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The theory of totally antisymmetric tensor-spinor field model is a gauge
theory with reducible generators.

The first such field theory was proposed by Ogievetsky and Polubarinov
(notoph theory) [ V.I. Ogievetsky, I.V. Polubarinov Yadernaya Fizika
(Soviet Journal Nuclear Physics), 4 (1967) 156. ]

Later a lot of various reducible gauge theories were constructed and
quantized by different methods. The current state of art with the
relevant references in this area is presented in detail in [ S.M. Kuzenko,
E.S.N. Raptakis JHEP, 09 (2024) 182, arXiv:2406.01176 [hep-th].]

There exist general BV (Batalin-Vilkovisky) method of covariant
quantization [ I.A. Batalin and G.A. Vilkovisky Phys. Rev. D 28(1983),
2567 [erratum: Phys. Rev. D 30 (1984), 508].]

Our purpose is to guantize a reducible gauge theory using the method
analogous to the Faddeev-Popov method for irreducible gauge theories.
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Faddeev-Popov procedure for irreducible gauge theories
Functional integral for non-gauge theories is

Z =

∫
DΦA eiS[Φ]

ΦA are the physical fields.

For gauge theories with fields φ = φi the action S[φ] invariant under
gauge transformation

φi → (φi)f = φi +Riαf
α S[φf ] = S[φ]

where Riα are the generators of gauge transformations and fα are the
gauge parameters.

We assume that the gauge transformations form in general a
non-Abelian closed algebra, gauge field φ and group parameters f are
bosonic, though the extension to the generic boson-fermion system is
straightforward.



Faddeev-Popov procedure for irreducible gauge theories
If we consider the functional integral∫

Dφi eiS[φ]

it includes the integation over phisical gauge fields (=over orbits {φi})
and integation over the gauge group (=along the orbits).

Since S[φi] = S[(φi)f ] = S[{φi}] the integral over the gauge group
should be factorized∫

Dφi eiS[φ] =

∫
Df

∫
D{φ} eiS[{φ}] = V×

∫
D{φ} eiS[{φ}]

The last factor is the functional integal for the gauge theory

Z =

∫
D{φ} eiS[{φ}]



Faddeev-Popov procedure for irreducible gauge theories
In the case when the gauge generators Riα are independent (irreducible
gauge theory) we can apply the Faddeev-Popov method.
The main idea of the Faddeev-Popov method consists in the insertion
under the integration over φ the unity factor defined by the following
integration over the group parameters

∆χ[φ]

∫
Df δ[χ(φf )) ] = 1.

Here χ(φ) denotes the set of gauge conditions and
∆χ[φ] is the Faddeev-Popov functional determinant in this gauge,
which on the surface of enforced gauge conditions reads as

∆χ[φ]
∣∣∣
χ(φ)=0

= Det
(δχ(φ)

δφ
R(φ)

)
.

for simplicity we omit the indices of both the fields and gauge
parameters



Faddeev-Popov procedure for irreducible gauge theories
Then under the assumption of the group associativity, (φf )h = φhf , and
invariance of the functional measure of integration over the group,
Df = D(hf), the Faddeev-Popov determinant turns out to be gauge
invariant

∆χ[φf ] = ∆χ[φ]

which allows one to disentangle from the functional integral a volume of
the group

∫
Df = V .

This goes by changing the order of integrations and using the
invariance of the integration measure in the space of φ, D(φf ) = Dφ,
along with the change of integration variable φf → φ,∫

DφeiS[φ] =

∫
DφeiS[φ]∆χ[φ]

∫
Df δ[χ(φf ) ] =

=

∫
Df

∫
DφeiS[φ]∆χ[φ] δ[χ(φ) ] = V ×

∫
DφeiS[φ]∆χ[φ] δ[χ(φ) ].

The last factor is a well-defined Faddeev-Popov integral which is
actually independent of the choice of gauge χ.



Adjustment of FP method to reducible gauge theories
The above method of constructing the correct functional integral works
well only if the gauge generators are independent.

