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Geometric structure of spacetime

:::::::::
Einstein’s

::::
GR: metric = spacetime geometry. In modern GR,

gµν is not fundamental: gravity enters Dirac equation via
tetrads: 4× 4 matrices eµa – is the primary object. Metric =
bilinear combination of tetrads. Index µ labels spacetime
coordinates; index a describes internal spin SO(1, 3) space.
::::::::::
Combining

::::
GR

:::::
and

:::::::::
Standard

:::::::
Model: symmetry groups

SO(1, 7), SO(3, 11) [PRD 81 (2010) 025010], Clifford algebra
Cl(0, 6) [IJGMMP 21 (2024) 2450089], higher spins [PLB 243
(1990) 378]. Internal dimension n 6= D spacetime dimension
=⇒ description of gravity via

:::::::::::
rectangular D × n frame.

Frame components are not necessarily related to coordinate
axes: e.g., for emerging fields in Akama-Dyakonov-Wetterich
theory [PRD 60 (1978) 1900] and superfluid 3He in B phase
[Volovik: Physica B162 (1990) 222], where dynamic frame is
bilinear combination of fermion fields. Spin space dimension
n can be greater than D spacetime dimension.
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Geometric structure of spacetime

Geometric structure of spacetime
Differential geometry: a crash-course
Spacetime = 4-dimensional smooth manifold
Local frame eαµ(x) defines reference system
of a physical observer (laboratory at point x)
Metric gµν(x) introduces scalar product = (lengths and
angles) =⇒ linear element ds2 = gµνdx

µdxν

Connection Γαβµ(x) defines parallel transport of geometric
objects; ensures general covariance
Metric-affine spacetime geometry (gµν ,Γ

α
βµ) is characterized

by curvature, torsion, non-metricity:
Rαβµν = ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλβν − ΓαλνΓλβµ,

Tαµν = Γανµ − Γαµν ,

Qλµν = −∇λgµν = − ∂λgµν + Γσµλgσν + Γσνλgµσ

In Einstein’s general relativity: Tαµν = 0 and Qλµν = 0
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Dirac algebra
Spacetime geometry, induced by SO(1, 4) structure

Quintet of Dirac 4× 4-matrices Γa with a = 0, 1, 2, 3, 4,
{Γa,Γb} = 2ηab , ηab = diag(1,−1,−1,−1,−1) ,

can be constructed in terms of usual 4× 4 γ-matrices
Γ0 := γ0 (a = 0) , Γa := γa (a = 1, 2, 3) ,

Γ4 := −iγ5 (a = 4) ,
1

5!
εabcdeΓ

aΓbΓcΓdΓe = 1

Here εabcde is five-dimensional Levi-Civita tensor; ε01234 = +1.
Introduce 4× 5 frame eµa , and from 5-vector Γa in spin space we
then construct 4× 4 Dirac matrices γµ(x) = eµa(x)Γa (4-vector)
Generalised Dirac equation

(ieµaΓa∇µ −M)ψ = 0

is covariant with respect to diffeomorphisms, x −→ x(x′), and
local SO(1, 4) spin transformations:

eµa −→ eµbΛba, ψ −→ U−1ψ, U−1ΓaU = ΛabΓ
b.
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Fünfbein equation for fermion particle
Orthogonal 5× 5 matrices Λab(x) (i.e. ΛacΛ

b
dη
cd = ηab)

generate SO(1, 4) spin transformations U(x) by generators

Sab =
i

4
[Γa,Γb] .

They determine spin-covariant derivatives

∇µψ = ∂µψ + ωµψ, ωµ =
i

2
ωabµS

ab

in terms of spin-connection ωabµ = −ωbaµ.
Main algebraic relations:[

Γa, Sbc
]

= i
(
ηabΓc − ηacΓb

)
,
{

Γa, Sbc
}

= εabcde Sde,[
Sab, Scd

]
= i

(
−Sacηbd + Sadηbc + Sbcηad − Sbdηac

)
,{

Sab, Scd
}

=
1

2

(
ηacηbd − ηadηbc + εabcde Γe

)
.
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Induced spacetime geometry
Spin SO(1, 4) structure = 5-frame + spin-connection

(eµa , ωabµ)

Evaluating commutator of covariant derivatives

(∇µ∇ν −∇ν∇µ)ψ =
i

2
ΩabµνS

abψ,

we introduce field strength, or
::::::::::::::
spin-curvature:

Ωa
bµν = ∂µω

a
bν − ∂νωabµ + ωacµω

c
bν − ωacνωcbµ,

Usual D = 4 spacetime metric is expressed through 4× 5 frame
eµa as in GR:

gµν = eµae
ν
bη
ab.

