Scale and scheme dependence in applications of QED parton distribution and fragmentation functions

Andrej Arbuzov

BLTP, JINR, Dubna

Advances in Quantum Field Theory 2025

11-15 August 2025, BLTP, JINR, Dubna

18th July 2025

To-do list for QED

For modern and future experiments we need new higher-order calculations in QED

- Compute 2-loop QED radiative corrections to differential distributions of key processes: Bhabha scattering, muon decay, $e^+e^- \to \mu^+\mu^-, e^+e^- \to \pi^+\pi^-, e^+e^- \to ZH$ etc.
- Estimate higher-order contributions within some approximations
- Account for interplay with QCD and electroweak effects
- Match with parton showers
- Construct reliable Monte Carlo codes

Perturbative QED (I)

Fortunately, in our case the general perturbation theory can be applied:

$$\frac{\alpha}{2\pi} \approx 1.2 \cdot 10^{-3}, \quad \left(\frac{\alpha}{2\pi}\right)^2 \approx 1.4 \cdot 10^{-6}$$

Moreover, other effects: hadronic vacuum polarization, (electro)weak contributions, hadronic pair emission, etc. are small in, e.g., Bhabha scattering and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

- 1) First of all, the large logarithm $L \equiv \ln \frac{\Lambda^2}{m_e^2}$ where $\Lambda^2 \sim Q^2$ is the momentum transferred squared, e.g., $L(\Lambda=1\,\text{GeV})\approx 16$ and $L(\Lambda=M_Z)\approx 24$.
- 2) The energy region at the Z boson peak $(s \sim M_Z^2)$ requires a special treatment since factor M_Z/Γ_Z appears in the annihilation channel

Perturbative QED (II)

Methods of resummation of higher-order QED corrections

- Resummation of vacuum polarization corrections (geometric series): $\alpha(0) \to \alpha(\mu_F^2)$
- Yennie-Frautschi-Suura (YFS) soft photon exponentiation and its extensions, see, e.g., PHOTOS
- Leading logarithms via QED structure functions or QED PDFs (E.Kuraev and V.Fadin 1985;
 A. De Rujula, R.Petronzio, A.Savoy-Navarro 1979)
- N.B. Resummation of real photon radiation is good only for sufficiently inclusive observables ...

Leading and next-to-leading logs in QED

The QED leading (LO) logarithmic corrections

$$\sim \left(\frac{\alpha}{2\pi}\right)^n \ln^n \frac{s}{m_e^2}$$

were relevant for LEP measurements of Bhabha, $e^+e^- \to \mu^+\mu^-$ etc. for $n \leq 3$ since $\ln(M_Z^2/m_e^2) \approx 24$

NLO contributions

$$\sim \left(\frac{\alpha}{2\pi}\right)^n \ln^{n-1} \frac{s}{m_e^2}$$

with at least n = 3, 4, 5 are required for future e^+e^- colliders

In the collinear approximation we can get them within the NLO QED structure function formalism

- F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB'1988
- A.A., K.Melnikov, PRD'2002; A.A. JHEP'2003

QED NLO DGLAP evolution equations

$$\mathcal{D}_{ba}\left(x, \frac{\mu_R^2}{\mu_F^2}\right) = \delta_{ab}\delta(1-x) + \sum_{c=e,\gamma,\bar{e}} \int_{\mu_R^2}^{\mu_F^2} \frac{dt}{t} \int_{x}^{1} \frac{dy}{y} P_{bc}(y, t) \mathcal{D}_{ca}\left(\frac{x}{y}, \frac{\mu_R^2}{t}\right)$$

a, b, c are massless partons $(\sim e^{\pm}, \gamma)$

 μ_F is a factorization (energy) scale

 μ_R is a renormalization (energy) scale

 D_{ba} is a parton density function (PDF)

 P_{bc} is a splitting function or kernel of the DGLAP equation

N.B. In QED $\mu_R = m_e \approx 0$ is the natural choice well motivated by known analytic results

