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CS FIELDS IN MINKOWSKI SPACE
PLACE OF THE CS FIELDS IN UIRS OF THE POINCARÉ GROUP

▶ UIRs of ISO(1, 3) were described in the works of Wigner and Bargmann: 1939 - 1948
▶ Algebra iso(1, 3) has two Casimir operators C2 and C4, which are defined via

iso(1, 3)-generators Pm and Jmn as follows

C2 := PmPm , C4 := WmWm , where Wm =
1
2
ϵmnlrPnJlr

1. Massive UIRs: C2 ∼ m2 and C4 ∼ m2 j(j + 1) , where m ∈ R>0 and j ∈ Z≥0 +
1
2

2. Massless UIRs: C2 ∼ 0
2.1 Helicity(gauge fields): C4 ∼ 0 and there is helicity operator ĥ ∼ n, where n ∈ Z+ 1

2
2.2 Infinite (continuous) spin1 : C4 ∼ µ2 , where µ ∈ R>0

▶ ISO(1,D − 1) case. Induced representations2. Massive: SO(D − 1). Helicity(gauge fields):
SO(D − 2). Infinite (continuous): ISO(D − 2)

▶ The general structure of the classification remains the same, but
symmetric tensors → mixed-symmetry tensors
R.Metsaev, K.Alkalaev, M.Grigoriev, M.Khabarov, Y.Zinoviev, X.Bekaert, J.Mourad

1X.Bekaert, E.Skvortsov, Elementary particles with continuous spin (2017), arXiv:1708.01030
2X.Bekaert, N.Boulanger, The unitary representations of the Poincaré group in any spacetime dimension (2006), arXiv:hep-th/0611263
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CS FIELDS IN MINKOWSKI SPACE
CS EQUATION FOR R1,3 IN SPINOR FORMALISM

▶ Basis
• UIRs of ISO(2) are infinite-dimensional, because this group is non-compact
• Basis in the space of these UIRs can be take as: |n⟩ or |ϕ⟩, where n ∈ Z, ϕ ∈ [0, 2π)

▶ Action of the iso(2) algebra with generators {T±,R} on basis |n⟩

T±|n⟩ = µ|n ± 1⟩ , R|n⟩ = n|n⟩ , T+T−|n⟩ = µ2|n⟩

▶ Wigner’s wave function in momentum space Φn(pm) or Φ(pm, ϕ), where pm ∈ R1,3, which is
non-locally transformed under Poincaré group and has a non-relativistic form

▶ Converting this into a relativistic field Ψ(xm, yn) or Ψ(xm, ξ
α, ξ̄α̇) with a local transformation law

was found by P.Schuster and N.Toro, arXiv:1302.1198 and by our group in the spinor
formalism arXiv:2303.11852. Then we can find relativistic equations for these fields

▶ We can get these equations another way (which can be also applied to the AdS case):
• Fix the space of representation and the realization of iso(1, 3)
• Take natural operator constrains (EoM), that resolve Casimir operators: C2 ∼ 0, C4 ∼ µ2

• Solve these operator constraints
• Check that the solution includes the spectrum of the continuous spin field (decomposition

in infinite sum over (all) helicity fields)
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CS FIELDS IN MINKOWSKI SPACE
CS EQUATION FOR R1,3 IN SPINOR FORMALISM

▶ Realization of iso(1, 3) on functions Ψ(xm, ξ
α, ξ̄α̇) is

Pn = ∂n , Jmn = xm∂n − xn∂m +Mmn , Mmn = ξα(σmn)
β

α ∂β + ξ̄α̇(σ̃mn)
α̇
β̇
∂̄β̇

▶ Casimir operators on this realization are

C2 = ∂n∂
n , C4 = Ml(mMl

n)∂
m∂n − 1

2
MmlMml ∂n∂

n

▶ Notation is the following

am := ξα(σm)αα̇ξ̄
α̇ , bm := ∂α(σm)αα̇∂̄

α̇ , N = ξα∂α , N̄ = ξ̄α̇∂̄α̇

▶ New form of C4 is
C4 = F(N, N̄)∂n∂

n − (an∂n)(bm∂m)