When applied to a gauge theory with linearly dependent generators this
method would break at several points.

Linear dependence implies that the gauge generators Riα(φ) have their
own right zero vectors Zαa enumerated by set of indices a,

RiαZ
α
a = 0, α = 1, ...m0, a = 1, ...m1 < m0

Zαa are linearly independent for stage one reducible gauge theories.

This means that the actual number of local gauge symmetries is
m0 −m1 (the rank of the matrix Riα(φ)), rather than m0.



Adjustment of FP method to reducible gauge theories

Therefore the actual number of independent gauge conditions to fix
these symmetries should also be m0 −m1.

Therefore we use the redundant (or reducible) set of gauge conditions
χµ satisfying the condition of linear dependence

Z̄bµχ
µ = 0, µ = 1, ...m0, b = 1, ...m1 < m0.

with some left zero vectors Z̄bµ.

The first problem is that the conventional delta function of these
linearly dependent gauge conditions, δ(m0)[χ ] =

∏
µ δ[χ

µ ] ∝ δ(m1)(0),
becomes ill defined.



Adjustment of FP method to reducible gauge theories

The second problem is that the group integration measure
Df =

∏
αDf

α is ill defined because the actual integration should run
over (m0 −m1)-dimensional group space rather than the
m0-dimensional one.

The third problem is that the Faddeev-Popov determinant

∆χ = DetQµα, Qµα ≡
δχµ

δφi
Riα,

becomes vanishing in view of the right zero vectors Zαa of the
Faddeev-Popov operator Qµα, QµαZαa = 0.

All these three problems can be resolved by a method, which we
develop in what follows. The idea of the method consists in the
insertion of the unity factor, analogous to the FP procedure, and
factorization of the group volume with a corrected measure V =

∫
Dµf .



Adjustment of FP method to reducible gauge theories
The first step is the construction of the correctly defined delta function
of reducible gauge conditions. Naive delta function

δ[χ] =

∫
Dπ eiπµχ

µ

is ill defined because the integral over the Lagrange multiplier πµ
requires the factorization of the volume V1 =

∫
Dξ1 of the invariance

group of the exponential,

πµ → πξ1µ = πµ + Z̄bµξ1 b, πξ1µ χ
µ = πµχ

µ.

This is the m1-dimensional gauge invariance in the m0-dimensional
space of πµ, following from the reducibility Z̄bµχµ = 0 of gauge
conditions χµ.



Adjustment of FP method to reducible gauge theories
Such a factorization proceeds by gauge fixing πµ with the gauge
σb(π) = πµσ

µ
b and inserting the unity factor of the form

∆̄1

∫
Dξ1 δ[σ(πξ1)) ] = 1, ∆̄1

∣∣
σ(π)=0

= Det
(
Z̄aµσ

µ
b

)
.

This leads to∫
Dπ eiπµχ

µ
=

∫
Dπ eiπµχ

µ
∆̄1

∫
Dξ1 δ[σ(πξ1) ] =

=

∫
Dξ1

∫
Dπ eiπµχ

µ
Det Q̄ δ[σ(π) ] = V1×Det Q̄

∫
Dc δ[χµ + σµb c

b ],

where we expressed δ[σ(π) ] as the integral over an auxiliary field ca

and took the integral over πµ.



Adjustment of FP method to reducible gauge theories

This allows one to identify the correct expression for the delta function
of reducible gauge conditions

δ̂[χ ] = Det Q̄

∫
Dc δ[χµ + σµb c

b ], Q̄ ≡ Q̄ab = Z̄aµσ
µ
b .

Here we get the extra Faddeev-Popov operator Q̄ involving the zero
vector Z̄aµ of reducible gauge conditions χµ.

Note that the argument of the delta function

δ[χµ + σµb c
b ] ≡

∏
µ

δ[χµ + σµb c
b ]

is no longer reducible, and this delta function is well defined.

Moreover, the gauge σa(π) for πµ, that is the matrix σµb above, can be
freely changed without altering the “correct” delta function.



