β

​ v ​α ​ +∑ i= 1
n

i i w ​β ​i i

in ​(P )( v ,w ) P ∈ D ​n (v , w )

D I

I

dim Char(I ) = n

Sing(I )
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Grobner  deformations for Frobenius  series expansions are considered with
weights  and ini t ial  ideals

in ​(I ) =w in ​(I )−w ,w

The indicial  ideal  of   is  - ideal
ind ​(I ) =w R ​ ⋅n in ​(I ) ∩−w ,w C [θ ​, … , θ ​] , θ ​ =1 n i x ​∂ ​.i i

Zeroes of  in  are exponents of  ,  such that  s tart ing monomials of
solutions to  are of  the form  with .

From start ing monomials algori thm of Saito ,  Strumfels  and Takayama
construct  Frobenius  series solutions

Φ ​(x) =k x ⋅A
​c ​x log (x) ,

​

0 ≤ p ⋅w≤ k , p∈C ​Z
∗

0 ≤ b ​< r a n k ( I )j

∑ p , b
p b

so  Nilson r ing  with respect  to weight  .

The convergence regions are determined by maximum cones in Grobner fan.
The lat ter  are regions in weight  space where  does not  change

(−w , w ) , w ∈ Rn

I C [θ ​, … , θ ​]1 n

ind ​(I )w Cn I

I x log (x)A B A ∈ V ( ind ​(I ))w

Φ ​ ∈k N ​(I )w w

in ​(I )w
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The toric geometry considerat ion of GKZ systems starts  with primary
polytope in  space defined by -matrix:

P = △ ​ =A conv(A) = conv(a ​, … a ​) ⊂1 n R ,d

convex hull  of  -matrix columns from which we build i ts  normal fan.  The
lat ter  is  the collect ion of normal cones

N ​(P ) =F {b ∈ (R ) ∣F ⊆d ∗ {x ∈ P ∣b ⋅ x = max ​(b ⋅y∈P y )}}

Normal cones l ive in the dual   space and the toric variety described by
this  fan is  in general  s ingular.  Using height  functions to produce regular
tr iangulat ions of the primary polytope ( l if ted to  t r iangulat ion is
convex) induces the resolution of singulari t ies of  the original  toric variety
by subdividing singular  cones (aff ine charts  of  toric variety)  to make them
regular.

R d A

A

(R )d ∗

R d+ 1
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Next,  for  any regular  tr iangulat ion  of   we define a point
 with coordinates :

q ​ =j T ​ vol ​(σ ) , vol ​(σ ) =
σ∈T , a ​∈ v e r t i c e s (σ )j

∑ 0 0 d !vol(σ )

The secondary polytope  is  defined as convex hull
Σ(A) = conv(S ) ⊂ Rn

of the set  of  points  .  The secondary fan (moduli  space)
of GKZ system is  build as the normal fan of the lat ter.

Now, the -series solutions of GKZ-system are build from the lat t ice  and
vector 

Φ ​(x ​, … , x ​) =L , ​γ 1 n ​ ​ ​ ,
( l ​, … , l ​) ∈ L1 n

∑
j = 1

∏
n

Γ( l ​ + γ ​ + 1)j j

x ​j

l ​+ γ ​j j

where  and .

T = {σ ​, σ ​, …}1 2 P

q ​ ∈T Rn q ​, … q ​1T nT

Σ(A)

S = {q ​, q ​, …} ∈T ​1 T ​2 Rn

Γ L
​ ∈γ Cn

A ⋅ L = 0 =c A ⋅ ​γ
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If   is  generic and  admits  unimodular tr iangulat ion,  then the dimension
of the solution space is  .