▶ Operator constraints are

∂n∂
n︸︷︷︸

l0

Ψ = 0 , (i am∂m − µ)︸ ︷︷ ︸
l+

Ψ = 0 , (i bm∂m − µ)︸ ︷︷ ︸
l

Ψ = 0 =⇒ C2 ∼ 0 , C4 ∼ µ2

▶ Integer spin constraint. Constraints form the closed algebra

UΨ = 0 , U = (N − N̄) , [l+, l] ∼ K l0 , K = N + N̄ + 2

▶ Solutions correspond to the CS field. The BRST Lagrangian.
▶ R.Metsaev, M.Khabarov, Yu. Zinoviev, A.Bengtsson, P.Schuster, N.Toro, M.Najafizadeh ... 4 / 14



CS FIELDS IN MINKOWSKI SPACE
CS EQUATION FOR R1,5 IN SPINOR FORMALISM

▶ iso(1, 5) has three Casimir operators: C2 = . . . ,C4 = . . . ,C6 = (1/64)ΥnΥ
n, Υn = εnmklrdJmkJlrPd

▶ Induced form the ISO(4) group. Moreover, there is a (half-)integer parameter s , which is
related with SO(3) in addition to the continuous parameter µ , arXiv:2011.14725

▶ Spinor formulation in the space Ψ(xm, ρ
A
α), where xm ∈ R1,5, A is SU(2) index and α is

SU∗(4) = Spin(1, 5) index, I.B., S.F., A.I., arXiv:2108.04716 and T.Kugo, P.Townsend,
Supersymmetry and the Division Algebras (1983)

▶ Realization of iso(1, 5) is the same, except the spin part is given by Mmn = −ρA
α(σ̃mn)

α
β∂

β
A

▶ Notation is the following

Am =
1
2
εAB ρ

B
α(σ̃m)

αβρA
β , Bm =

1
2
εAB ∂α

B (σm)αβ∂
β
A , N := ρA

α∂
α
A , N := ρA

α∂
α
B ρB

β∂
β
A

▶ Constraints are

∂n∂
n︸︷︷︸

l0

Ψ = 0 , (Am∂m − µ)︸ ︷︷ ︸
l̃

Ψ = 0 , (Bm∂m − µ)︸ ︷︷ ︸
l

Ψ = 0 =⇒ C2 ∼ 0 , C4 ∼ µ2,C6 ∼ −µ2J

▶ One more constraint is required:

(J − const)︸ ︷︷ ︸
Ũ

Ψ = 0 , where J =
1
2
(N − 1

2
N2) and const = s(s + 1)

since J is the Casimir operator of so(3) as shown in arXiv:2108.04716, arXiv:2207.02640
▶ The Lagrangian description of the CS field in R1,5 was given in arXiv:2308.05622
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CS FIELD IN AdS SPACE
GENERAL INFORMATION AND OUR GOALS

▶ AdSD symmetry group is SO(2,D − 1)
▶ There are no continuous spin representations in the known classification of highest weight

representations |E0,Y0⟩ induced from the compact subgroup – SO(2)⊕ SO(D − 1), P. Dirac,
C.Fronsdal, M.Flato, N.Evans, A.Barut, N.Limić, J. Niederle, R.Raczka, V.Dobrev, E.Sezgin,
M.Vasiliev, R.Metsaev, Yu.Zinoviev, . . .

▶ But there are consistent models with certain parameters, which are reduced to either known
Minkowski continuous spin theories or finite spin AdS theories, R.Metsaev and Yu.Zinoviev,
M.Khabarov, I.B., S.F., A.I., V.K.

▶ Also there is some hypothesis, that these representations are induced from the non-compact
subgroup – SO(1, 1)⊕ SO(1,D − 2), X.Bekaert, E.Skvortsov

Our results
▶ Operator constraints l0, l+, l,U and l0, l̃, l, Ũ can be consistently generalized to the AdS4 and

AdS6 cases, respectively
▶ Moreover, these constraints fix the eigenvalues of the Casimir operators of the AdS symmetry

algebra in both cases
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CS FIELD IN AdS SPACE
CS FIELDS IN AdS4 SPACE

▶ We will consider functions Ψ(xµ, ξα, ξ̄α̇), where xµ is a coordinate on the AdS4 space with the
metric gµν and a standard definition of the frame fields: em

µ en
νηmn = gµν , eµmeνn gµν = ηmn, where

ηmn is the flat metric ||ηnm|| = diag(−,+,+,+)
▶ Covariant derivative (via the spin-connection) and geometric constraints are

Dn = eµn

(
∂µ +

1
2

wµlkMlk
)