Adjustment of FP method to reducible gauge theories
The second problem is the construction of group integration measure
Dµf by the factorization of the infinite volume of the fa1 -integration.

This type of divergent integration arises when one integrates over fα

any functional of the transformed gauge field Φ[φf ], because as a
function of fα it is constant on the orbit of f1-transformation in the
space of fα,

f → ff1 , fα → fα + Zαa f
a
1 , φf

f1
= φf .

In other words, gauge parameters themselves become gauge fields
subject to f1-transformations with the new generators Zαa .

Thus we need to factor out integration over the f1-transformations.



Adjustment of FP method to reducible gauge theories
This factorization is achieved by using a new set of gauge conditions
ωa(f) = ωaαf

α on fα. The insertion of the new unity

∆1

∫
Df1 δ[ω(ff1)) ] = 1, ∆1

∣∣
ω(f)=0

= Det
(
ωaαZ

α
b

)
,

into the group integral gives by the same pattern∫
Df Φ[φf ] =

∫
Df Φ[φf ] ∆1

∫
Df1 δ[ω(ff1)) ] =

=

∫
Df1

∫
Df ∆1 δ[ω(f) ]Φ[φf ] = V1 ×

∫
Df ∆1δ[ω(f) ]Φ[φf ].

Therefore, the group integration measure can be identified with

Dµf = Df DetQ1 δ[ω(f) ], Q1 ≡ Q a
1b = ωaαZ

α
b .

Here the new Faddeev-Popov operator Q1 is defined in terms of zero
vectors Zαb of the original gauge generators, and it is also assumed to be
invertible by the choice of gauge functions ωaα.



Adjustment of FP method to reducible gauge theories
The third problem is to determine the overall Faddeev-Popov
operator ∆ from the definition of unity with the corrected delta
function and the corrected group integration measure.

The equation for ∆ then reads

1 = ∆

∫
Dµf δ̂[χ(φf ) ] =

= ∆ Det Q̄DetQ1

∫
Df Dc δ[ωaαf

α ] δ[χµ(φ) +Qµαf
α + σµb c

b],

where Qµα is a naive (degenerate) Faddeev-Popov operator having right
and left zero vectors

Qµα =
δχµ

δφi
Riα, QµαZ

α
a = 0, Z̄bµQ

µ
α = 0.



Adjustment of FP method to reducible gauge theories
The integral of the product of two delta functions in (1) equals the
inverse of the following Jacobian

D
(
χ+Qf + σc, ωf

)
D
(
f, c

) = Det

 Qµα σµb

ωaα 0

 = DetFµα ,

where Fµα is the non-degenerate operator obtained from Qµα by adding
the gauge-breaking term composed of the gauge matrices σµb and ωaα

Fµα = Qµα + σµaω
a
α.

Thus equation for ∆ takes the form 1 = ∆ Det Q̄DetQ1(DetF )−1, so
that the full Faddeev-Popov determinant equals

∆ =
DetF

Det Q̄DetQ1
.



Adjustment of FP method to reducible gauge theories
Insertion of the unity into the functional integral by the pattern of
Faddeev-Popov procedure then reads∫

DφeiS[φ] =

∫
DφeiS[φ]∆

∫
Dµf δ̂[χ(φf ) ] =

=

∫
Dµf

∫
DφeiS[φ] δ̂[χ(φ) ]

DetF

Det Q̄DetQ1
=

= V ×
∫
DφDc eiS[φ]δ[χµ(φ) + σµa c

a]
DetF

DetQ1
.

As a result, after a formal factorization the functional integral for stage
one reducible gauge theories equals

Z =

∫
DφDc eiS[φ] δ[χµ(φ) + σµa (φ)ca]

DetF [φ]

DetQ1[φ]

and coincides with that derived from a fundamental Batalin-Vilkovisky
formalism, which remains valid for field-dependent Zαa (φ), σµa (φ), ωaα(φ).



