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Lattice regularization

Uµ(x) = Pexp
(
i
∫
Cx,x+µ̂

Aµ(s)ds

)
≈ 1 + iaAµ(x) + O(a2)

SG = β
∑

x ,µ<ν
(1 − 1

NReTrUµν) =
β

2Nc

∑
x ,µ<ν

Tr[F 2
µν ] + O(a2) , β = 2Nc

g2
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Lattice regularization, cont.

⟨O⟩ = 1
Z

∫
DUe−SG (U)O(U)

There is no problem of gauge fixing when O(U) is gauge
invariant

Examples of gauge non-invariant observables:
- Gluon, quark, ghost propagators
(needed to compare with, e.g. DSE approach)
- Various projected observables in MAG and center gauges
(needed to study respective scenarios of confinement)
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Confinement problem

fundamental representation

Quark confinement:
- is confirmed experimentally and in lattice calculations
- linear dependence of static quarks interaction potential on
a distance between them
- hasn’t been proven analytically so far
- one of the approaches - to describe QCD vacuum as a
dual superconductor, t’Hooft, 1976, Mandelstam, 1976
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Maximal Abelian gauge in SU(3) gluodynamics

Suggested by t’Hooft, 1981 to define color-magnetic
monopoles
Gauge fixing functional (breaks SU(3) to U(1)2)

FMAG =
1

12V

∫
d4x

4∑
µ=1

∑
a ̸=3,8

(Aa
µ(x))

2

f a(A) =
∑
b ̸=3,8

(∂µδ
ab−gf ab3A3

µ−gf ab8A8
µ)A

b
µ = 0 , a ̸= 3, 8

Gauge fixing functional in lattice regularization:

F latt
MAG = 1 − 1

12V

∑
x ,µ,a=3,8

Tr{Uµ(x)λaU
†
µ(x)λa} ≈ a2FMAG
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Color-magnetic monopoles

It is known that in a unitary gauge the Higgs model
t’Hooft-Polyakov monopole has a form of a Dirac monopole
In SU(Nc) theory without Higgs field we search for
nonabelian color-magnetic monopoles making three steps
(Kronfeld, Laursen, Schierholz, Wiese, 1987 )
- to fix MA gauge
- to make Abelian projection

Aµ(x) =
∑
a ̸=3,8

Aa
µ(x)λa + A3

µ(x)λ3 + A8
µ(x)λ8 ≡ Aoffd

µ (x) + Aabel
µ (x)

- to use the Abelian component Aabel
µ (x) for locatation of

Dirac monopoles via procedure introduced for compact
U(1) in DeGrand, Toussaint, 1980
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Color-magnetic monopoles, cont.

Abelian lattice gauge field is defined by
diagonal matrix uµ(x) ∈ U(1)× U(1)

uaaµ (x) = e iθ
a
µ(x),

∑
a

θaµ(x) = 2πn

θaµν(x) = ∂µθ
a
ν(x)− ∂νθ

a
µ(x)

θaµν(x) = θ̄aµν(x) + 2πma
µν(x), θ̄aµν(x) ∈ (−π, π)

color-magnetic current :

kaµ(x) =
1
2
εµναβ ∂νm

a
αβ
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A decomposition of a gauge field in MAG

Abelian field can be further decomposed into ’monopole’
and ’photon’ components (names are borrowed from
compact U(1))

Aabel
µ (x) = Amon

µ (x) + Aphot
µ (x)

aAa,mon
µ (x) ≡ θa,mon

µ =
∑
y

D(x − y)∂νmµ,ν(y)

The following decomposition was introduced in
Bornyakov, Polikarpov, Schierholz, Suzuki, Syritsyn, 2006

Aµ(x) = Amod
µ (x) + Amon

µ (x)

(non-confining) (confining)

Amod
µ (x) = Aoffd

µ (x) + Aphot
µ (x)
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Static quark potential

W (r , t) =
1
Nc

Tr
∏
l∈C

Ul

⟨W (r , t)⟩ = C0e
−tV (r) + C1e

−tE1(r) + ...

aV (r) = lim
t→∞

log
⟨W (r , t)⟩

⟨W (r , t + a)⟩

We measure three types of ⟨W (r , t)⟩ :
- for nonabelian gauge field Aµ(x) ,
- for monopole component Amon