QED splitting functions

The perturbative splitting functions are

$$P_{ba}(x, \bar{\alpha}(t)) = \frac{\bar{\alpha}(t)}{2\pi} P_{ba}^{(0)}(x) + \left(\frac{\bar{\alpha}(t)}{2\pi}\right)^2 P_{ba}^{(1)}(x) + \mathcal{O}(\alpha^3)$$
e.g.
$$P_{ee}^{(0)}(x) = \left[\frac{1+x^2}{1-x}\right]_+$$

They come from loop calculations, e.g., $P_{ba}^{(1)}(x)$ comes from 2-loops

The splitting functions can be obtained by reduction of the ones known in QCD to the abelian case of QED

 $\bar{\alpha}(t)$ is the QED running coupling constant in the $\overline{\text{MS}}$ scheme

N.B. Factorization in $\bar{\alpha}(t) \times P_{ba}(x)$ is not unique

Iterative solution

The NLO "electron in electron" PDF reads [A.A., U.Voznaya, JPG 2023]

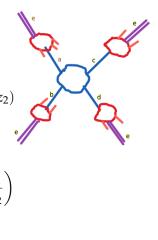
$$\begin{split} \mathcal{D}_{ee}(x,\mu_{F},m_{e}) &= \delta(1-x) + \frac{\alpha}{2\pi} LP_{ee}^{(0)}(x) + \frac{\alpha}{2\pi} d_{ee}^{(1)}(x,m_{e},m_{e}) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L^{2} \left(\frac{1}{2} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{3} P_{ee}^{(0)}(x) + \frac{1}{2} P_{e\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L \left(P_{e\gamma}^{(0)} \otimes d_{\gamma e}^{(1)}(x,m_{e},m_{e}) + P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) - \frac{10}{9} P_{ee}^{(0)}(x) + P_{ee}^{(1)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{3} \left(\frac{1}{6} P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{6} P_{e\gamma}^{(0)} \otimes P_{\gamma \gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x) + \ldots\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{2} \left(P_{ee}^{(0)} \otimes P_{ee}^{(1)}(x) + P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) + \frac{1}{3} P_{ee}^{(1)}(x) - \frac{10}{9} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \ldots\right) \\ &+ \mathcal{O}(\alpha^{2} L^{0}, \alpha^{3} L^{1}) + \ldots \end{split}$$

The large logarithm $L \equiv \ln \frac{\mu_F^2}{\mu_e^2}$, $\alpha \equiv \alpha(\mu_R)$ and $\mu_R = m_e$.

QED NLO master formula

The NLO Bhabha cross section reads

$$\begin{split} d\sigma &= \sum_{a,b,c,d=e,\bar{e},\gamma} \int_{\bar{z}_1}^1 dz_1 \int_{\bar{z}_2}^1 dz_2 \mathcal{D}_{ae}^{\rm str}(z_1) \mathcal{D}_{b\bar{e}}^{\rm str}(z_2) \\ &\times \left[d\sigma_{ab\to cd}^{(0)}(z_1,z_2) + d\bar{\sigma}_{ab\to cd}^{(1)}(z_1,z_2) \right] \\ &\times \int_{\bar{y}_1}^1 \frac{dy_1}{Y_1} \int_{\bar{y}_2}^1 \frac{dy_2}{Y_2} \mathcal{D}_{ec}^{\rm frg}\left(\frac{y_1}{Y_1}\right) \mathcal{D}_{\bar{e}d}^{\rm frg}\left(\frac{y_2}{Y_2}\right) \\ &+ \mathcal{O}\left(\alpha^n L^{n-2}, \frac{m_e^2}{s}\right) \end{split}$$



$\mathcal{O}(\alpha)$ matching

The expansion of the master formula for ISR gives

$$d\sigma_{e\bar{e}\to\gamma^*}^{(1)} = \frac{\alpha}{2\pi} \left\{ 2LP_{ee}^{(0)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} + 2d_{ee}^{(1)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \right\} + d\bar{\sigma}_{e\bar{e}\to\gamma^*}^{(1)}$$