Assuming non-degeneracy (i.e., det gµν 6= 0), one can get inverse
tensor field gµν .
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Spacetime geometry, induced by SO(1, 4) structure

Since rectangular frame connects 4- and 5-dimensional spaces,
matrix eµa cannot have an inverse. However, one can introduce a
5× 4 matrix object

eaµ := ηabgµνe
ν
b ,

which is
::::::::::::
semi-inverse to the original one, i.e.,

eaµe
ν
a = δνµ, eaµe

µ
b = Πa

b 6= δab

From the definition we find that this is an idempotent object
(hence a projector),

Πa
cΠ

c
b = Πa

b.

In general, it depends on spacetime coordinates, Πa
b = Πa

b(x).

Yuri N. Obukhov Spin Geometry



Introduction
Fünfbein equation for fermion particle

Properties of induced spacetime geometry
Conclusions

Dirac algebra
Spacetime geometry, induced by SO(1, 4) structure

Semi-inverse matrix determines
:::::::::::
spin-torsion:

Θa
µν = ∂µe

a
ν − ∂νeaµ + ωabµe

b
ν − ωabνebµ .

Together, the spin curvature and the spin torsion play the role
of generalized structural relations. We postulate

∇µeνa = ∂µe
ν
a + Γνλµe

λ
a − ωbaµeνb = 0.

It is impossible to solve this equation with respect to spin
connection ωbaµ. However, using semi-inverse matrix eaµ we find:

Γαβµ = eαaω
a
bµe

b
β + eαa∂µe

a
β.

Spin structure induces spacetime geometry

(eµa , ωabµ) =⇒ (gµν , Γαβµ)
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Understanding rectangular vielbein
De Sitter spacetime and de Sitter group

Properties of induced spacetime geometry

A manifold with {gµν ,Γαβµ} is characterized by curvature,
torsion, and nonmetricity. Differentiating ∇µeνa = 0, we find
curvature

Rαβµν = ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλβν − ΓαλνΓλβµ = Ωa
bµνe

α
ae
b
β

By contraction, we derive Ricci tensor and curvature scalar:

Rµν = Rλµλν = eλae
b
β Ωa

bλν , R = gµνRµν = eµae
ν
b Ωab

µν .

Connection Γαβµ is compatible with metric

∇µgαβ = ∂µg
αβ + Γαλµg

λβ + Γβλµg
αλ = 0.

Induced geometry thus has the
:::::::::
vanishing

:::::::::::::
nonmetricity.

However, induced spacetime torsion

Tαµν = Γανµ − Γαµν = eαaΘa
µν .

can be non-trivial, in general.
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Understanding rectangular vielbein
De Sitter spacetime and de Sitter group

Understanding rectangular vielbein
Formally, rectangular frame is a 4× 5 matrix

eµa =


e0
0̂

e0
1̂

e0
2̂

e0
3̂

e0
4̂

e1
0̂

e1
1̂

e1
2̂

e1
3̂

e1
4̂

e2
0̂

e2
1̂

e2
2̂

e2
3̂

e2
4̂

e3
0̂

e3
1̂

e3
2̂

e3
3̂

e3
4̂

 ,

that naturally splits into 4× 4 block hµα := eµα (α = 0, 1, 2, 3)
and column kµ := eµ

4̂
treated as 4-vector. Then induced metric

gµν = ĝµν − kµkν , where ĝµν = hµαh
ν
βη

αβ.