For a maximal cone  of  the secondary fan  we take a
corresponding tr iangulat ion and construct   as  a l is t  of  subsets  of  indices

,  such that  each subset  denotes the indices of  the vert ices of
maximal simplicies in this  tr iangulat ion.  Then we look for vectors 
such that

=c a ⋅ ​γ

∃J ∈ T , such  that    γ ​ ∈C i Z ​    forj ∈≤ 0 / J

If  the number of  such solutions is  less then  the vector  is
resonant.  In the lat ter  case to f ind logari thmic solutions we use
differentiat ion with rescpect  to i ts  components.

c △ ​A

vol ​(△ ​)0 A

C N (Σ(A))

T ​C

(1 , … , n)

​ ∈γ Cn

vol ​(△ ​)0 A c
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These techniques were already part ial ly implemented in public Mathematica
package PrecisionLauricella .

Consider the evaluation of

F ​ ​; 1 , ϵ ; ​; ​, ​1 (
2
1

2
3

3
4

4
7

)

Choosing function basis  as

J = F ​, x ​F ​, y ​F ​{ 1 ∂ x
∂

1 ∂ y
∂

1 }

the corresponding Pfaffian system
takes the form

dJ = M ​dx + M ​dy J ,( x y )

       M ​ =x ​ ​ ​ ​ ​ ,

0
​2 − 2 x

1

0

​

x
1

​2 ( x− 1 ) x ( x− y )
− 3 x + ( 3 − 2 ε ) x y + x+ ( 2 ε− 1 ) y2

x − x y2
ε y

0
​( x− 1 ) ( x− y )

y − 1

​

y − x
1

and

               M ​ =y ​ ​ ​ ​

0
0

​2 − 2 y
ε

0
​

x− y
ε

− ​( y − 1 ) ( x− y )
ε ( x− 1 )

​

y
1

​

y ( y − x )
x

​ −2 x y − 2 y 2
x+ y

y − 1
ε

Selecting the path  and ,  the
 differential  system in the variable

 is  given by the matrix

M ​ =t ​ ​ ​ ​ ​

0
​6 − 2 t

1

​3 2 − 1 4 t
7 ε

​

t
1

−
​2 ( t− 3 ) t

3 ( t− 1 )

​1 6 − 7 t
7 ε

​

t
1

​3 − t
1

​2 t ( 7 t− 1 6 )
1 6 − 7 ( 2 ε+ 1 ) t

x = ​3
t y = ​1 6

7 t

M ​t

t

Frobenius solutions of Pfaffian systemsFrobenius solutions of Pfaffian systems

Hypergeometric functions: IBP reduction and series expansionsHypergeometric functions: IBP reduction and series expansions AQFT-25AQFT-25



Analytical  continuation

F ​ ​ ; 1 , ϵ ; ​ ; ​ , ​ =1 (
2
1

2
3

3
4

4
7

) U ( t ​)​ − ​1 4
5 3

2
i

p

× U ( t ​) U ( t ​)( ​ − ​1 4
5 3

2
i

3 )
− 1

​ − i1 4
3 9

3

× U ( t ​) U ( t ​
)( ​ − i1 4

3 9

2 )
− 1

​ − i7
9

2

× U ( t ​) U ( t ​) U (0) b ,( ​ − i7
9

1 )
− 1

0
1 ( 0 )

− 1

and final  result

F ​ ​ ; 1 , ϵ ; ​ ; ​ , ​1 (
2
1

2
3

3
4

4
7

)

= (1.1405189944 − 1.3603495231 i)
−(1.9381695438 + 1.5059564172 i)ε

−(1.6764200809 − 2.0776109157 i)ε 2

+(1.6422823823 + 1.4396930521 i)ε 3

+O (ε ) .4
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Development of general purpose expert system for the solution of
holomonic -modules, in particular GKZ hypergeometric systems.

Development of expert system for the reduction of indices of
general Euler-Mellin integrals
Development of expert system for training neural networks
representing solutions of holonomic -modules

Further study of different combinatoric techniques provided by
toric geometry with applications to, in particular, variation of
mixed Hodge stuctures, calculation of intersection numbers,
twisted cohomology, monodromy groups, resolution of
singularities and asymptotic expansions of Euler-Mellin integrals

D

D

Conclusion and future directionsConclusion and future directions

Hypergeometric functions: IBP reduction and series expansionsHypergeometric functions: IBP reduction and series expansions AQFT-25AQFT-25


