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Conformal Field Theory

We recall free Schrödinger equation in arbitrary space dimensions

i
∂

∂t
ψ = −∇2

2m
ψ. (1)

It is well known that this equation is invariant under space-time
transformations of Schrödinger group.

Schrödinger group

Subgroup Transformations Infinitesimal generators G

Time Translation t
′
= t + β ∂

∂t

Space Translation x
′
= x + a ∂

∂x

Rotation x
′
= x 1

Galilean boost x
′
= x + v · t t ∂

∂x − imx

Dilatation t
′
= e2σt, x

′
= eσx 2t ∂

∂t + x ∂
∂x + 1

2

Special conformal symme-
try

t
′
= t

1+ηt , x
′
= x

1+ηt
ix2
2 − t

2 − xt ∂
∂x − t2 ∂

∂t
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Unbroken dilatation and conformal symmetry are present in a model
with potential term |ψ|2n that satisfies relation1

nd = d + 2, (2)

where d is the number of space dimensions.
The simplest case possible is to consider a (1 + 1)-dimensional theory
with |ψ|6 self-interaction term which Lagrangian is written as

LGP6 = iψ∗ψ̇ − 1
2m

∇ψ∗∇ψ +
λ

24m3 (ψ∗ψ)3 . (3)

The corresponding equation of motion is a quintic Gross-Pitaevskii
equation

i
∂

∂t
ψ =

[
−∇2

2m
− λ

8m3 (ψ∗ψ)2
]
ψ, (4)

where coupling λ > 0 (attractive potential).

1M. O. deKok and J.W. van Holten, Nucl. Phys. B 803 (2008), arXiv: 0712.3686 [hep-th].
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Bright Soliton

Quintic Gross-Pitaevskii equation (4) supports bright soliton solutions

ψ(t, x) = eiµt
(

24m3µ

λ

) 1
4
√

sech
(√

8mµ · x
)
. (5)

It is worth studying the integral characteristics of these solutions, such
as the U(1) charge and the energy functional. Thus, straightforward
calculations show that

N =

∫ ∞

−∞
dx|ψ(t, x)|2 =

√
3πm√
λ

,

H =

∫ ∞

−∞
dx
[

1
2m

|∇ψ(t, x)|2 − λ

24m3 |ψ(t, x)|
6
]
= 0.

(6)

We support this result by considering scale invariance of theory (27)
and the influence of unbroken conformal symmetry.
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Dilatations: eσ =
√

2mµ, so that t′ = 2mµt and x′
=

√
2mµ · x. The

complex field ψ′
= (2mµ)−

1
4ψ.

∇2ψ
′
= ψ

′ − λ

4m2

∣∣∣ψ′
∣∣∣4 ψ′

. (7)

N =

√
2mµ√
2mµ

∫ ∞

−∞
dx

′
∣∣∣ψ′
(
t
′
, x

′
)∣∣∣2 , H = 0. (8)

The latter is a result of an unbroken scale invariance and conformal
symmetry, the corresponding symmetry generators D and K

D = 2tH +
i
2

∫
x⃗
(
ψ∗∇⃗ψ − ψ∇⃗ψ∗

)
d2x,

K = t2H − tD − m
2

∫
x⃗2(ψ∗ψ)d2x.

are conserved in accordance with equations 2

dK
dt

= −t
dD
dt
,

dD
dt

= 2H. (9)

2M. O. deKok and J.W. van Holten, Nucl. Phys. B 803 (2008), arXiv: 0712.3686 [hep-th].
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Linear Perturbations

Relations (6) impose a constraint on both the energy and the U(1)
charge of bright solitons (5).

ψp(t, x) = ψ(t, x) + δψ(t, x) = eiµtf(x) + δψ(t, x) (10)

one can derive linearized equation of motion

i
∂

∂t
δψ(t, x) = −∇2

2m
δψ(t, x)− λ

8m3

(
3 · δψ(t, x)|ψ(t, x)|4+

+2 · δψ∗(t, x)ψ3(t, x)ψ∗(t, x)
)
.

(11)

Symmetry-related zero modes have a simple form

δψ0(t, x) = Gψ(t, x), (12)

where G is an infinitesimal generator of Schrödinger group symmetry or
a generator of U(1) symmetry G = i.
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The general ansatz for linear perturbations of the complex field ψ can
be written as

δψ(t, x) = eiµt
(
eiγtη(t, x) + e−iγ∗tξ∗(t, x)

)
. (13)

By setting the parameter γ and the functions η, ξ to be real we study
the vibrational modes of bright soliton.

