On three-loop divergences in 6D, $\mathcal{N} = (1,1)$ SYM

Boris Merzlikin

Tomsk Polytechnic University

Advances in Quantum Field Theory Dubna, 2025

Aims:

- Construction of the background superfield method for 6D, $\mathcal{N}=(1,0)$ interacting non-Abelian vector multiplet with hypermultiplet
- ullet Analysis of divergences in the $\mathcal{N}=(1,1)$ SYM theory up to three loops

The talk is based on:

- I.L. Buchbinder, E.A. Ivanov, B.M., arXiv:2025.xxxx
- I.L. Buchbinder, E.A. Ivanov, K.V. Stepanayantz, B.M., JHEP 2305 (2023); Phys.Lett.B 820 (2021); Nucl. Phys. B 921 (2017); JHEP 1701 (2017); Phys.Lett.B 763 (2016).

- General motivations
- ullet $\mathcal{N}=(1,1)$ SYM theory in terms of $\mathcal{N}=(1,0)$ harmonic supersfields
- Background field method
- Divergent part of one-loop effective action
- Two-loop results
- Three-loop analysis
- Summary

The modern interest to 6D supersymmetric gauge theories is stipulated by the following reasons:

- ▶ The problem of describing the quantum structure of six-dimensional supersymmetric gauge theories dimensionally reduced from superstrings and the connection of effective action for the D5-branes at low energies with maximally supersymmetric Yang-Mills theory in six dimensions. [N.Seiberg (1996), E. Witten (1996); N. Seiberg, (1997)].
- ▶ Lagrangian description of the interacting multiple M5-branes is related to 6D, $\mathcal{N}=(2,0)$ supersymmetric gauge theory. The theory includes self-dual non-Abelian antisymmetric tensor and it is not constructed still (see e.g. review [J. Bagger, N. Lambert, S. Mikhu, C. Papageorgakis (2013)]).

- ▶ The problem of miraculous cancellation of on-shell divergences in higher dimensional maximally supersymmetric gauge theories (theories with 16 supercharges). All these theories are non-renormalizable by power counting.
 - Field limit of superstring amplitude shows that $6D, \mathcal{N} = (1,1)$ SYM theory is on-shell finite at one-loop [M.B. Green, J.H. Schwarz, L. Brink, (1982)].
 - Analysis based on on-shell supersymmetries, gauge invariance and field redefinitions [P.S. Howe, K.S. Stelle, (1984), (2003); G. Bossard, P.S. Howe, K.S. Stelle, (2009)].
 - Direct one-loop and two-loop component calculations (mainly in bosonic sector and mainly on-shell) [E.S. Fradkin, A.A. Tseytlin, (1983); N. Marcus, A. Sagnotti, (1984), (1985)].
 - Direct calculations of scattering amplitudes in 6D theory up to five loops and in D8,10 theories up to four loops [L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev, D.E. Vlasenko, (2015).]

Results: On-shell divergences in 6D theory start at three loops.

Purpose

To study one-, two- and three-loop divergences of the superfield effective action in $\mathcal{N}=(1,1)$ SYM theory.

Properties

 $6D, \mathcal{N}=(1,1)$ SYM theory possesses some properties close or analogous to $4D, \mathcal{N}=4$ SYM theory.

- The $6D, \mathcal{N}=(1,1)$ SYM theory can be formulated in harmonic superspace as well as the $4D, \mathcal{N}=4$ SYM theory.
- The $6D, \mathcal{N}=(1,1)$ SYM theory possesses the manifest $\mathcal{N}=(1,0)$ supersymmetry and additional hidden $\mathcal{N}=(0,1)$ supersymmetry analogous to $4D, \mathcal{N}=4$ SYM theory where there is the manifest $\mathcal{N}=2$ supersymmetry and additional hidden $\mathcal{N}=2$ supersymmetry.
- The $6D, \mathcal{N}=(1,1)$ SYM theory is anomaly free as well as the $4D, \mathcal{N}=4$ SYM theory and satisfies some non-renormalization theorems.

