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Introduction

Geometric structure of spacetime

Einstein’s GR: metric = spacetime geometry. In modern GR,
gH¥ is not fundamental: gravity enters Dirac equation via
tetrads: 4 x 4 matrices el; — is the primary object. Metric =
bilinear combination of tetrads. Index p labels spacetime
coordinates; index a describes internal spin SO(1, 3) space.
Combining GR and Standard Model: symmetry groups
SO(1,7), SO(3,11) [PRD 81 (2010) 025010], Clifford algebra
Cl1(0,6) [IJGMMP 21 (2024) 2450089, higher spins [PLB 243
(1990) 378]. Internal dimension n # D spacetime dimension
—> description of gravity via rectangular D x n frame.
Frame components are not necessarily related to coordinate
axes: e.g., for emerging fields in Akama-Dyakonov-Wetterich
theory [PRD 60 (1978) 1900] and superfluid *He in B phase
[Volovik: Physica B162 (1990) 222|, where dynamic frame is
bilinear combination of fermion fields. Spin space dimension
n can be greater than D spacetime dimension.
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Introduction

Geometric structure of spacetime

Geometric structure of spacetime

o Differential geometry: a crash-course

@ Spacetime = 4-dimensional smooth manifold

o Local frame ef(x) defines reference system
of a physical observer (laboratory at point z)

e Metric g, (x) introduces scalar product = (lengths and
angles) = linear element ds* = g,,, dz*dz”

o Connection I'*g,(x) defines parallel transport of geometric
objects; ensures general covariance

o Metric-affine spacetime geometry (g,,,,,I'“g,) is characterized
by curvature, torsion, non-metricity:

R = 80y — 0,1 + T gy — Ty,
Ta;w = Fauu - Fauua
Q)\m/ = - v)\gm/ = - a/\guu + Fo-,u)\gcru + FGV/\QMU

e In Einstein’s general relativity: 7%, = 0 and Qy,, =0
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Finfbein equation for fermion particle Dirac algebra

Spacetime geometry, induced by SO(1,4) structure

Quintet of Dirac 4 x 4-matrices I'* with a = 0,1, 2, 3, 4,

{10 1% =29 9 = diag(1, -1, -1, -1, 1),
can be constructed in terms of usual 4 x 4 y-matrices

0 = 40 (a=0), T'*:=9" (a=1,2,3),

I = —iys (a=4), %%bcdef‘“I‘bFCFdFe =1
Here eg4pcde is five-dimensional Levi-Civita tensor; £g1234 = +1.

Introduce 4 x 5 frame ek, and from 5-vector I'® in spin space we
then construct 4 x 4 Dirac matrices v#(x) = el (z)['* (4-vector)

Generalised Dirac equation

(ielT*V,, — M)1p =0

is covariant with respect to diffeomorphisms, z — z(z’), and
local SO(1,4) spin transformations:

et — e, Y — U Y, UT'TU = A%I.
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Finfbein equation for fermion particle Dirac algebra
Spacetime geometry, induced by SO(1,4) structure

Fiinfbein equation for fermion particle

Orthogonal 5 x 5 matrices A%(x) (i.e. A%Abgncd = n)
generate SO(1,4) spin transformations U(x) by generators

Sb = i[F“,Fb} .

They determine spin-covariant derivatives
Vb = 0, + wuth,  wy = %wabusab
in terms of spin-connection wgp, = — Wpay-
Main algebraic relations:
|:1—\a’ Sbc} — (nabrc _ nacrb) 7 {Pa7 Sbc} _ gobede g
[Sab7 Scd} _ Z-(_ Gacpbd 4 gadybe | gbepad _ denac)7

1
{Sab’ Scd} _ 5 (nacnbd o nadnbc + Eabcde F@) )
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Finfbein equation for fermion particle Dirac algebra
Spacetime geometry, induced by SO(1, 4) structure

Induced spacetime geometry

Spin SO(1,4) structure = 5-frame + spin-connection

(657 Wabu)

Evaluating commutator of covariant derivatives

i a
(v,uvu - vuvu) = §Qabm/S bd}a

we introduce field strength, or spin-curvature:
a a a a C a Cc
Q buv = OuW bl/_al/w b,u+w cpW by — W ocvW by,

Usual D = 4 spacetime metric is expressed through 4 x 5 frame
el as in GR:

v v, ab
g = eqeyn™.

Assuming non-degeneracy (i.e., det g"¥ # 0), one can get inverse
tensor field g, .
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Finfbein equation for fermion particle Dirac algebra

Spacetime geometry, induced by SO(1, 4) structure

Since rectangular frame connects 4- and 5-dimensional spaces,

matrix e5 cannot have an inverse. However, one can introduce a

5 x 4 matrix object
€Z = nabg;wega

which is semi-inverse to the original one, i.e.,
a v _ SV a Kk __ 1710 a
€,€q = Oy epey, = 1% # 0y

From the definition we find that this is an idempotent object
(hence a projector),
19 01¢, = 11%,.

In general, it depends on spacetime coordinates, 1%, = I1%(z).
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Finfbein equation for fermion particle Dirac algebra

Spacetime geometry, induced by SO(1, 4) structure

Semi-inverse matrix determines spin-torsion:

b

a _ a a a b a
0% = ey, — Ovey, + whppe, — wipe), -

Together, the spin curvature and the spin torsion play the role
of generalized structural relations. We postulate

v o__ v v A b vo__
Viueqs = 0ueq + 17 e — w’apuey = 0.