We know the massive $d\sigma^{(1)}$ and massless $d\bar{\sigma}^{(1)}$ $(m_e \equiv 0 \text{ with } \overline{\text{MS}} \text{ subtraction})$ results in $\mathcal{O}(\alpha) \Rightarrow$

$$d_{ee}^{(1)} = \left[\frac{1+z^2}{1-z}\left(\ln\frac{\mu_R^2}{m_e^2} - 1 - \ln(1-z)\right)\right]_+, \quad P_{ee}^{(0)}(z) = \left[\frac{1+z^2}{1-z}\right]_+, \quad L = \ln\frac{\mu_F^2}{\mu_R^2}$$

Scheme dependence comes from here

Factorization and renormalization scale dependence is also from here

Factorization scale choice

The final result of calculation in all orders in α and L would not depend on μ_F But for a fixed-order result for an observable does depend on μ_F

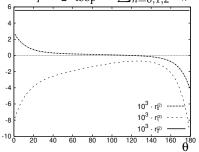
Many different methods for choosing μ_F were proposed:

- CSS Conventional Scale Setting (μ_F = hard momentum transfer)
- FAC Fastest Apparent Convergence [G. Grunberg]
- PMS Principle of Minimal Sensitivity [R.J. Stevenson]
- \bullet BLM Brodsky-Lepage-Mackenzie (absorb $\beta_0\text{-dependent terms})$
- PMC Principle of Maximal Conformality [S.Brodsky et al.]
- ...

Factorization scale choice — Bhabha scattering

Let's look at soft + virtual $\mathcal{O}(\alpha^2)$ RC [A. Penin, PRL'2005,

NPB'2006]:
$$\Delta_{2-\text{loop}} = \sum_{n=0,1,2} C_n \ln^n \frac{\mu_F^2}{m_e^2} = \sum_{n=0,1,2} r_n$$

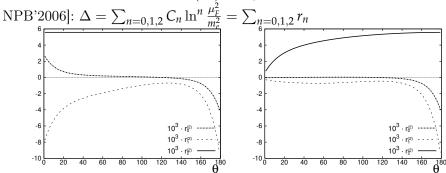


Soft and virtual second order photonic relative radiative corrections in permil versus the scattering angle in degrees for $\Delta = 1$, $\sqrt{s}=1$ GeV;

$$\mu_F = \sqrt{s}$$

Factorization scale choice — Bhabha scattering

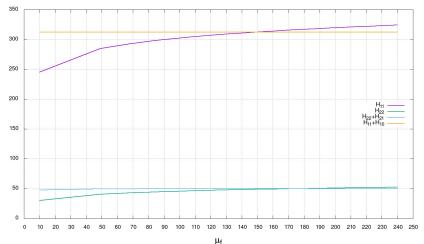
Let's look at soft + virtual $\mathcal{O}\left(\alpha^2\right)$ RC [A. Penin, PRL'2005,



Soft and virtual second order photonic relative radiative corrections in permil versus the scattering angle in degrees for $\Delta=1,\ \sqrt{s}=1$ GeV; $\mu_F=\sqrt{s}$ on the left side and $\mu_F=\sqrt{-t}$ on the right side.

Factorization scale choice $-e^+e^- \rightarrow \mu^+\mu^-$

Corrections, $O(\alpha^1)$, $O(\alpha^2)$, \sqrt{s} = 240 GeV, %



Factorization scale — conclusions

The sensitivity to the factorization scale choice is relevant numerically

More higher-order calculations are required to reduce the dependency

The comparison of several concrete schemes shows:

- CSS Conventional Scale Setting ($\mu_F = \text{hard momentum transfer}$) fails
- FAC Fastest Apparent Convergence looks good
- PMS Principle of Minimal Sensitivity looks reasonable
- BLM Brodsky-Lepage-Mackenzie not applicable
- PMC Principle of Maximal Conformality not applicable

ISR corrections to $e^+e^- \to Z(\gamma^*)$ $(\sqrt{s} = M_Z)$

LO $\mathcal{O}(\alpha^n L^n)$ and NLO $\mathcal{O}(\alpha^n L^{n-1})$ ISR corr. [%] at Z-peak, $z_{\min} = 0.1$