4D

A.Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, (1984).
 A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, (2001).

General purpose:

to formulate $\mathcal{N}=2$ models in terms of unconstrained $\mathcal{N}=2$ superfields.

General idea:

to use the parameters $u^{\pm i}(i=1,2)$ (harmonics) related to SU(2) automorphism group of the $\mathcal{N}=2$ superalgebra and parameterizing the 2-sphere, $u^{+i}u_i^-=1$.

It allows to introduce the $\mathcal{N}=2$ superfields and formulate the theory with manifest $\mathcal{N}=2$ supersymmetry in harmonic superspace. Price for this is a presence of extra bosonic variables, harmonics $u^{\pm i}$.

6D

P.S. Howe, K.S. Stelle, P.C. West, (1985).

B.M. Zupnik, (1986); (1999).

G. Bossard, E. Ivanov, A. Smilga, (2015).

Note! Pure spinor approach to describe 6D SYM theories, [M. Cederwall, (2018)].

• The classical action of 6D, $\mathcal{N}=(1,1)$ SYM model $S_0[q^+\,,V^{++}]$ in the harmonic superspace is written as

$$S_0 = \frac{1}{f^2} \sum_{n=2}^{\infty} \frac{(-i)^n}{n} \operatorname{tr} \int d^{14}z \, du_1 \dots du_n \frac{V^{++}(z, u_1) \dots V^{++}(z, u_n)}{(u_1^+ u_2^+) \dots (u_n^+ u_1^+)} - \frac{1}{2f^2} \int d\zeta^{(-4)} \, q^{+A} \nabla^{++} q_A^+.$$

Gauge transformations

$$V^{++\prime} = -ie^{i\lambda}D^{++}e^{-i\lambda} + e^{i\lambda}V^{++}e^{-i\lambda}, \qquad q^{+\prime} = e^{i\lambda}q^{+}$$
 (1)

Boris Merzlikin (Tomsk)

Addition supersymmetry

The $\mathcal{N}=(1,0)$ SYM theory is manifestly $\mathcal{N}=(1,0)$ supersymmetric and possesses the extra hidden $\mathcal{N}=(0,1)$ supersymmetry if the hypermultiplet align in adjoint representation.

Action

$$S[V^{++}, q^{+}] = S_{SYM}[V^{++}] + S_{HYP}[q^{+}, V^{++}]$$

- ullet The action is manifestly $\mathcal{N}=(1,0)$ supersymmetric.
- \bullet The action is invariant under the transformations of extra hidden $\mathcal{N}=(0,1)$ supersymmetry

$$\delta V^{++} = \epsilon^+ q^+, \qquad \delta q^+ = -(D^+)^4 (\epsilon^- V^{--})$$

where the transformation parameter $\epsilon_A^{\pm} = \epsilon_{aA} \theta^{\pm A}$.

Aim:gauge invariant effective action, (see, e.g., [B.DeWitt (1965)]).

Background-quantum splitting

$$V^{++} \to V^{++} + fv^{++}, \qquad q^+ \to Q^+ + q^+$$

• The gauge-fixing function

$$\mathcal{F}^{(+4)} = \nabla^{++} v^{++}$$

• Faddev-Popov procedure Analogous to one in $4D, \mathcal{N}=2$ SYM theory[I.L.Buchbinder, E.I. Buchbinder, S.M. Kuzenko, B.A. Ovrut, (1998)].