µ (x) ,
- for modified component Amod

µ (x),
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Decomposition of static potential V (r)
in SU(2) gluodynamics and in SU(2) QCD

First results on properties of this decomposition:
Bornyakov, Polikarpov, Schierhilz, Suzuki, Syritsyn, 2006
It was found that

V (r) ≈ Vmon(r) + Vmod(r)

We demonstrated (Bornyakov, Kudrov, Rogalyov, 2021 ) that in
SU(2) gluodynamics the precision of this relation improves
when lattice spacing a is decreasing (i.e. in the continuum
limit)
Furthermore, we observed this decomposition in lattice
SU(2) gluodynamics with improved lattice action
(universality) and in lattice Nc = 2 QCD.
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Decomposition of static potential V (r) in SU(2)
gluodynamics and in SU(2) QCD

mon
mod

mon+mod
SU(2)

r
√
σ

V
(r
)/
√
σ

1.81.61.41.210.80.60.40.20

8

7

6

5

4

3

2

1

0

Vmon(r) + Vmod(r) vs. physical static potential V (r)
Bornyakov, Kudrov, Rogalyov, 2021
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Interpretation of this result for V (r):

Amon
µ (x) is responsible for the linear part of V (r), i.e. it is a

confining component,

Amod
µ (x) is responsible for the perturbative part at small r

and for hadron string fluctuations at large r , i.e. it is a
non-confining component
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Decomposition of static potential in SU(3) gluodynamics

Vmon(r) + Vmod(r) is compared with V (r),
results for a few values of lattice spacing a ∈ [0.06, 0.09] fm
With ’global’ minima of FMAG we find agreement at small r
and disagreement at large r
Disagreement comes from low string tension in Vmon(r)
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Decomposition of static potential in SU(3) gluodynamics,
cont.

-2
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Vmon(r) + Vmod(r) is compared with V (r),
With ’proper’ minima (Gribov copies) we find agreement at
all distances r
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Abelian dominance

-2

-1

0

1

2

3
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(r
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V
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0
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Abelian static potential V abel(r) for ’optimal’ and ’proper’ Gribov
copies vs. physical static potential V (r)
We find perfect Abelian dominance for ’proper’ Gribov copies
This conclusion contradicts that of Sakumichi, Suganuma, 2014
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Decomposition at T > 0 in SU(2) gluodynamics

We extend the study of the gauge field decomposition

Aµ(x) = Amod
µ (x) + Amon

µ (x)
to the finite temperature case.
We study the Polyakov loop correlator and respective free energy Fqq̄.
Polyakov loop

Px =
1
2
TrLx ; Lx =

Nt−1∏
n=0

U4(x+4̂n); Pmon,mod
x =

1
2
Tr

Nt−1∏
n=0

Umon,mod
4 (x+4̂n)

Polyakov loop correlators Cxy (color averaged) and C s
xy (color singlet):

Cxy =< PxP
†
y >=

1
4
< TrLxTrL†y >; C s

xy =
1
2
< TrLxL†y >

Free energy

Fqq̄(r) = −T log Cxy F s
qq̄(r) = −T log C s

xy
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Free energy at T/Tc = 0.76
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Conclusions

1 In our study of the gauge field decomposition
Aµ(x) = Amon

µ (x) + Amod
µ (x) (1)

in MA gauge of SU(3) gluodynamics we observed that
Gribov copies exist which produce a numerically precise
decomposition for the static potential

V (r) = Vmon(r) + Vmod(r) (2)

2 As a byproduct, we show that σabel ≈ σ (Abelian
dominance, long standing problem) with high precision
on these Gribov copies independent of the volume.

3 We found in SU(2) gluodynamics that at T > 0 the
decomposition works for the free energy Fqq̄(r) of static
quark-antiquark pair.
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Conclusions, cont.

Future plans:
1 better understanding of differences between Gribov

copies found in our study
2 To compute the gauge field propagators for Amon and
Amod including mixed propagator

3 To compute the quark propagator for Amon and Amod

4 to study properties of this gauge field decomposition in
QCD (i.e. with quarks)

5 to study decomposition for other observables, in
particular, for hadron spectrum
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