, T l
mn = 0 , R kl

mn = − 1
R2

(
δk

mδ
l
n − δk

nδ
l
m

)
▶ New constraints, that are found by rules: a) change the derivative to the covariant derivative b)

add a terms to make the algebra closed (check: the flat limit, the last constant U remains to be
unchanged)

L0 = (D)2 − 1
2R2MmnMmn +

2(1 + µR)
R2 , L+ = i(amDm)− µ− K2

4R
, L = i(bmDm)− µ− K2

4R
▶ Here K := N + N̄ + 2 and spin generalization of the Laplace-Beltrami operator is

(D)2 := ηmn(DmDn + wmnlDl) =
1

√−g
Dµ

√
−g gµνDν

∣∣∣∣
Mmn=0

= □AdS4

▶ Algebra of constraints (I.B., S.F., A.I., V.A. Krykhtin, arXiv:2402.13879, arXiv:2403.14446) is

[L0,L+] = [L0,L] = 0 , [L+,L] = K L0 + R−1(K − 1)L+ + R−1(K + 1)L

▶ These constraints were used to construct the real BRST Lagrangian (I.B., S.F., A.I., V.K.)
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CS FIELD IN AdS SPACE
REALIZATION OF THE SO(2, 3) SYMMETRY GROUP

▶ AdS4 ⊂ R2,3 : XAXBηAB = −R2, A,B = 0, . . . 4 and ||ηAB|| = diag(−,+,+,+,−)
▶ Group symmetry is SO(2, 3). The Lie algebra generators are JAB = −JBA. The split generators

are {Pm = R−1Jm4 , Jnl}, where m,n, l = 0, . . . 3. The commutation relations are

[Pm,Pn] = R−2Jmn , [Jmn,Pl] = ηnlPm − ηmlPn , [Jmn, Jkl] = ηnk Jml + 3 term

▶ The flat limit is R → ∞: so(2, 3) → iso(1, 3)
▶ Realization of so(2, 3) on functions Ψ(xµ, ξα, ξ̄α̇)

• From the ambient formalism. The generators are JAB = XA∂B − XB∂A, the stereographic
coordinates are xµ, gµν = G(x)−2ηµν , en

µ = G(x)−1δn
µ , G(x) = (1 − ηµνxµxν/(4R2)),

Xm = em
µxµ , X4 = R(2/G(x)− 1). Then JAB splits as

JAB → {Pn = eµn(∂µ − 1
2

wµlkLlk) , Jmn = Lmn := xm∂n − xn∂m} L → L+M

{Pn = en − 1
2

wnlkJlk , Jmn = Lmn +Mmn} en := eµn∂µ , wnlk := eµnwµlk

• From the conformal group

so(2, 3) ⊂ so(2, 4) ≃ conf(R1,3) =⇒ Pn ∼ Pn +Kn and ∆ = 0

• Lie-Lorentz derivative (Y. Kosmann (1971), W.G. Unruh (1974))

Pn = Lϕ(n) := ϕµ
(n)Dµ +

1
2

gλν
(
Dµ ϕ

ν
(n)

)
eµa eλbM

ab 8 / 14



CS FIELD IN AdS SPACE
CASIMIR OPERATORS IN TERMS OF SPIN GENERATORS AND COVARIANT DERIVATIVE

▶ Constraints L0,L+,L,U commute with so(2, 3) generators. It is based on the relations

[Pm,Dn] = wmnlDl , [Jmn,Dl] = ηnlDm − ηmlDn

▶ The so(2, 3) algebra has two Casimir operators:

C2 :=
1
2

JABJAB = −R2PnPn +
1
2

JmnJmn , C4 := (1/64)AB1B2B3B4
A1A2A3A4

JB1B2JB3B4JA1A2JA3A4 = C4(Pn, Jmn)

▶ Correct flat limit is C2,4/R2 R→∞
= C2,4 ( ⇐= C2n = R2 Ĉ2n − C2n)

▶ Notation of so(2, 3) invariant operators

M(2n) := MmnMnl · · ·Mkm︸ ︷︷ ︸
#2n

, (D
(n))

2 :=
( n∏

i=1

M
)km( n∏

j=1

M
) n

k
(DmDn + wmnlDl)

▶ New form of the Casimir operators is

C2 = −R2(D)2 − 1
2
M(2) , C4 = C4

(
(D)2, (D

(1))
2,M(2),M(4)

)
▶ Eigenvalues on the constraints L0,L+,L and U (L0 is proportional to C2 up to a constant) are