Type / n	1	2	3	4	5
LO γ	-32.7365	4.8843	-0.3776	0.0034	0.0032
NLO γ	2.0017	-0.5952	0.0710	-0.0019	
LO pair	_	-0.3057	0.0875	0.0016	-0.0001
NLO pair	_	0.1585	-0.0460	0.0038	
Σ	-30.7348	4.1419	-0.2651	0.0069	0.0031

Even higher orders seem to be relevant numerically \implies exponentiation

Exponentiation of the leading logs is straightforward and known [Gribov-Lipatov, Kuraev-Fadin, \dots]

Factorization (subtraction) scheme choice

NLO exponentiation in the MSbar scheme is ambiguous:

explicit solution for $D_{ee}(x)$ in the $\overline{\rm MS}$ scheme in the limit $x\to 1$ doesn't match the (pure photonic) exact solution by Gribov and Lipatov '1972

$$\mathcal{D}_{ee}^{(\gamma)}(x)\bigg|_{x\to 1} = \frac{\beta}{2} \, \frac{(1-x)^{\beta/2-1}}{\Gamma(1+\beta/2)} \exp\bigg\{\frac{\beta}{2}\bigg(\frac{3}{4} - C\bigg)\bigg\}$$

where $\beta = 2\alpha/\pi(L-1)$ and C is the Euler constant.

See also [A.V. Kotikov et al., " α_s from DIS data with large x resummation," arXiv:2403.13360]

We suggest a DIS-like scheme with the following modification of the NLO initial condition

$$\left. d_{ee}^{(1)} \right|_{\overline{\rm MS}} = \left[\frac{1+x^2}{1-x} \left(\ln \frac{\mu_R^2}{m_e^2} - 1 - \ln(1-x) \right) \right]_+ \rightarrow \tilde{d}_{ee}^{(1)} = \left[\frac{1+x^2}{1-x} \ln \frac{\mu_R^2}{m_e^2} \right]_+ = 0$$

for $m_R = m_e$ with subsequent modification of $\sigma^{(1)}$ to preserve the NLO matching. Fixed-order results for total cross-sections remain unchanged.

Scale variation test: $\mu_F \to \mu_F/2$, $\mu_F \times 2$ True (Δ) shifts and the ones estimated (δ) by factorization scale variation by factor 2 in $\mathcal{O}(\alpha^2)$ for $\mu_F = \sqrt{s}$

	L	О	NLO		
	Δ	δ	Δ	δ	
$\sqrt{s} = M_z$	0.436689	0.524911	0.003416	0.025032	
$z_{min} = 0.1$					
$\sqrt{s} = M_z$	0.4365967	0.5246878	0.0033886	0.0250268	
$z_{min} = 0.5$					
$\sqrt{s} = M_z$	0.440478	0.528603	0.0033499	0.025249	
$z_{min} = 0.9$					
$\sqrt{s} = 240 \text{ GeV}$	2.468049	5.568990	0.697615	0.147786	
$z_{min} = 0.1$					
$\sqrt{s} = 240 \text{ GeV}$	0.114240	0.105660	0.007085	0.006063	
$z_{min} = 0.5$					
$\sqrt{s} = 240 \text{ GeV}$	0.072996	0.040264	0.002663	0.003874	
$z_{min} = 0.9$					

$$\begin{split} & \Delta^{\text{LO}} = h_{21}, \qquad \Delta^{\text{NLO}} = h_{20} \\ & \delta^{\text{LO}} = \frac{|h_{22} - h_{22}(1/2)| + |h_{22} - h_{22}(2)|}{2} \\ & \delta^{\text{NLO}} = \frac{|h_{22} + h_{21} - (h_{22} + h_{21})(1/2)| + |h_{22} + h_{21} - (h_{22} + h_{21})(2)|}{2} \end{split}$$

Outlook

- Current and future high-precision HEP experiments challenge theory
- New calculations of two-loop and higher-order corrections within QED and full SM are required
- We have a progress in NLO QED PDFs and fragmentation functions
- QED provides explicit results and serves for cross checks of QCD
- Optimization of factorization scale and scheme choices is important as in QCD as well as in QED
- There is no perfect choice, compromises are inevitable