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In quantum field theory the knowledge of the

beta functions and the anomalous dimensions

allows to determine the ultraviolet or infrared
behavior of the model. For the Green
function ... = Jelipn) < OT(0,(m). 0,0 >

d f d
s @) g+ SN Gn 0.
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(General inequalities on the example of QED

The KL representation for the transverse part of the photon propagator in QED has the

form [1] o it o0 )
pL, G, M

dt 2

+/0 k2 —tdie 2

a(z,y,a) = agk’ D" (k*, a9, m)

2 2
Wherea::;—ﬁ>0,y:%and

a=alz=1y,aq).

where p(t,a,y) = ao(d(t) + p*p(tp*, ap,m)) > 0.
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The renormalization group equation for the invariant charge has the form [1, 2, 3]

oa(z,y, o) Yy _
T 3$ _Qp(;?a)?

Wy, a) = F(z =1,y,0),
oa(x,y, a)
Ox ’
Using the representation (7) and the definition of the GL function (10,11) one can finc

[4, 5]
[ tp(t, o, y) *pt,ay)
<= s |, e

F(zx,y,a) =x

e
. as( 22 ) . .
The representation for o = -5 ,«) can be rewritten in the form

a‘2(q2/p’2:y: Qf) o /oo pl(t:yaa)dt
- 3
0

q* (t+ %)




where ¢* = =k* > 0 and py(t,y,a) = agtp(t, ag,m) > 0. Let us define

Using the KL representation (13) one can find that

= (-1)"(n+1) / " pltwe)

) [t




Since we shall be interested in ultraviolet asymptotics we neglect the mass m, i.e. we
put ¥ = 0 in our formulae.? The renormalization group equation for the invariant charge
a2+n(#,2 y 60) = az_,_n(%,y = 0, «) has the form

dovs dovg g, ()
g = P@—g - (16)

Using the definition (14) of the asy, and the renormalization group equation (16) we find
that

d
A2ns1 (@) = —(1 + n)asn(@) + 2222208 55, (17)
As a consequence of (17 we find that

dag(a)

az(@) = —az(a) + ——~——pB(a), (18)

cula) = —2es(a) + "’fj—cﬁf‘)ﬁ(a) . (19)

Using the KL representation (13) for q—z)‘m and nonegativity p;(t) = 0 of spectral density
we find the inequality

0 < (—1)"atnt1(&) < (—1)*(n + 2)oz4n(a) - (20)

As a consequence of the formula (17) the inequality (21) takes the form

da n [a% ey o ”n
(1 + ) (1) Panen@ < (—1) 22228 55y < gy (@) (-1 (21)
For n = 0 and n = 1 the inequality (21) takes the form

daz (a)

—an(@ < — 22V 5(8) < ax(a), (22)

Biusla) L d"‘?’(a),e( 5 < e . (23)
As a consequence of the relation (18) the inequality (23) takes the form
d daz(a)

—=—B(@)]B(a) < az(a) . (24)
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Inequalities for GL function in QED

For n = 0 and n = 1 the inequality (21) takes the form
dag (a)

—ag(@) < —

B(a) < as(a),

203 (@) < da?'(a)

pla) < —az(@).
As a consequence of the relation (18) the 1nequa11ty (23) takes the form

dafg(a)ﬁ( ) < dd [dCL’Q(Of)

—2a3(a) + 3 B(@)]B(a) < as(a).

In QED ay(a) = ¢¥(a) and f(a) = (@) where ¢(@) is the GL function. As a consequence
of the inequalities (23) and (24) we find that

e, 2
dyla) _ d dv(a) -
—2+3——— < =)< 1. (26)

Note that for the regularization related with the GL function (MOM scheme) we define o
as & = a(1,a) with @ defined by the equation (8) to be proportional to the transverse part
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QED with N identical fermions

GL function in 4 loops
A.L.Kataev, s.A.Gorishny, S.A.Larin
5 loops K.G.Chetyrkin et al.
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As is well known the f-function in renormalizable field theory with single effective charge
does not depend on the renormalization scheme in two-loop approximation. For QED with
N identical fermions in the one-loop approximation the GL function is

012

bla,N) = N (32)

In two-loop approximation the GL function has the form

2 0€3

ppcik (33)

oer _ 1.23 am-_13
For one-loop approximation (32) the inequality (26) is valid up to % = ==, For N
the ratio of two loop approximatiom to one loop approximation for GL function is equa] to
0132 and for N > 10 it is less than 10 percent. One can show that higher order corrections to
GL function qualitatively don’t change our conclusions. Really the GL function up to four

loops is [6]

bl N) = N+ gt aen + (S - S

4(%)5(—46N+ (104 + 5—?« )= SN £ (125 - 2@ (34)
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QED with N identical fermions

For 2 = % the higher order contribution is less than 15 percent.