∇2η =

(
1 +

γosc.

µ

)
η − 1

4m2 f4(3η + 2ξ),

∇2ξ =

(
1 − γosc.

µ

)
ξ − 1

4m2 f4(3ξ + 2η).
(14)

Considering decay modes requires redefinition γ → −iγ, γ ∈ R and
ξ ≡ (η + ξ∗).

∇2 Re ξ = Re ξ +
γdec.

µ
Im ξ − 5

4m2 f4 Re ξ,

∇2 Im ξ = Im ξ − γdec.

µ
Re ξ − 1

4m2 f4 Im ξ.

(15)
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An extensive numerical scanning3 of the modes with known boundary
conditions have failed to find any modes at any value of the parameter
µ other than zero modes.
Vakhitov-Kolokolov criterion of stability

µ

N
d
dµ

N < 0 (16)

and instability
µ

N
d
dµ

N > 0. (17)

3Yulia Galushkina et al., Phys. Lett. B 865 (2025), arXiv: 2411.13514 [hep-ph].
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Relativistic Generalization

In order to provide relativistic generalization of the model (27) we use a
simple relation between the relativistic field ϕ and the non-relativistic
field ψ that has the form

ϕ(t, x) =
1√
2m

e−imtψ(t, x). (18)

Thus, we are able to write down the following Lorentz-invariant
Lagrangian

L = ∂µϕ
∗∂µϕ− m2ϕ∗ϕ+

λ

3
(ϕ∗ϕ)3 . (19)

This theory also supports a soliton solution that can be written as

ϕ(t, x) = e−iωtgω(x) = e−iωt

(
3
(
m2 − ω2)
λ

) 1
4 √

sech
(
2
√

m2 − ω2 · x
)
.

(20)
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Q = 2ω
∫ ∞

−∞
dx |ϕ(t, x)|2 =

√
3πω√
λ

(21)

E =

∫ ∞

−∞
dx
[∣∣∣ϕ̇∣∣∣2 + |∇ϕ|2 + m2 |ϕ|2 − λ

3
|ϕ|6

]
=

√
3π(m2 + ω2)

2
√
λ

. (22)

It can be directly checked that the differential relation dE
dQ = ω is

satisfied.
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Decay Modes

Following scaling

x̃ = x
√

m2 − ω2;

g̃ =
gωλ

1
4

(m2 − ω2)
1
4
,

(23)

allows us to write linearized equations of motion for decay modes
δϕ(t, x) = e−iωteγdec.t (Re ξ(x) + i Im ξ(x))

∇̃2 Re ξ =

(
m2 − ω2 + γ2

dec.
)
Re ξ + 2ωγdec. Im ξ

m2 − ω2 − 5g̃4 Re ξ,

∇̃2 Im ξ =

(
m2 − ω2 + γ2

dec.
)
Im ξ − 2ωγdec. Re ξ

m2 − ω2 − g̃4 Im ξ.

(24)
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Figure 1: Spectrum of decay modes that are described by Eqs.(24). In the
limit ω → m parameter γdec. tends to zero as C · (m − ω)1.506.
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It can be seen that in the limit ω → m parameter γdec. tends to zero.
While γdec.

ω ≪ 1 decay modes might be generated by expanding a
soliton solution in perturbation series as

iϕp(t, x) = ie−i(1+i γ
ω )ωtg1+i γ

ω
(x) ≈ e−iωt (1 + γt) ·

(
igω(x)− γ

∂gω(x)
∂ω

)
.

(25)
Comparison with the expansion of decay mode ansatz

δϕ(t, x) = eiωteγt (Re ξ + i Im ξ) ≈ eiωt(1 + γt) (Re ξ + i Im ξ) (26)

helps to evaluate that Re ξ = −γ ∂gω(x)
∂ω and Im ξ = gω(x).
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Figure 2: Decay mode profile at ω
m = 0.99 and γdec. = 0.003739. Scaled soliton

profile and (−γdec.)
∂gω

∂ω are added for comparison.
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(2 + 1)-dimensional CFT

In case of d = 2 space dimensions, non-relativistic CFT is written as

LNR = iψ∗ψ̇ − 1
2m

∇ψ∗∇ψ +
λ

8m2 (ψ∗ψ)2 . (27)

The corresponding equations of motion support conformal Q-tube
solutions of the form ψ(t, r) = eiµteinθh(r)4. The equation of motions
are written as

h
′′
(r) +

h′
(r)
r

− n2

r2
h(r) = 2mµh(r)− λ

2m
h3(r). (28)

This equation allows for scaling

r̄ = r
√

2mµ , h̄ = h

√
λ

2mµ
(29)

and can be rewritten into

h̄
′′
(r̄) +

h̄′
(r̄)
r̄

− n2

r̄2
h̄(r) = h̄(r̄)− 1

2m
h̄3(r̄). (30)

4M.Volkov and E.Wohnert 2002; P.Brax and P. Valageas, 2025
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Figure 3: Conformal Q-tubes with winding number n = 0, 1, 2.