• The effective action $\Gamma[V^{++},Q^+]$ is written in terms of path integral

$$e^{i\Gamma[V^{++},Q^{+}]} = \mathrm{Det}^{1/2} \ \widehat{\Box} \int \mathcal{D}v^{++} \mathcal{D}q^{+} \mathcal{D}\mathbf{b} \mathcal{D}\mathbf{c} \mathcal{D}\varphi \ e^{iS_{quant}}$$

ullet The quantum action S_{quant} has the structure

$$S_{quant} = S + S_{GF}[v^{++}, V^{++}] + S_{FP}[\mathbf{b}, \mathbf{c}, v^{++}, V^{++}] + S_{NK}[\varphi, V^{++}].$$

- Gauge fixing action $S_{GF}[v^{++}, V^{++}]$, Faddeed-Popov ghost action $S_{FP}[\mathbf{b}, \mathbf{c}, v^{++}, V^{++}]$, Nelson-Kalosh ghost action $S_{NK}[\varphi, V^{++}]$
- Operator $\widehat{\Box} = \frac{1}{2} (D^+)^4 (\nabla^{--})^2$

$$\widehat{\Box} = \eta^{MN} \nabla_M \nabla_N + W^{+a} \nabla_a^- + F^{++} \nabla^{--} - \frac{1}{2} (\nabla^{--} F^{++})$$

• All ghosts are the analytic superfields

• The gauge fixing action

$$S_{GF}[v^{++}, V^{++}] = -\frac{1}{2\xi_0} \operatorname{tr} \int d^{14}z du_1 du_2 \frac{v_{\tau}^{++}(1)v_{\tau}^{++}(2)}{(u_1^+ u_2^+)^2} + \frac{1}{4\xi_0} \operatorname{tr} \int d^{14}z du v_{\tau}^{++}(D^{--})^2 v_{\tau}^{++}.$$
 (2)

• Faddeed-Popov ghosts and Nelson-Kalosh ghost actions

$$S_{FP} = \operatorname{tr} \int d\zeta^{(-4)} du \, b \nabla^{++} (\nabla^{++} + iv^{++}) c,$$
 (3)

$$S_{NK} = \frac{1}{2} \operatorname{tr} \int d\zeta^{(-4)} du \, \varphi(\nabla^{++})^2 \varphi. \tag{4}$$

In what follows we assume gauge fixing parameter $\xi_0=1$. The case $\xi_0\neq 1$ can be considered separately [I.L. Buchbinder, E.A. Ivanov, K.V. Stepanayantz, B.M., Phys.Lett.B (2019)]

Supergraphs

- Perturbation theory can be given in terms of Feynman diagrams formulated in superspace
- Vector multiplet propagator

$$G^{(2,2)}(1|2) = -2\frac{(D_1^+)^4}{\widehat{\Box}_1} \delta^{14}(z_1 - z_2) \delta^{(-2,2)}(u_1, u_2)$$

Hypermultiplet propagator

$$G^{(1,1)}(1|2) = \frac{(D_1^+)^4 (D_2^+)^4}{\widehat{\Box}_1} \frac{\delta^{14}(z_1 - z_2)}{(u_1^+ u_2^+)^3}$$

- Ghost propagators have the analogous structure
- Superspace delta-function

$$\delta^{14}(z_1 - z_2) = \delta^6(x_1 - x_2)\delta^8(\theta_1 - \theta_2)$$

• The vertices are taken from the superfield action as usual

The one-loop approximation is given by the quadratic action S_2 :

$$S_{2} = \frac{1}{2} \int d\zeta^{(-4)} du \, v^{++A} \, \widehat{\Box}^{AB} \, v^{++B} + \int d\zeta^{(-4)} du \, \mathbf{b}^{A} (\nabla^{++})^{2 \, AB} \mathbf{c}^{B}$$

$$+ \frac{1}{2} \int d\zeta^{(-4)} du \, \varphi^{A} (\nabla^{++})^{2 \, AB} \varphi^{B} - \int d\zeta^{(-4)} du \, \widetilde{q}^{+m} (\nabla^{++})_{m}^{n} q_{n}^{+} \qquad (5)$$

$$-if \int d\zeta^{(-4)} du \Big\{ \widetilde{Q}^{+m} (v^{++})^{C} (T^{C})_{m}^{n} q_{n}^{+} + \widetilde{q}^{+m} (v^{++})^{C} (T^{C})_{m}^{n} Q_{n}^{+} \Big\},$$