This is a generalized
:::::::::::
Kerr-Schild ansatz! Inverting, we find

gµν = ĝµν +
1

1− k2
kµkν , where ĝµν = hαµh

β
ν η̂αβ,

with kµ = ĝµνk
ν , k2 = ĝµνk

µkν . As a result, semi-inverse frame:

eαµ = hαµ +
1

1− k2
kµk

α, e4̂µ = − 1

1− k2
kµ
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Understanding rectangular vielbein
De Sitter spacetime and de Sitter group

Then projector Πa
b = eaµe

µ
b reads explicity

Πa
b = δab −Xa

b, Xa
b =

1

1 − k2

(
1 kβ

−kα −kαkβ

)
One can check the idempotency Xa

cX
c
b = Xa

b.
Direct computation yields spin-curvature and spin-torsion:

Ωαβµν=Ω̂αβµν + bαµbβν − bανbβµ, Ωα4̂µν = D̂µb
α
µ − D̂νb

α
µ

Θα
µν=D̂µe

α
µ − D̂νe

α
µ + bαµκν − bανκµ, Θ4̂

µν = ∂µκν − ∂νκµ + bβµe
β
ν − bβνe

β
µ

Here Ω̂α
βµν is the spin-curvature in the Lorentz sector,

and we denoted κµ := e4̂µ, bαµ := ωα4̂µ, and bαν = η̂αβb
β
µ.

In representation eµa = {hµα, kµ}, Dirac equation is recast into
(ieµαγ

α∇µ + γ5k
µ∇µ −M)ψ = 0

Special case of Standard Model Extension, where kµ manifests
:::::::
Lorentz

::::::::::
symmetry

:::::::::
breaking [Kostelecky, PRD 55 (1997) 6760].
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De Sitter spacetime and de Sitter group

De Sitter spacetime and de Sitter group
Rectangular 4× 5 frame arises for de Sitter space as a
(1 + 3)-hypersurface in the (1 + 4)-dimensional Minkowski
spacetime ds2 = ηabdX adX b. De Sitter spacetime
Σ1,3 = hyperboloid

ηabX aX b = − `2.
Embedding described in parametric form
X 0 = ` f(r) S(t), X 4 = ` f(r)C(t), X 1 = x, X 2 = y, X 3 = z,

with r2 = x2 +y2 + z2, f =
√

1− r2

`2
,C = cosh(t/`),S = sinh(t/`)

On Σ1,3 a metric gµν = eaµe
b
νηab is induced via

eaµ =
∂X a

∂xµ
=


fC −x S

` f −y S
` f − z S

` f

0 1 0 0
0 0 1 0
0 0 0 1

fS −xC
` f −yC

` f − z C
` f

 .
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Understanding rectangular vielbein
De Sitter spacetime and de Sitter group

Kerr-Schild representation:

hµα =

( C
f 0

xi

` fS δij −
xixj
`2

)
, kµ = −

(
S
f

xi

` fC

)
The resulting induced spacetime metric

gµν = ĝµν − kµkν =

(
f−2 0

0 −δij + xixj

`2

)
, i, j = 1, 2, 3,

describes Σ1,3 as a homogeneous 4-dimensional spacetime of
constant curvature Rαβµν = 1

`2

(
δαν gβµ − δαµgβν

)
. Replacing

Cartesian coordinates (x, y, z) with spherical ones (r, θ, φ):

ds2 =

(
1− r2

`2

)
dt2 − dr2

1− r2

`2

− r2(dθ2 + sin2 θdφ2).

Historic hint: Early models for spin 1
2 in de Sitter space by Dirac

[Ann. Math. 36 (1935) 657]; Gürsey-Lee [PNAS 49 (1963) 179]
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Conclusions
The

:::::::::::
generalized

::::::
Dirac

:::::::::
equation suggests a nontrivial extension

of the Lorentz group SO(1, 3) to de Sitter spin group SO(1, 4),
introducing a rectangular 4× 5 frame eµa as a new geometric
variable along with spin connection ωabµ (covariance!)
New fundamental

::::
spin

:::::::::
variables {eµa , ωabµ} induce a geometric

structure on spacetime, defining a metric gµν and a linear
connectionΓαβµ. The induced Riemann-Cartan spacetime
geometry is characterized by zero nonmetricity, but nontrivial
curvature and torsion of spacetime are constructed from the
spin-curvature and spin-torsion.
Resulting formalism opens new prospects for investigation of
physically interesting problems related to hypothetic Lorentz
symmetry violation effects.

Yu.N. Obukhov, G.E. Volovik, Phys. Rev. D 109 (2024) 064076
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