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Ising field theory

IFT is defined via the formal action
Alpr = .AC:% cET + m/s(x) d’x + h/a(x) d’x,

where A__1 g7 is the action of the minimal model M3 4 of 2D
2
CFT and the couplings m and h are

me~T.—T, h~H.
The fields £(x) and o(x) possess scaling dimensions
(AsaA ) (éa%) (AmA ) (16’1716)

Thus the theory is characterized by the single scaling parameter

T
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Ising field theory

IFT exhibits a rich structure as a two-dimensional QFT:
1. At zero magnetic field h = 0 it reduces to the free theory of
massive Majorana fermions of mass |m| (Onsager 1943)

2. At m=0, h#£ 0 IFT becomes integrable and has eight stable
particles in the spectrum, also known as Eg particles
(Zamolodchikov 1989)

3. Additional integrable structure emerges near the Yang-Lee
singularity at imaginary magnetic field (Lee-Yang 1952). In

this regime (perturbed M3 5), there is only one stable particle.

No other real or complex values of the parameters are known to
lead to integrable QFT.
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Ising field theory

According to McCoy-Wu scenario while i changes from —oo to oo,
the spectrum IFT undergoes evolution from a single particle to an
infinite tower of “mesons” formed by confined “quarks”.

My

Figure: The mass spectrum M,(n) of IFT particles obtained using the
TFFSA (solid lines) and the Bethe-Salpeter equation (dashed lines).
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Ising field theory

A non-perturbative approach to analyzing the meson mass
spectrum in IFT was developed by Fonseca and Zamolodchikov
and is based on the Bethe-Salpeter (BS) equation formulated
within the two-quark approximation:

2 M? _
[m 4 cosh? 9] (6) =

o0

df’ [2cosh(6 — 6") sinh 6 sinh ¢’
=fh 1 o |22 + 2 2
21 | sinh“(6 —0')  4cosh® 6§ cosh” ¢’

»(0).

1 . -
where fy ~ |m|s h represents the bare string tension.

5/21



Bethe-Salpeter equation

It is convenient to change the variables to rewrite BS equation in
the following form (similar to 't Hooft equation for large N, 2D
QCD)

2« %
— tanh — | ¥ N —
< T tytan 2 ) (V) 16 COSh m/ / cosh 7”’, (V )

4,/
:A/dV’M\U(V’),
J o 2sinh )

where
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Bethe-Salpeter equation

't Hooft equation for large N, multiflavor 2D QCD has the form

2a 2i8 [ 1

+ycoth) B)="= o Y oy V(/16) =

(% COE K L
T o)
_A_Zod 2sinh X ( vl ‘/B)

o + oo o — Q1 . Tm?

B =

B o %= gzl —1, M?=271g%\,.

Analytic tools have been developed
1. a = = 0: Fateev, Lukyanov and Zamolodchikov 2009
2. a#0, g =0: Litvinov and Meshcheriakov 2024
3. a#0, B # 0: Artemev, Litvinov and Meshcheriakov 2025
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TQ equation and integrability
We define the Q-function:

2
Q(v) %f cosh = - (: + vtanh 772”) V(v)

It can be shown that Q(v) satisfies Baxter's TQ equation

2z
v+ ax QW),

2
z = 2w coth LV, X = — coth LV
2 T 2

Qv +2i)+ Qv — 2i) —2Q(v) = —

1. Q(v) is analytic in the strip Im v € [-2, 2]
2. Q(v) grows slower than any exponential as |[Rev| — oo
Ve>0 Q(v)=0(eN), |Rev|— o

3. the quantization condition:

o0

Q) = ~Q(-i) = 15 [ @

—00

V/ Q(V/)
cosh ’”’ 20‘ cosh T~ 7”’ + v/ sinh T 7”’
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TQ equation and integrability

If the quantization condition is dropped, one can construct
solutions Q(v|A) for arbitrary A. In this case, the associated
function W(v|\) solves more general inhomogeneous integral
equation

2 v T (v — 1)
-l—ytanh)\lly—/\/dz/,w V') = F(v),
<7T 2 ) 2sinh7ﬂ(”2_'/) ) )

—0o0
with the inhomogeneous part

def QU)+Q(=7) 1 Q) —Q(=i) v

2 cosh &¢ + 2i cosh T '

F(v)
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TQ equation and integrability

We are interested in the even/odd spectral sums, defined
respectively as the traces over even/odd states:

(), ydefx~( 1 ds1 () ydef_ =~ 1 b1
G+ (O‘)Z<A;n n+1>’ g- (O‘);<As n+1)’

n=0 2n+1

which can be conveniently packed into the spectral determinants

def (27 A2 A N
D+()\) = ? H ]_ — )\2,7 en+1’

n=0
27 > A A
D_(\) % < > (1 — >en+1.
) e ,1:[0 A2n41

as
Di(N) = (27T> exp [ is g s))\sl
s=1
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TQ equation and integrability

The spectral determinants D () are for our BS equation

2 v
— +vtanh— | V¥ N =
< s +vtan 2 ) (V) 16 COSh / cosh 7”’ (1/ )