We consider the special change of hypermultiplet variables [I.L. Buchbinder, N.G. Pletnev, JHEP 0704; S. M. Kuzenko, S. J. Tyler, JHEP 0705] in the one-loop effective action

$$q_n^+(1) \to q_n^+(1) - f \int d\zeta_2^{(-4)} du_2 G^{(1,1)}(1|2)_n^p iv^{++C}(2) (T^C)_p^l Q_l^+(2),$$
 (6)

where $G^{(1,1)}$ is the hypermultiplet Green function.

According to the general analysis [G. Bossard, E. Ivanov, A. Smilga, (2015)] the one-loop logarithmic divergences have a structure

$$\Gamma_{\text{div}}^{(1)} = \int d\zeta^{(-4)} du \left[c_1 (F^{++A})^2 + i c_2 F^{++A} (\tilde{q}^+)^m (T^A)_m{}^n (q^+)_n + c_3 \left((\tilde{q}^+)^m (q^+)_m \right)^2 \right], \tag{7}$$

where c_1 , c_2 , and c_3 are numerical real coefficients.

Superficial degree of divergence ω

- One can prove that any supergraph for effective action can be written through the integrals over full $\mathcal{N}=(1,0)$ superspace and contains only a single integral over $d^8\theta$ (non-renormalization theorem).
- $\omega_{\text{L-loop}}(G) = 2L N_Q \frac{1}{2}N_D$
- The possible one-loop divergences correspond to $\omega_{1-{\rm loop}}=2$ and $\omega_{1-{\rm loop}}=0$

Calculations of ω are analogous to ones in $4D, \mathcal{N}=2$ gauge theory [I.L. Buchbinder, S.M. Kuzenko, B.A. Ovrut, (1998)].

The one-loop quantum correction $\Gamma^{(1)}[V^{++},Q^+]$ to the classical action, which has the following formal expression

$$\Gamma^{(1)}[V^{++},Q] = \frac{i}{2} \operatorname{Tr} \ln \left\{ \widehat{\Box}^{AB} - 4f^2 \widetilde{Q}^{+m} (T^A G T^B)_m{}^n Q_n^+ \right\} - \frac{i}{2} \operatorname{Tr} \ln \widehat{\Box}_{Adj}$$
$$-i \operatorname{Tr} \ln(\nabla^{++})_{Adj}^2 + \frac{i}{2} \operatorname{Tr} \ln(\nabla^{++})_{Adj}^2 + i \operatorname{Tr} \ln \nabla_{\mathbf{R}}^{++}. \tag{8}$$

The divergent contributions read

$$\Gamma_{F^2}^{(1)} = \frac{C_2 - T(R)}{6(4\pi)^3 \varepsilon} \int d\zeta^{(-4)} du \, (F^{++A})^2 \,. \tag{9}$$

$$\Gamma_{QFQ}^{(1)}[V^{++}, Q^{+}] = -\frac{2it^{2}}{(4\pi)^{3}\varepsilon} \int d\zeta^{(-4)} du$$

$$\tilde{Q}^{+m}(C_{2}\delta_{m}^{l} - C(R)_{m}^{l})(F^{++})^{A} (T^{A})_{l}^{n} Q_{n}^{+}.$$
(10)

Two-loop loop divergences

In general, the off-shell two-loop divergent contributions to effective action may include following terms

$$\begin{split} &\Gamma_{\rm div}^{(2)} = {\rm tr} \, \int d\zeta^{(-4)} \Big(c_1 F^{++} \, \widehat{\Box} \, F^{++} + c_2 i \, F^{++} \, \widehat{\Box} \, [Q^{+A}, Q_A^+] \\ &+ c_3 \, [Q^{+A}, Q_A^+] \, \widehat{\Box} \, [Q^{+B}, Q_B^+] \Big) + {\rm terms \, vanishing \, on \, eq.o.m. \, for \, } Q^+ \text{(11)} \end{split}$$