It is impossible to solve this equation with respect to spin

connection wbw. However, using semi-inverse matrix ez we find:

%, = eg‘wabue% + eqOues.

Spin structure induces spacetime geometry




Understanding rectangular vielbein
Properties of induced spacetime geometry De Sitter spacetime and de Sitter group

Properties of induced spacetime geometry

A manifold with {¢g"”,I'“g,} is characterized by curvature,
torsion, and nonmetricity. Differentiating V ey = 0, we find
curvature

R% g = 0,1%) — 0,13, + T\ T gy — T T8, = Q%uelel
By contraction, we derive Ricci tensor and curvature scalar:
R, = RA,MV = eé‘e% Q% R =g""R,, = eley Qabw.
Connection I'*g,, is compatible with metric
Vugaﬁ = f)ugaﬁ + Pa)\#g/\ﬁ + PB)\uga)‘ =0.
Induced geometry thus has the vanishing nonmetricity.

However, induced spacetime torsion
[e% P [0} (6% _ « a
T =T% ) =T = 0% .

can be non-trivial, in general.
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Understanding rectangular vielbein
Properties of induced spacetime geometry De Sitter spacetime and de Sitter group

Understanding rectangular vielbein
Formally, rectangular frame is a 4 x 5 matrix

e? e(%) eg e% eg
1 1

=19 1% 919 |
a es €] e% e§ e%
e% e% e €| €

that naturally splits into 4 x 4 block hh = eh (o =0,1,2,3)
and column k* := eg treated as 4-vector. Then induced metric

g =G — kK], where G = RARP

This is a generalized Kerr-Schild ansatz! Inverting, we find

~ 1 . ~
guy - g;,“/ + k;2 k ky7 Where guy - hzhi}naﬁ,

with k, = g k", k2 = guk"k”. As a result, semi-inverse frame:
1 i 1
ez:hfj 1_k2kka e‘uzfmku
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Understanding rectangular vielbein

Properties of induced spacetime geometry De Sitter spacetime and de Sitter group

Then projector I1% = ef.e; reads explicity

a _ ga a a 1 1 kﬁ
Hb_(sb*Xba Xb_l—k,‘2(_ka _kakﬁ)

One can check the idempotency X%, X% = X%,
Direct computation yields spin-curvature and spin-torsion:

Q% 3, =%, + b ubg, — b b, Q% = Dub®, — D,b%,

Apv

0%, =Due®, — Dye® 4+ b uky — b kp, 0% = Oukiy — Oukip + bpue’, —bpe’,

Here O guv is the spin-curvature in the Lorentz sector,

and we denoted r,, := 64

o 0% = wagm, and by, = ﬁagbﬁu

In representation el = {hh, k*}, Dirac equation is recast into

(e *Vy +v5k#*V,y — M)y =0

Special case of Standard Model Extension, where k#* manifests
Lorentz symmetry breaking [Kostelecky, PRD 55 (1997) 6760].
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Understanding rectangular vielbein
Properties of induced spacetime geometry De Sitter spacetime and de Sitter group

De Sitter spacetime and de Sitter group

Rectangular 4 x 5 frame arises for de Sitter space as a
(1 4 3)-hypersurface in the (1 4 4)-dimensional Minkowski
spacetime ds? = 1,,dX*dX®. De Sitter spacetime

>1,3 = hyperboloid )

Embedding described in parametric form
X0 =L f(r)S(t), X' =Lf(r)C(t), X'==z, A’=y, X°=z

withr? = 22 +y2+ 22, f = /1 — 2—;,@ = cosh(t/¢),S = sinh(¢//)

On X1 3 a metric g, = eZef’,nab is induced via

S S S
e -5 5 -5
0o 1 0 0
X
h=gr=| 0 0 1 0
t 0 0 0 1
C C C
;8- ¥ i
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Understanding rectangular vielbein

Properties of induced spacetime geometry De Sitter spacetime and de Sitter group

Kerr-Schild representation:

C ‘ 0 S
o=t ], k=—| S
/S ‘ 05 — N /C

The resulting induced spacetime metric

2 U
0 —oU 4z

gMV:AMV_kMkV: ( )7 ivj:172>37
describes ¥ 3 as a homogeneous 4-dimensional spacetime of
constant curvature R%g,, = é% (53%# — (5?}95,,). Replacing
Cartesian coordinates (x,y, z) with spherical ones (7,0, ¢):

2 2
ds? = <1 - ;) dt* — ld"” — —17(d0? + sin® 0d¢?).
=

Historic hint: Early models for spin % in de Sitter space by Dirac
[Ann. Math. 36 (1935) 657]; Giirsey-Lee [PNAS 49 (1963) 179]
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Conclusions

Conclusions

The generalized Dirac equation suggests a nontrivial extension
of the Lorentz group SO(1,3) to de Sitter spin group SO(1,4),
introducing a rectangular 4 x 5 frame e, as a new geometric

variable along with spin connection w®, (covariance!)

New fundamental spin variables {ef,w®,} induce a geometric
structure on spacetime, defining a metric g"” and alinear
connectionI'*g,,. The induced Riemann-Cartan spacetime
geometry is characterized by zero nonmetricity, but nontrivial
curvature and torsion of spacetime are constructed from the
spin-curvature and spin-torsion.

Resulting formalism opens new prospects for investigation of
physically interesting problems related to hypothetic Lorentz
symmetry violation effects.

Yu.N. Obukhov, G.E. Volovik, Phys. Rev. D 109 (2024) 064076
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