C2 ∼ 2(1 + µR) , C4 ∼ µR + µ2R2

▶ The most degenerate continuous unitary representation of the AdS4 symmetry group, N.Limić,
J. Niederle, R. Raczka (1966) 9 / 14



CS FIELD IN AdS SPACE
CS FIELD IN AdS6

▶ Symmetry algebra in this case is so(2, 5)
▶ We will work in the space of functions Ψ(xµ, ρA

α), where xµ ∈ AdS6 and the operator Mmn,
which is included in Dµ and is realized as in the flat space: Mmn = −ρA

α(σ̃mn)
α
β∂

β
A

▶ The generalization of the R1,5 continuous spin constraints L0, L̃,L, Ũ to the AdS6 ones takes

the following form
[
Ũ is again the same: (1/2(N − 1/2N2)− s(s + 1))

]
L0 = R−2 (C2 + 2(4 + µR)) , L̃ = (AmDm)−µ− s(s + 1)

2R
−K2

4R
, L = (BmDm)−µ− s(s + 1)

2R
−K2

4R

▶ Here we postulate L0 = R−2C2 + c and L̃ = (A · D)− µ+∆(N,N) , L = (B · D)− µ+∆(N,N),
then from the requirement of the closure of the algebra [L̃,L] = . . . we find c and ∆(N,N). In
this case K := N + 4

▶ Algebra of constraints is similar to the AdS4 case (L+ → L̃, U → Ũ and K → K)
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CS FIELD IN AdS SPACE
CS FIELD IN AdS6

▶ The second and the third Casimir operators of the so(p + 1, q) algebra (where p + q = D) in
terms of covariant derivative (this was found with the help of Cadabra, M ∼ y(i)∂(i)) are

C4 = (−1)p+1 R2
(
(D

(1))
2 +

1
2
M(2)(D)2

)
+O4(M)

C6 = (−1)p R2
[
(D

(2))
2 +

(
1 +

1
2
M(2)

)
(D

(1))
2 +

(
β1M(2) +

1
8
M2

(2) −
1
4
M(4)

)
(D)2

]
−O6(M)

where β1 = 1/8
(
D2 − 5D + 10

)
and we define

O4(M) = (−1)p+1
(
(D − 2)(D + 1)

8
M(2) +

1
8
M2

(2) −
1
4
M(4)

)
O6(M) = (−1)p

(
γ2M(2) + γ2,2M2

(2) + γ4M(4) −
1
48

M3
(2) +

1
8
M(2)M(4) −

1
6
M(6)

)
here the constants γi are fixed as

γ2 = − 1
12

(
D4 − 6D3 + 13D2 − 8D − 4

)
, γ2,2 =

1
48

(
−3D2 + D − 2

)
, γ4 =

1
6

(
2D2 − 5D + 5

)
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CS FIELD IN AdS SPACE
CS FIELD IN AdS6

▶ Eigenvalues are

C2 ≃ 2(4 + µR) , C4 ≃ (µR − 3S + 4) (µR + S + 1) ,

C6 ≃ −2S
(
µ2R2 + (2S + 1)µR + S(S + 1)

)
where S = s(s + 1)/2 and in the flat limit we have

C2 ≃ 0 , C4 ≃ µ2 , C6 ≃ −µ2s(s + 1) .

▶ To resolve C4 we need to use the constraint Ũ, which plays a role only for deriving C6 in the flat
space

▶ It is interesting, that if we can try to find the constraints directly from the Casimir operators (as
the conditions for its resolution) we will see that there would be one free parameter, which can
only be fixed by the condition of the closure of the algebra of these constraints

▶ This construction seems to be inequivalent to the description of the CS field using two
additional vector variables when s ̸= 0 (in particular, when s = 0, the description appears to be
equivalent to the one involving a single additional vector). This can be analyzed using the
so(1, 5) Casimir operators C4,C6

C4

∣∣∣
N= 1

2 N2
= C6

∣∣∣
N= 1

2 N2
= 0
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CONCLUSIONS

▶ Done
• The consistent deformation of the continuous spin constraints from Mink4,6 to AdS4,6
• The identification of the CS representation in AdS4,6

▶ Future
• Check unitarity and find out the group that induces this representation
• Find an easier way and generalize to higher dimension (deformation of the

Bekaert-Mourad equation for CS fields of mixed symmetry type)
• Construction Lagrangian theory in arbitrary dimension
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Thank you for your attention!
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