Inexplicit $\mathcal{N}=(0,1)$ supersymmetry restricts the structure of the divergent contribution (11) and leads to the absence of two-loop divergences on-shell. Hence we obtain non-trivial constraints on the coefficients:

$$2c_2 + 4c_3 = c_1.$$

In case Q=0, the calculation was provided in [I.L. Buchbinder, E.A. Ivanov, K.V. Stepanayantz, B.M., (2021)]

$$c_1 = \frac{f^2(C_2)^2}{8(2\pi)^6 \varepsilon^2}, \qquad \varepsilon \to 0,$$
(12)

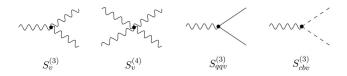


Figure: Standard vertices

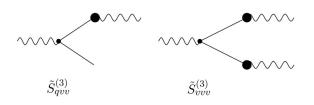


Figure: New type vertices

Two-loop diagrams

Figure: Two-loop Feynman supergraphs with the gauge self-interactions vertices.

Figure: Two-loop Feynman supergraphs with the hypermultiplet and ghosts vertices.

AQFT'25

Two-loop diagrams

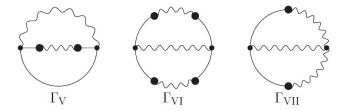


Figure: Two-loop Feynman supergraphs with the new 'non-local' vertices.

Summing up the divergent contributions which contain $F^{++}Q^+Q^+$ from $\Gamma_{\rm I}$, $\Gamma_{\rm V}$ and $\Gamma_{\rm VII}$ we obtain

$$\Gamma_{\text{I, div}}^{\text{FQQ}} + \Gamma_{\text{V, div}}^{\text{FQQ}} + \Gamma_{\text{VII, div}}^{\text{FQQ}}$$

$$= -\frac{if^{2}(C_{2})^{2}}{8(2\pi)^{6} \varepsilon^{2}} \text{tr} \int d^{14}z \frac{du_{1}du_{2}du_{3}}{(u_{1}^{+}u_{2}^{+})(u_{3}^{+}u_{1}^{+})} F_{1,\tau}^{++}[Q_{2,\tau}^{+A}, Q_{3A,\tau}^{+}]$$

$$+ \frac{2if^{2}(C_{2})^{2}}{(4\pi)^{6} \varepsilon^{2}} \text{tr} \int d^{14}z \frac{du_{1}du_{2}}{(u_{1}^{+}u_{2}^{+})^{2}} F_{1,\tau}^{++}[Q_{2,\tau}^{+A}, Q_{2A,\tau}^{+}]$$

$$- \frac{4if^{2}(C_{2})^{2}}{(4\pi)^{6} \varepsilon^{2}} \text{tr} \int d^{14}z \frac{du_{1}du_{2}du_{3}(u_{1}^{-}u_{2}^{+})}{(u_{1}^{+}u_{2}^{+})(u_{2}^{+}u_{3}^{+})} F_{1,\tau}^{++}[Q_{2,\tau}^{+A}, Q_{3A,\tau}^{+}]$$

$$(14)$$

Here we also use the property

$$G^{(2,2)}(z_1, u_1|z_2, u_2)\Big|_{z_2 \to z_1} = \frac{2i}{(4\pi)^3} \frac{1}{\varepsilon} \left(F_{1,\tau}^{++} (u_1^- u_2^+) (u_1^+ u_2^+)^3 (D_1^{--})^2 \delta^{(2,-2)}(u_1, u_2) + 2(u_1^+ u_2^+) Q_{1,\tau}^{+A} Q_{2A,\tau}^+ \right) + \text{finite terms}, \quad \varepsilon \to 0.$$
 (15)