Antisymmetric tensor fermion in AdSd space
The model of the rank antisymmetric fermion of tesor rank p in AdSd
spacetime is described by the field ψµ1...µp , (2p < d) with the action

Sp = i

∫
ddx g1/2ψ̄µ1...µpγ

µ1...µpσν1...νp Dσ ψν1...νp

Dµ = ∇µ ±
i r

1
2

2
γµ Rµναβ = r(δναδ

µ
β − δ

µ
αδ

ν
β)

This action is invariant under reducible gauge transformations with the
fermionic vector parameters

δψν1...νp = pD[ν1λν2...νp]

. . .
δλν1...νk = kD[ν1λν2...νk] D[ν1Dν2λν3...νk] ≡ 0
. . .
δλν1ν2 = Dν1λν2 −Dν2λν1

δλν = Dνλ



Antisymmetric tensor fermion in AdSd space
The model of the second rank antisymmetric fermion in AdSd
spacetime is described by the field ψµν with the action

S[ψµν , ψ̄µν ] = i

∫
ddx g1/2ψ̄µ1µ2γ

µ1µ2σν1ν2 Dσ ψν1ν2 ,

This action is invariant under gauge transformations with the fermionic
vector parameters λµ, λ̄µ

δψµ1µ2 = Dµ1λµ2 −Dµ2λµ1 , δψ̄µ1µ2 = D̄µ1 λ̄µ2 − D̄µ2 λ̄µ1 ,

(D̄µλ̄ν ≡ Dµλν), while these transformations themselves are invariant
under the first stage transformations with the spinor parameters λ and
λ̄,

δλµ = Dµλ, δλ̄µ = D̄µλ̄ ≡ Dµλ,

in view of the relations D[ν1Dν2]λ ≡ 0, D̄[ν1D̄ν2]λ̄ ≡ 0 which are valid in
AdSd spacetime.



Antisymmetric tensor fermion in AdSd space
We impose on ψµν the number d (per spacetime point) of spinor gauge
conditions reducible to (d− 1)-independent ones, which in their turn
correspond to the parameters λµ reducible to a transverse vector (we
count only tensor components, their spinor dimensionality 2[d/2] being
implicitly included). We choose this set of gauges χµ 7→

(
χµ(ψ), χ̄µ(ψ̄)

)
as

χµ(ψαβ) = γνψµν +
1

d
γµγ

αβψαβ, γµχµ = 0.

The gauge for the Dirac conjugated fermion ψ̄µν is fully analogous – in
what follows we will formulate everything explicitly for ψµν , while for
ψ̄µν the analogous formalism will be implicitly assumed.

Gamma matrix γµ plays the role of left zero vectors Z̄aµ, Z̄aµ 7→ γµ.



Antisymmetric tensor fermion in AdSd space
We construct the covariant delta function of gauge conditions by
using the “gauge for gauge” σa(π) 7→ σ(ψ̄µ) = ψ̄µγµ, σ

µ
a 7→ γµ, and

applying the Faddeev-Popov factorization of the group volume

δ̂[χµ] =

∫
Dψ̄µ exp{iψ̄µχµ(ψαβ)} δ[ψ̄µγµ],

δ[ψ̄µγµ] =

∫
Dψ exp{iψ̄µγµψ},

we get with ca 7→ ψ

δ̂[χµ(ψαβ)] =

∫
Dψ δ[χµ(ψαβ) + γµψ],

where we omitted the FP operator factor (Det Q̄)−1 because this
operator is ultralocal in spacetime, Q̄ab = Z̄aµσ

µ
b 7→ γµγµδ(x, y) and

Det Q̄ ∼ exp
(
δ(0)(...)

)
can be discarded in dimensional regularization

or absorbed in the irrelevant local measure.



Antisymmetric tensor fermion in AdSd space
Integration measure over the group transformation
Dµf 7→ Dµ(λ)Dµ(λ̄), follows from the factorization procedure.
It goes with fµ 7→ (λµ, λ̄µ) and f1a 7→ (λ, λ̄) by using the following
choice of gauge condition functions ωa(f) 7→ (γµλµ, λ̄µγ

µ) which
correspond to local gauge-fixing matrices ωaα 7→ γα acting in both λ and
λ̄ spinor sectors.

