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Statement

Statements

(Almost abelian) bi-vector deformations are equivalent to coordinate transformations in
doubled space

It is possible to construct uni-vector deformations generating solutions in
Einstein–Maxwell dilaton theory.
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Introduction

Why deformations?

Under gauge/gravity duality families of CFT’s correspond to families of supergravity
backgrounds.
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Deformations Bi-vectors

Bi-vector deformations

Type II supergravity fields: Gmn,Bmn,φ,C(p)

A general bi-vector Yang-Baxter deformation
[Bakhmatov, Colgain, Sheikh-Jabbari, Yavatanoo (2018)]

• (G+ B)−1 = g−1 + β no initial flux

• (G+ B)−1 = (g+ b)−1 + β with a flux of bmn
(1)

Sufficient conditions to have a solution

[ka, kb] = fabckc (Killing vector algebra)

βmn = kamkbnr ab (bi-Killing anzats);

r b1[a1r|b2|a2 fb1b2a3] = 0 (classical YB equation);

r b1b2 fb1b2akam = Im = 0 (unimodularity condition);

(2)
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Deformations Poly-vectors

Origin of deformations

From dualities:

String on Td is invariant under (global) O(d,d)
⇓

bi-vector deformations: Oβ = exp (βmn(x)Tmn
)
∈ O(d,d),

Geometric:

Uni-vector deformations can be found in the standard KK reductions of GR

Rank of the poly-vector is related to structure of internal space

Deformations are coordinate transformations
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Uni-vector deformations

KK reduction of the standard GR

The standard General Relativity in D = 4

SGL(4) =
∫
d4x

√
−GR[G] (3)

ds2 = eϕgmndxmdxn + e−ϕ(dz+Amdxm
)2

The Einstein–Maxwell dilaton theory in D = 3:

SEMd =
∫
d3x√−g

(
R[g]− 1

2∂mϕ ∂mφ− 1
4e

−2ϕFmnFmn

)
, (4)

has hidden symmetries:

1 global GL(4) (analogue of the global O(d,d));
2 local diffeos modulo the “section condition” ∂z = 0.
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Uni-vector deformations

Uni-vector deformations
Uni-vector deformations bas gl(4) = {Tm4,Tmn,T4n}:

Oα = exp (αmTm4) = [
1 0
αm 1

]
,

G′
MN(x) = OM

KON
LGKL(x)

(5)

Non-linear transformations of the fields of the Einstein–Maxwell dilaton theory

e−φ̃ = eφαkαk + e−φ(1+Akαk)2 ,
Ãm = eφ̃(eφαm + e−φAm(1+Akαk)) ,
g̃mn = e−φ̃(eφgmn + e−φAmAn)− e−2φ̃ÃmÃn .

(6)

Generates solutions if αm = αm(x) is a D = 3 Killing vector:

Lα φ = 0, Lα gmn = 0, Lα Am = 0, (7)

.
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Uni-vector deformations Examples

Example I

Flat D=3 space: ds2 = −dt 2 + dr 2 + r 2dθ2, φ = 0, Am = 0

Deformation along α = η ∂θ gives:

ds2 = (1+ η2r 2)
(
− dt 2 + dr 2

)
+ r 2dθ2,

Ã =
ηr 2

η2r 2 + 1dθ,

φ̃ = − ln (1+ η2r 2
)
.

(8)

The transformation is non-trivial:

R̃ =
2η2

(
η2r 2 − 1

)
(η2r 2 + 1)3

, F̃ =
2ηr

(η2r 2 + 1)2
dr ∧ dθ. (9)
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Uni-vector deformations Examples

Example II

Schwarzschild Black hole: f(r) = 1+ rg
r

ds2 = −f(r)dt 2 + f(r)−1dr 2 + r 2(dθ2 + sin2 θdϕ2), φ = 0, Am = 0,

Deformation along α = c ∂ϕ gives:

ds2 =
√
1+ c 2r 2 sin2 θ

[
−f(r)dt 2 + f(r)−1dr 2 + r 2

(
dθ2 + sin2 θ

1+ c 2r 2 sin2 θdϕ
2
)]

,

A =
c r 2 sin2 θ

1+ c 2r 2 sin2 θdϕ,

φ̃ = −
√
3
2 ln (1+ c 2r 2 sin2 θ) ,

(10)

This is not equivalent to the Gibbons–Maeda solution.
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Uni-vector deformations Examples

Origin of the uni-vector symmetry

Uni-vector deformations provide a solution generating technique for the
Einstein–Maxwell dilaton theory

These are nothing but coordinate transformation

x′M = eξ(x)xM, ξ(x) = z αm(x)∂m (11)

in the parent theory if Lα = 0.