Final expression for the divergent part of the two-loop effective action in the $\mathcal{N}=(1,1)$ SYM theory reads

$$\begin{split} \Gamma_{\rm div}^{(2)} &= \frac{{\rm f}^2(C_2)^2}{8(2\pi)^6\varepsilon^2} {\rm tr} \, \int d\zeta^{(-4)} \Big(F^{++} \, \widehat{\Box} \, F^{++} - \frac{i}{2} \, F^{++} \, \widehat{\Box} \, [Q^{+A},Q_A^+] \\ &+ \frac{1}{2} \, [Q^{+A},Q_A^+] \, \widehat{\Box} \, [Q^{+B},Q_B^+] \Big) + {\rm terms \, proportional \, to \, eq.o.m. \, for \, } Q^+. \end{split}$$

The last two coefficient have the form

$$c_2 = -\frac{f^2(C_2)^2}{16(2\pi)^6 \varepsilon^2}, \qquad c_3 = \frac{f^2(C_2)^2}{16(2\pi)^6 \varepsilon^2}, \qquad \varepsilon \to 0.$$
 (16)

For one-and two-loop divergences we have

$$\Gamma_{\rm div}^{(1)} \sim \frac{1}{\varepsilon} \text{tr} \int d\zeta^{(-4)} F^{++} F^{++} + \text{terms with } q^{+}
\Gamma_{\rm div}^{(2)} \sim \frac{1}{\varepsilon^{2}} \text{tr} \int d\zeta^{(-4)} F^{++} \widehat{\square} F^{++} + \text{terms with } q^{+}
+ \frac{1}{\varepsilon} \text{tr} \int d\zeta^{(-4)} F^{++} g^{++} ,$$
(17)

where $g^{++} = G^{(2,2)}(z,u|z,u)$. All such contributions vanish **on-shell!**

Three-loop analysis

As we mentioned above, the UV divergences in $\mathcal{N}=(1,1)$ starts from three loops [L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev, D.E. Vlasenko, (2015).]. We will consider the simplest background superfields

$$F^{++} = 0 q^+ = 0. (18)$$

The only possible non-vanishing on-shell divergent contribution is

$$\Gamma_{\rm div}^{(3)} \sim \frac{1}{\varepsilon} {\rm tr} \int d^6 x (F^4 + \dots), \qquad \varepsilon \to +0.$$
 (19)

Here we have used the notation

$$F^{4} \equiv \frac{1}{4} (F_{MN} F^{MN})^{2} + \frac{1}{8} F_{MN} F_{PQ} F^{MN} F^{PQ} - \frac{1}{2} F^{NM} F_{MR} F^{RS} F_{SN} - F^{NM} F_{MR} F^{RS} F_{SN}$$

with F_{MN} being the gauge field strength.

The superfield form of the contribution (19) ia also known [G. Bossard, E. Ivanov,

A. Smilga,(2015)] and has the form

$$\Gamma_{\rm div}^{(3)} \sim \frac{1}{\varepsilon} {\rm tr} \int d\zeta^{(-4)}(W^+)^4 \qquad \varepsilon \to +0.$$
(21)

The superfield $W^{+a}=-\frac{i}{6}\varepsilon^{abcd}D_b^+D_c^+D_d^+V^{--}$ is analytic under the condition $F^{++}=0$.

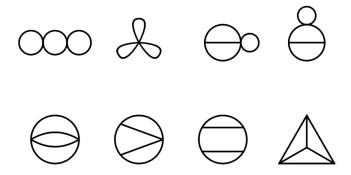


Figure: Topology of three-loop diagrams

Summary

- \bullet Background field method in $\mathcal{N}=(1,0)$ harmonic superspace was developed.
- Superficial degree of divergence was evaluated and structure of one and two-loop counterterms were studied.
- \bullet The one-loop divergences in the $6D, \mathcal{N}=(1,0)$ SYM theory were calculated off-shell.
- Two-loop divergences in the $6D, \mathcal{N} = (1,1)$ SYM theory are calculated.
- Three-loop analysis is provided.

Thank you for your attention!