Dµ(λ) = Dλµ ∆−1
0 δ[γµλµ], Dµ(λ̄) = Dλ̄µ ∆−1

0 δ[λ̄µγ
µ].

Here ∆−1
0 is the inverse of the FP determinant, corresponding in the

terminology BV to the contribution of ghosts for ghosts. The
determinant DetQ a

1 b = Det
(
ωaαZ

α
b

)
7→ ∆0 in both (λ, λ̄)-sectors equals

∆0 ≡ Det
[
i /∇± 1

2
r1/2 d

]
, (1)

where the operator /∇ = γµ∇µ is acting on the tensor rank zero spinor.



Antisymmetric tensor fermion in AdSd space
The FP determinant

∆−1 =

∫
Dµ(λ) δ̂

[
χµ
(
ψ

(λ)
αβ

)]
= ∆−1

0 ∆1, ∆p = Det
(
i /∇p

)
.

where the operator i /∇p acting on the totally antisymmetric fermion of
any rank p is defined by the equation

i /∇p ≡ i /∇±
1

2
r

1
2 (d− 2p).

It is important that the functional determinant ∆1 should be calculated
here on the functional space of γµ-irreducible vector fermions Ψµ
satisfying the irreducibility constraint γµΨµ = 0. The same result holds
for the contribution of the ψ̄αβ-sector of the theory.
Therefore, the determinant factor equals

DetQ1

DetF
= ∆−2 =

∆2
1

∆2
0

.



Antisymmetric tensor fermion in AdSd space
The functional integral

Z =
∆2

0

∆2
1

∫
DψµνDψ̄µνDψDψ̄

× δ[χµ(ψµν) + γµψ] δ[χ̄µ(ψ̄µν) + ψ̄γµ] exp
{
iS[ψµν , ψ̄µν ]

}
is easy to calculate in terms of the γµ-irreducible components of all
integration variables ψµν and ψ̄µν . Decomposing them into these
components Ψµν , Ψµ and Ψ according to the equations

ψµν = Ψµν +
1

d− 2

(
γµΨν − γνΨµ

)
+ γµν Ψ, γµΨµν = 0, γµΨµ = 0,

(similarly for ψ̄µν) one gets

Z =
∆2

0

∆2
1

∫
DΨµνDΨ̄µνDΨµDΨ̄µDΨDΨ̄DψDψ̄ ×

× δ[Ψµ + γµψ] δ[Ψ̄µ + ψ̄γµ] exp
{
iS̃[ Ψµν ,Ψµ,Ψ, Ψ̄µν , Ψ̄µ, Ψ̄ ]

}
,



Antisymmetric tensor fermion in AdSd space
Taking the Gaussian integral we finally get the one-loop contribution to
the functional integral for second rank antisymmetric fermion fields on
the AdSd background

Zp=2 =
∆2

0

∆2
1

×∆2∆0 =
∆2 ∆3

0

∆2
1

, ∆p = Det
(
i /∇p

)

and the operators i /∇p, acting on γ-ireducible antisymmetric spinor
p-forms, p = 0, 1, 2, are defined

i /∇p ≡ i /∇±
1

2
r

1
2 (d− 2p).

This is a final result for effective action in the theory under
consideration. The calculation of the functional determinants
∆2,∆1,∆0 on irreducible spinor forms is a separate problem.



Antisymmetric tensor fermion in AdSd space

Zp =
∆p ∆3

p−2 ∆5
p−4 · · ·

∆2
p−1 ∆4

p−3 · · ·
, ∆p = Det

(
i /∇p

)

and the operators i /∇p, acting on γ-ireducible antisymmetric spinor
p-forms, are defined

i /∇p ≡ i /∇±
1

2
r

1
2 (d− 2p).
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