/
— d / (V_V) \U I//7
/ 2sinh T ( v) )

Let us define similar objects D1 (\) for modified BS equation (even
more similar to 't Hooft equation)

2 v T (v —1)
— 4+ vtanh > V(v A / dv /7\U v
<7r 2 )= 2smh7r(” v) ),
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TQ equation and integrability

These two types of spectral determinants are related by

1< Q (-1

D,(\)=D.(\), D(\)= 1+ S0 oo,

1—v(a)
where
o
(@) 1 / t2 dt
via) = —
472 cosh? t « + ttanht
—00

One has remarkable log-derivative relations (still unproven!)

aiz(a)

By log D_()\) — = 2j (1 - %xl) 8, log Q4 (v)

)

2

O log D (A) — aiz(a) =2i (1 + 1_17r2/\> O log Q_(V))zi’

«
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TQ equation and integrability

We note that the TQ equation

2z

Qr+2i)+ Q(v—2i)—2Q(v) =— T Q(v)
admits the following two solutions
=(v|A) = (v + ax) i <1+I.(H;M))k(—iz)k
= e KI(k+1)!
- /(V-gax))
TN =1+) Kk 1)f (Wa (v = 2i(k — 1)) — (k)

—p(k+1) + 4 (;) + log 16> (—iz)k,
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TQ equation and integrability

Where 1, (v) is given by the integral representation

Yo(v+ 1) = —ve — logd+
1 1 (t—v)
mt m(t—v
+ = ————— | tanh — — tanh —= | dt.
2 / t+ 270‘ coth %t < 2 2 >
—00
One can check that Y, (v) is a solution of the difference equation

2i
u+27acoth%'

Vo (v+2i) =Pa(v) +
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TQ equation and integrability

Let us define two functions (My(—v|A\) = =My (v|N))

M) = eFZ(), ML) = 5 (550 + e ().

The functions My (v|\) solve the TQ-equation, but they do not
satisfy the analytic properties that we require: the factors (—iz)
have poles at the points 0, 2/ of growing order.

”"- " . . f
We "improve” the solution of TQ equation as (7 & ™ coth? (¢))

k

Q+(V|A) = Ax(T|A) My (v|X) + BL(7|A)zM=(v|N),

where AL (7|A) and By (7|\) admit expansions in the parameter A
with coefficients that are polynomials in 7

L(7]A) —1+Za N, Be(7A) = —(1FL) ;5 A Y B (A
s=0
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TQ equation and integrability

The functions QEE)(T) and bgf)(T) are polynomials in 7 of degree s
and s + 1 respectively. We determine these expansion coefficients
by requiring the Q-function to be pole-free at v = 0 and v = £2i:

1 8 0 up ()
as_)(T) =37 bs_)(T) =
8a (2 — a((3) 4o3uz (o 1602
af)(T) = ( 4 ) 7T§( ) T ™
w2 2a((3 4o (uo(ar) + 2
b(j)(r) =2+ 10" a?uz(a) — 752( ) + ( 0752) )T,.

where (similar integral representation for ug(«))

o0

def cosh? t
u2k_1(()é) = ][ dt T ok_1 - .
tsinh t- (acosht + tsinht)

—00
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TQ equation and integrability

Using log-derivative relations one can derive analytic expressions
for the spectral sums gﬁf)

™M = log(2m) — 3 — %iz(a),

2@752(3) — %iz(a) — a2u3(a) +...,

g = log(2m) — 1 —

2 4o 402%¢(5) 8a%C(3
T aﬂa( ) a37§2( ) 4 20% (w3(0) + us(a)
g T B B @)+ 4 (23 1 20(s)) -
_ = o 3 372 w4

— 40°u3(a) (1 +a— ai(23)> + o*ud(a) — 4a’us(a) + ...,

etc
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Singular points

All the spectral sums Q(_s)(a) contain transcendental functions

o0

def cosh? t
upk—1(a) = dt .
2i-1(@) ][ tsinh®~1¢. (acosh t + tsinht)

—00

and
o

(@) 1 / t? dt
Vo) = —=
472 cosh? t o + ttanh t

—00

There are two types of singularities of Q(_S)(a)
1. aj: pinching effect in ug,_1 ()
2. Gy: solutions of v(a) =1
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Singular points

Integrand in

[e.o]

def cosh? t
wyi—1(a) = dt .
2-1(@) ][ tsinh®*~1t . (acosh t + tsinht)

—00

has poles at t = Lit; which are solutions of the transcendental
equation
« + ttanht = 0.

These t;(c) are complicated functions of «. In particular, if we
move a from the real line, t;(«a) start to travel in the complex
plane. Consider the following paths parametrized by ¢

R>a +— a=ce?alecC.
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Singular points

Evolution of t;(c) in the complex plane
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Singular points

Ima
x
* & 10F
YL point
_*3 _E - _: Re a

Figure: Critical points of A on the second sheet of the a-plane correspond
to the values o} (marked in blue) and & (marked in red). The point
o = af = 0 is a square root branching point.

Did we really find new fixed points in IFT? (unclear)
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