According to common lore we can trust one-loop approximation provided two-loop ap-
proximation is much smaller one-loop approximation. So we can think that one-loop ap-
proximation is correct for N > 10 and @ = a,.. In other words we find that one-loop
approximation contradicts to the inequality (26) for = = % and for N > 10 we can trust
the perturbation theory. Probably we can interpret this result as an indication in favour
of mstability of vacuum in QED with N' > 10 identical fermions. In perturbation theory
(L > 2-loop contribution to the GL function for N 3> 1 is proportional to N*~(2)M%. For

Oy ™ % it is equal to O(ﬁ and 1t is much smaller one-loop contribution which is equal to

041

~ 50 higher order contributions are much smaller one-loop contribution for N > 1.
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Bound on new particles contribution to the

SM

As is well known in the SM based on the gauge group SU.(3) ® SUL(2) ® Uy (1) the GL
function for Uy (1) subgroup in one-loop approximation in ultraviolet region p* > M2 is

a?
?,b(aq) - Ntotg ) (34)

where Ny = 5.125 4+ AN Here 5.125 is the contribution from quarks, leptons, Higgs isodou-
blet and AN > 0 is the contribution from new particles beyond the SM. We shall assume
that the SM with the gauge group SU.(3) ® SUL(2) ® Uy (1) and with possible new particles
(isosinglets, isodoublets,...) is valid up to M, = M;% 2 Moreover we assume that for the
extended SM and in particular for the gauge group Uy (1) the perturbation theory is valid

for energies up to M,.,.. As a consequence of the inequality (25) we find that

() < 2T (35)
Y — . ¥ e
! ]\/{%’ ! o \/éNtot

Eem (M2 _ y .
In the SM a1 (M%) = 225002 and for Gem(Mz) = kg, sin®(0w) = 0.2245 [?] we find that
@y (M%) = 0.010. The solution of the renormalization group equation with the GL function

(34) leads to a,(M32) = &1 (M7) As a consequence of the inequality (35) we find

- I
(1—a1(M2) et In(25F)
=z

T

that
AN < T7.3. (36)
M2
In(5#) R : .
Here the parameter AN = >, Ykzcleg is the contributions of new particles with masses

Mz
M, and hypercharges Y. The inequalit; (36) allows to restrict possible additional particles
in the SM extension. For instance the inequality (36) excludes the existence of the fermion
with the hypercharge ¥ = 3 and the mass O(10) TeV and also it excludes the existence of
3 additional vectorlike generations with the masses O(10) TeV.
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Three main assumptions
1. Dark matter model is renormalizable model

2. Experimental bound on elastic DM nucleon
Cross section is valid

3. At the early stage of the Universe DM was
In equilibrium wih the SM matter and at some
time it decouples. As a consequence the
annihilation cross section is predicted to be
around O(1) pb
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. Elastic DM nucleon cross

sections bounds . Bounds from underground experiments. Particle data
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The most popular mass interval from LHC
point of view between O(1) GeV and

O(1) TeV ->WIMP = weakly interacting
massive particles

Also mass interval between O(1) MeV and

O(1) GeV is popular for fixed target
experiments like NA64, BELLE, SHIP, ...

So called light dark matter
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At LHC bounds depend on particular
model. There are a lot of models.
Simplified renormalized models:
A. Models with vector mediator
B. Models wth scalar mediator
Dark Matter: scalar, fermion, Majorana, vector
spin 1.

Here as an example we consider models with vector
mediator and fermion dark matter
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Bounds for vector (B-L) model

In this section we apply obtained inequalities for constraining the models with dark matter.
Consider as an example the model with additional vector B — L Z’-boson which plays the
role of messenger between our world and the dark matter world. We assume that the dark
matter is described by the fermion field v)p with a mass mp and coupling constant gp with

Z' boson. The interaction of Z’ boson with quarks and leptons of the SM and dark matter
©¥p has the form

1_ - —
Lint = 95-1( Y 30"q - > W) Z, + gpiy bz, (37)

quarks leptons
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Experimental bound on nucleon dark matter
cross section for vector mediator and fermion
dark mater
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B lﬁﬂcanaB,LaDm%M 167mcopnvp_r.axpkpar

S e 0 7 A w

B (m2,—4m2,, )2 )
where ¢, = 9 and kD}w = —Zy 2%~ For often used relation mz = 3mpy we find
z!"""DM

kpy = 9/25. We also assume that there is no fine tuning between myz and mp;;, namely
we assume that [4mpy — myz| > 0.2mpy. This assumption means that kpy < 7. From
the requirement that the annihilation cross section reproduces the observable dark matter
density the value of the annihilation cross section has to be equal to [?]