G′
MN(x′) =

∂xK
∂x′M

∂xL
∂x′NGKL(x) (12)

No algebraic condition arises

Are Yang–Baxter bi-vector deformations also a coordinate transformation?
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Deformations in supergravity Double Field Theory

Double Field Theory

D-dim Einstein–Maxwell dilaton 10-dim Supergravity

fields: gmn, Am, ϕ gmn, bmn, ϕ

parent: GR in D+ 1 Double Field Theory

coordinates: xM = (xm, z) xM = (xm, x̃m)

section condition: ∂z = 0 ∂̃m = 0

hidden symmetry: GL(D+ 1) O(10, 10)

deform. param.: αm βmn = r i1i2ki1mki2n

conditions: Lα = 0 Lki = 0
CYBE + unimodularity
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Deformations in supergravity Double Field Theory

Reduction of DFT

Double Field Theory in D = 10+ 10

SGL(4) =
∫
d20Xe−2dR[G] (13)

ds2 = (gmn − BmkBn
k)dxmdxn + Bm

ndxmdx̃n + gmndx̃mdx̃n

NS-NS sector of the D = 10 SUGRA:

Ssugra =
∫
d10x√−ge−2ϕ

(
R[g]− 4∂mϕ ∂mφ− 1

12H
mnkHmnk

)
, (14)

has hidden symmetries:

1 global O(d,d));
2 local generalized diffeos modulo the section condition ∂̃m = 0.
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Deformations in supergravity Double Field Theory

Bi-vector deformations

Under the breaking O(10, 10) → GL(10) the generators split as

bas o(d,d) = {Tα} = {T[mn],Tmn,T[mn]}, m = 1, . . . , 10, (15)

The deformation matrix:

Oβ = exp
[
βmnTmn

]
=

[
1 0
β 1

]
,

G′
MN(x) = OM

KON
LGKL(x)

(16)

In the Bi-Killing ansatz βmn = r abkamkbn the deformation generates solutions if

r b1[a1r|b2|a2 fb1b2a3] = 0 (classical YB equation);

r b1b2 fb1b2akam = Im = 0 (unimodularity condition)
(17)

We want to see that this is a coordinate transformation in the doubled space
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Deformations in supergravity Double Field Theory

The Yang-Baxter condition

Coordinate transformation

X′M = eξXM, ξ = βmnx̃m∂n. (18)

Closure of these into themselves requires

[δξx̃ , δξỹ ] = δ[ξx̃,ξỹ] = δξz̃ ⇐= βl[m∂lβnk] = 0 (19)

βmn = r abkamkbn
Classical Yang-Baxter equation:

r b1[a1r|b2|a2 fb1b2a3] = 0 (20)
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Deformations in supergravity Double Field Theory

Coordinate transformation in DFT

η =

[
0 1
1 0

]

Transformation matrix for tensors must be in O(10, 10) [Hohm,Zwiebach (2012)]

G′(X′)MN = FM
KFN

LHKL(X),

FM
N =

1
2

(
∂XP

∂X′M
∂X′

P
∂XN

+
∂X′

M
∂XP

∂XN

∂X′
P

)
.

(21)

Given the section condition ηMN∂M • ∂N• this implies the correct rule

∂′
M = FMN∂N =

∂XN

∂XM ∂N (22)

For ξ = βmnx̃m∂n this should give (does not quite work)

Hmn(x)′ = Hmn(x),
Hm

n(x)′ = Hm
n(x) + βnkHmk,

Hmn(x)′ = Hmn(x) + 2β(m|k|Hk
n) + βmkβnlHkl.

(23)
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Deformations in supergravity Double Field Theory

Almost abelian bi-vector deformations

All non-abelian unimodular rank-4 r-matrices of so(2, 4) were classified in [Borsato, Wulff (2016)]

Take a subclass of them:
β = p1 ∧ p2 + q ∧ j, (24)

where the only non-vanishing commutators are

[j,pi] = εiq. (25)

We show, that the corresponding bi-vector deformations are equivalent to

1 the coordinate transformation ξ = βmnx̃m∂n
2 a further TsT transformation.

At the linear level and for general TsT transformations the same has been observed in
[Sakamoto, Sakatani, Yoshida (2017)]
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Conclusions

Conclusions

1 Bi-vector Yang-Baxter deformations generalize up and down

2 Uni-vector and almost-abelian bi-vector Yang-Baxter deformations are equivalent to
coordinates transformation in the parent theory

3 Classical Yang–Baxter equation follows from the consistency of the algebra of such
transformations

Uses and further work:

What is the origin of unimodularity in this language?

Generalize to Yang–Baxter deformation of general form.

Prove that all (almost-abelian) YB deformations preserve integrability

Generalize to tri-vector deformations (need tensorial transformation law).
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Thank you!

Deformations open a way to the world of new knowledge
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