The integral characteristics of Q-tubes

H = 2π
∫ ∞

0

[
|∇ψ|2

2m
− λ

8m2 |ψ|
4
]

rdr = 0,

N = 2π
∫ ∞

0
|ψ|2rdr = const.

(31)
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Analytical Approximation

It can be noted that equation of motion (30) allows for following
integral relation ∫ ∞

0
dr̄

(
h̄′
(r̄)
)2

r̄
=

∫ ∞

0
dr̄

n2h̄2(r̄)
r̄3

. (32)

A known asymptotic behavior of the Q-tube h̄(r̄) ∼ r̄n at r̄ → 0 leads to
approximation

h̄
′′
(r̄) = h̄(r̄)

(
1 +

n2

R2

)
− 1

2m
h̄3(r̄), for n → ∞, (33)

where R is the radius of the solution’s peak. Soliton solution of Eq.(33)
has an exact analytical form

h̄(r̄) =

√
4m
(

1 +
n2

R2

)
sech

(√
1 +

n2

R2 (r̄ − R)

)
, (34)

where R =
√

2n in the limit of large n.
Yulia Galushkina, Eduard Kim, Emin Nugaev, Yakov ShnirNon-topological Solitons in CFT



N ≈ 8πm
λ

ln
(
1 + e2

√
3n
)
−−−→n→∞ 16

√
3πm
λ

n. (35)
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N
8πm
λ ln (1 + e2√3n√

Numerical

Figure 4: The value of global U(1) charge N plotted versus winding number n
at λ/m = 1. Cross markers indicate results of numerical integration, while
analytical estimations are represented by a dashed line.
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Decay modes

δψ(t, r) = eiµt+γdec.teinθ (Re ξ + i Im ξ) (36)

and linearized equations of motion

Re ξ′′ +
Re ξ′

r̃
− n2

r̃
Re ξ = Re ξ +

γdec.

µ
Im ξ − 3

2m
h̄2 Re ξ,

Im ξ′′ +
Im ξ′

r̃
− n2

r̃
Im ξ = Im ξ − γdec.

µ
Re ξ − 1

2m
h̄2 Im ξ.

(37)

The existence of a trivial spectrum is in accordance with
Vakhitov-Kolokolov criterion

µ

N
dN
dµ

= 0. (38)

Yulia Galushkina, Eduard Kim, Emin Nugaev, Yakov ShnirNon-topological Solitons in CFT



Breaking Conformal Symmetry

Consideration of relativistic corrections leads to violation of conformal
symmetry. Stability analysis of non-topological solitons in the model

L = ∂µϕ∗∂µϕ− m2ϕ∗ϕ+
λ

2
(ϕ∗ϕ)2 (39)

results in the following spectrum of decay modes
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Figure 5: Decay parameter γdec./m for ω/m ∈ [0.99, 1], n = 0, 1, 2.
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Near the isolated point

iδϕ(t, r) ≈ e−iωteinθ (1 + γt)
(

ifω(r)− γ
∂fω(r)
∂ω

)
=

= e−iωteinθ(1 + γdec.t) (Re ξ(r̃) + i Im ξ(r̃)) .
(40)
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Figure 6: Decay mode profile at ω/m = 0.995 and γdec./m = 3.11 · 10−4.

Scaled soliton profile and (−γdec.)
∂fω(r)
∂ω

are added for comparison.
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Summary

We have found and examined bright solitons and Q-tube
solutions in conformal field theory.
In a relativistic generalization of our theory, the restoration of
conformal symmetry leads to enhanced stability of
non-topological solitons.
The presence of conformal symmetry allowed for the
Vakhitov-Kolokolov series expansion. The dynamical
instability in relativistic model can be tracked using U(1) zero
mode.
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Thank you for attention!5

5This work was supported by RSF 22-12-00215
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