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Lattice regularization
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Lattice regularization, cont.

(0) = % / DUV O(U)

There is no problem of gauge fixing when O(U) is gauge
Invariant

Examples of gauge non-invariant observables:

- Gluon, quark, ghost propagators

(needed to compare with, e.g. DSE approach)

- Various projected observables in MAG and center gauges
(needed to study respective scenarios of confinement)
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Confinement problem

Quark confinement:

- is confirmed experimentally and in lattice calculations

- linear dependence of static quarks interaction potential on
a distance between them

- hasn't been proven analytically so far

- one of the approaches - to describe QCD vacuum as a
dual superconductor, t'Hooft, 1976, Mandelstam, 1976
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Maximal Abelian gauge in SU(3) gluodynamics

Suggested by t'Hooft, 1981 to define color-magnetic
monopoles

Gauge fixing functional (breaks 5U(3) to U(1)?)

Fuac = 12\/ d4xZZ(A"’

n=1 a#3.8

F(A) =) (0,07—gf A —gf B A)AL =0, a+#3.8
b#3,8
Gauge fixing functional in lattice regularization:

1
Frac =1— oV Z Tr{Uu(x) AUl (x)\s} = a*Fuac

Xaﬂva:378
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Color-magnetic monopoles

It is known that in a unitary gauge the Higgs model
t'"Hooft-Polyakov monopole has a form of a Dirac monopole
In SU(N,) theory without Higgs field we search for
nonabelian color-magnetic monopoles making three steps
(Kronfeld, Laursen, Schierholz, Wiese, 1987 )

- to fix MA gauge
- to make Abelian projection

=) AN+ AL (x)As + A (x)As = AT (x) + A2 (x)
a#3,8

- to use the Abelian component A2°?/(x) for locatation of

Dirac monopoles via procedure introduced for compact

U(1) in DeGrand, Toussaint, 1980



Color-magnetic monopoles, cont.

Abelian lattice gauge field is defined by
diagonal matrix u,(x) € U(1) x U(1)

193 a i \iet il
uy’(x) = e/l E 0,(x) =2mn - T

a a a 1‘
euu(x) - aﬂeu(x) o aVeﬂ(X) '
0,,(x) = 0,(x) +2rm;, (x),  0],(x) € (=7, 7)
color-magnetic current :

1
kZ(X) — Eguyaﬁ 8ym3ﬁ
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A decomposition of a gauge field in MAG

Abelian field can be further decomposed into 'monopole’
and 'photon’ components (names are borrowed from

compact U(1))

abel __ Amon ho
AT (x) = AT (x) + AT (x)
aAz,mon = ea mon Z D 6 m,. u(}’)

The following decomposition was introduced in
Bornyakov, Polikarpov, Schierholz, Suzuki, Syritsyn, 2006

Au(x) = AT(x) + AT (%)

(non-confining) (confining)
mod __ poffd hot
AL (x) = AT (x) + AT (%)
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Static quark potential

W(r, t) = —TrH U,
Ne lec
(W(r, t)) = Ge V) 4 GetB(D l
aV(r) = lim IogM

We measure three types of (W(r,t))
- for nonabelian gauge field A, (x)

- for monopole component A7"(x) ,

- for modified component A7°%(x),
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Decomposition of static potential V/(r)

in SU(2) gluodynamics and in SU(2) QCD

First results on properties of this decomposition:
Bornyakov, Polikarpov, Schierhilz, Suzuki, Syritsyn, 2006

It was found that
V(r) = Vimon(r) + Vimoa(r)

We demonstrated (Bornyakov, Kudrov, Rogalyov, 2021 ) that in
SU(2) gluodynamics the precision of this relation improves
when lattice spacing a is decreasing (i.e. in the continuum
limit)

Furthermore, we observed this decomposition in lattice
SU(2) gluodynamics with improved lattice action

(universality) and in lattice N, = 2 QCD.



Decomposition of static potential V(r) in SU(2)

gluodynamics and in SU(2) QCD
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Vmon(r) + Vimod(r) vs. physical static potential V/(r)
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Interpretation of this result for V(r):

A7"(x) is responsible for the linear part of V/(r), i.e. it is a
confining component,

A/T"d(x) is responsible for the perturbative part at small r
and for hadron string fluctuations at large r, i.e. it is a
non-confining component
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Decomposition of static potential in SU(3) gluodynamics

3 —

QOO

o=hw
L]
¥

2

1F &
0 /i//f’
a4t

2 v

ro(V(r) - V(rg/2))

0 0.5 1 1.5 2 25
r/r,

Vion(r) + Vimoa(r) is compareod with V/(r),

results for a few values of lattice spacing a € [0.06,0.09] fm
With 'global’ minima of Fpac we find agreement at small r
and disagreement at large r

Disagreement comes from low string tension in Vion(r)
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Decomposition of static potential in SU(3) gluodynamics,

cont.
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Vinon(r) + Vimoa(r) is compared with V(r),
With "proper’ minima (Gribov copies) we find agreement at

all distances r



Abelian dominance

3 SUI(S) —e—

E ADElns <O _ -7

AbelSé A ‘6‘
a

rg [V(n)-V(ry/2)]
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r'ry

Abelian static potential V@¢/(r) for 'optimal’ and 'proper’ Gribov
copies vs. physical static potential V/(r)

We find perfect Abelian dominance for 'proper’ Gribov copies
This conclusion contradicts that of Sakumichi, Suganuma, 2014



Decomposition at T > 0 in SU(2) gluodynamics

We extend the study of the gauge field decomposition

Au(x) = AT (x) + AT (x)
to the finite temperature case.

We study the Polyakov loop correlator and respective free energy Fgg.
Polyakov loop

N:—1 N:—1
1 ~ 1 ~
Po=TrLe L= ,,”o Us(x+4n); PJommod — ST ,,”0 U (x+4n)

Polyakov loop correlators C, (color averaged) and C3, (color singlet):
Gy =< PP} >= & < Trl, Trl] >, G = & < Trl L] >
Xy — Xy_4 rXryr Xy_2 er
Free energy

Fog(r) = =T log Cy Fag(r) =—T log C)fy
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Conclusions

O In our study of the gauge field decomposition
Au(x) = AT (x) + AT (x) (1)

in MA gauge of SU(3) gluodynamics we observed that
Gribov copies exist which produce a numerically precise
decomposition for the static potential

V(r) = Vinon(r) + Vimod(r) (2)

@ As a byproduct, we show that o5 ~ o (Abelian
dominance, long standing problem) with high precision
on these Gribov copies independent of the volume.

© We found in SU(2) gluodynamics that at T > 0 the
decomposition works for the free energy Fgy4(r) of static

quark-antiquark pair.



Conclusions, cont.

Future plans:
@ better understanding of differences between Gribov
copies found in our study

@ To compute the gauge field propagators for A™" and
A™9 including mixed propagator

©

To compute the quark propagator for A™" and A™°?

Q@ to study properties of this gauge field decomposition in
QCD (i.e. with quarks)

© to study decomposition for other observables, in
particular, for hadron spectrum
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