< Oanlrel >= 2.6k, - 1077 GeV 2, (42)

where k., = O(1). As a consequence of the formulae (39, 40, 41, 44) one can find that

2
Tel . Kep T 1 Rl

P < 1077, (43)

p— 2 . -~
Oan Kan My Cank = Kan

1 K2
167T0!DO{B_L22.6( ) . . (4:4)
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Bounds for (B-L) vector model

We shall assume that for (B — L) model the perturbation theory is valid for the scales up

o M. = Z\%L < My < Mz = O(10* GeV). As a consequence of this assumption we find

that in one-loop approximation’

167raB_LaD = 167raB_L(MZ/)aD(MZ/) S 0.027 (45)

The bound (45) contradicts to the bound (44) for the uncertainties :i > 011 at g =
3mpyr For eppyr > O(1) we don’t have contradiction between the boundgn(45) and (44). The
bound (45) was derived from an experimental bound (39) on the elastic DM nucleon cross-
section and also the assumption that at the early Universe the DM was in the thermodynamic
equilibrium with the SM matter has been used. So we have found that the bound (44) at
myz = 3mpy leads to two large value of 16mapap_; that contradicts to the bound (45)
derived in the assumption that the perturbation theory for (B — L model is valid for the
scales up to 10'® GeV.
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1. We have derived rigorous bounds on the renormalization

group functions in QFT(QED, QCD,..). The cornstone of
the derivation Is the fact that in many models the invariant

charges are proportional to the propagators. Plus
nonegativity of the spectral density in KL representation.

2. In many cases the knowledge of such bounds allows to
restrict the parameters of such models with DM. In
Particular, dark matter model with (B-L) vector messenger.
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THE END
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Bounds in QCD

For the propagator of the gauge invariant local operator O(x) the KL representation has the
form$%

F(—p?) == ifexp(ipx) < 0|T(O(2)0(0)| > d*'x =
N—1 . 1
Z ce(p?)F + / pE) 5 — subtractions at p? = — %] (46)
o t — p* — te
k=0
and
p(t) = 0.

Due to the asymptotic freedom of the QCD the ultraviolet asymptotics of the propagator
F(—p?) coincides up to logarithms with the corresponding asymptotics for the propagator
with free operators O(x) and as a consequence the number of subtractions in representation
(46) is equal to ¥V = do — 1, where dp is the dimension of the operator O(x). The function
P(x)

NI OxN (t +x)V+tL)’
is ultraviolet finite for free operators. For the case with multiplicatively transformed opera-
totr O(x) — ZoO(x) the function ®(z) transforms as ®(x) — Z3P(x) and the renormaliza-
tion group equation for the (47) reads

17 55 + Blan) g + Zro(a)] () = 0. (48)

Here B(as) is the QCD g-function and vyo(as) is the anomalous dimension of the operator
O(x). For simplicity we consider QCD with massless quarks. In QCD with the f quarks the
A-function in two-loop approximation is [?]

Blas) = —faa — Bsal (49)
11— 2
_ 2
P2 = ——
102 — 357
Py = —e—s 3
TT
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QCD bounds

As a consequence of the normalization condition (55) and the inequality (25) for n = 0 we

find that y ﬁ( ) ,
«
» ) < = 57
(o) < 5 (57)

For the two-loop approximation (49) with f = 3 quarks the inequality (57) is not valid for
o > 0.46. The use of the inequality (29) for n = 1 leads to the inequality

ﬁ 2 /82 5 / 2/82 5 17 ﬁ 2
22 iy ly <2 Ly < £ (5)
The inequality (58 can be rewritten as
20Dy < pa Dy al( Dy as(Cy < 12 (59)

For two-loop approximation with f = 3 quarks the inequality (58) is valid only at a; <
0.32 while for f = 0(glueodynamics) the inequality (58) is valid only at oy < 0.25 So we
conclude that for f = 3 the perturbation theory does not work at a, > 0.32
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Direct underground experiments lead to very strong bounds
on DM models. In particular, strong bounds arise for dark
photon model on mixing parameter €. The main idea is that €
parameter depends on the square of momentum transfer g2, i.e.
£(g?) and for £(g?) = cq? at small g2 direct elastic cross section is
suppressed. Two possible realizations of this idea

1. Nonlocal field theory — SM and dark sector are described by renormalizable
field theory but the interaction between them

Is described by nonlocal field theory
2. The introduction of additional vector field allows realize this idea.
Suppose we have additional Z’ boson interacting only with the SM

fields, for instance Z’ interacting with (B-L) current of the SM
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Introduction

Implications from underground and
accelerator experiments for different

DM models are contained in recent review:
M.Lindner et al., arXiv:2403.15860

A lot of models at the level of exclusion
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