Decomposition of the gluon field into monopole and monopoleless components

Vitaly Bornyakov^{a,b}, Ilya Kudrov^a, Vladimir Goy^b

^a NRC "Kurchatov Institute" - IHEP, Protvino
 ^b Pacific Quantum Center, Far Eastern Federal University, Vladivostok

"Advances in Quantum Field Theory 2025"

JINR, Dubna

14.08.2025

Plan

- Introduction (Lattice, DSS of confinement)
- **2** Decomposition at T=0 in SU(2); $N_c=2$ QCD
- ullet at T=0 in SU(3) gluodynamics
- at T > 0 in SU(2) gluodynamics
- Conclusions and Outlook

Publications:

- Decomposition of the SU(2) gauge field in the maximal Abelian gauge Phys.Rev.D 105 (2022) 5, 054519
- ② Decomposition of the Static Potential in SU(3) Gluodynamics JETP Lett. 117 (2023) 5, 328
- Gribov copy effects in the maximal Abelian gauge Phys.Part.Nucl. 56 (2025) 2, 242
- Abelian and Monopole Dominance in SU(3) Gluodynamics and Gribov Copy Effects
 Phys.Part.Nucl.Lett. 22 (2025) 1, 112
- Decomposition of the static potential in SU(3) Gluodynamics and Gribov Copy Effects, in preparation

Lattice regularization

$$egin{aligned} U_{\mu}(x) &= P \mathrm{exp}igg(i \int_{C_{x,x+\hat{\mu}}} A_{\mu}(s) dsigg) pprox 1 + i a A_{\mu}(x) + O(a^2) \ S_G &= eta \sum_{x,\mu <
u} ig(1 - rac{1}{N} \mathrm{Re} \mathrm{Tr} U_{\mu
u}ig) = rac{eta}{2N_c} \sum_{x,\mu <
u} \mathrm{Tr} [F_{\mu
u}^2] + \mathscr{O}(a^2) \,, \quad eta &= rac{2N_c}{g^2} \ . \end{aligned}$$

Lattice regularization, cont.

$$\langle O \rangle = \frac{1}{Z} \int \mathscr{D} U e^{-S_G(U)} O(U)$$

There is no problem of gauge fixing when O(U) is gauge invariant

Examples of gauge non-invariant observables:

- Gluon, quark, ghost propagators
 (needed to compare with, e.g. DSE approach)
- Various projected observables in MAG and center gauges (needed to study respective scenarios of confinement)

Confinement problem

Quark confinement:

- is confirmed experimentally and in lattice calculations
- linear dependence of static quarks interaction potential on a distance between them
- hasn't been proven analytically so far
- one of the approaches to describe QCD vacuum as a dual superconductor, t'Hooft, 1976, Mandelstam, 1976

Maximal Abelian gauge in SU(3) gluodynamics

Suggested by t'Hooft, 1981 to define color-magnetic monopoles

Gauge fixing functional (breaks SU(3) to $U(1)^2$)

$$F_{MAG} = \frac{1}{12V} \int d^4x \sum_{\mu=1}^4 \sum_{a \neq 3,8} (A^a_{\mu}(x))^2$$

$$f^{a}(A) = \sum_{b \neq 3.8} (\partial_{\mu} \delta^{ab} - g f^{ab3} A_{\mu}^{3} - g f^{ab8} A_{\mu}^{8}) A_{\mu}^{b} = 0, \quad a \neq 3, 8$$

Gauge fixing functional in lattice regularization:

$$F_{MAG}^{latt} = 1 - \frac{1}{12V} \sum_{x,\mu,a=3.8} \operatorname{Tr}\{U_{\mu}(x)\lambda_{a}U_{\mu}^{\dagger}(x)\lambda_{a}\} \approx a^{2}F_{MAG}$$

Color-magnetic monopoles

It is known that in a unitary gauge the Higgs model t'Hooft-Polyakov monopole has a form of a Dirac monopole In $SU(N_c)$ theory without Higgs field we search for nonabelian color-magnetic monopoles making three steps (Kronfeld, Laursen, Schierholz, Wiese, 1987)

- to fix MA gauge
- to make Abelian projection

$$A_{\mu}(x) = \sum_{a \neq 3,8} A_{\mu}^{a}(x) \lambda_{a} + A_{\mu}^{3}(x) \lambda_{3} + A_{\mu}^{8}(x) \lambda_{8} \equiv A_{\mu}^{offd}(x) + A_{\mu}^{abel}(x)$$

- to use the Abelian component $A_{\mu}^{abel}(x)$ for locatation of Dirac monopoles via procedure introduced for compact U(1) in DeGrand, Toussaint, 1980

Color-magnetic monopoles, cont.

Abelian lattice gauge field is defined by diagonal matrix $u_{\mu}(x) \in U(1) \times U(1)$

$$u_{\mu}^{aa}(x) = e^{i\theta_{\mu}^{a}(x)}, \quad \sum_{a} \theta_{\mu}^{a}(x) = 2\pi n$$

$$\theta_{\mu\nu}^{a}(x) = \partial_{\mu}\theta_{\nu}^{a}(x) - \partial_{\nu}\theta_{\mu}^{a}(x)$$

$$heta_{\mu
u}^{\mathsf{a}}(x) = \bar{ heta}_{\mu
u}^{\mathsf{a}}(x) + 2\pi m_{\mu
u}^{\mathsf{a}}(x), \quad \bar{ heta}_{\mu
u}^{\mathsf{a}}(x) \in (-\pi, \pi)$$

color-magnetic current :

$$k_{\mu}^{\mathsf{a}}(\mathsf{x}) = rac{1}{2} arepsilon_{\mu
ulphaeta} \, \partial_{
u} m_{lphaeta}^{\mathsf{a}}$$

A decomposition of a gauge field in MAG

Abelian field can be further decomposed into 'monopole' and 'photon' components (names are borrowed from compact U(1))

$$A_{\mu}^{abel}(x) = A_{\mu}^{mon}(x) + A_{\mu}^{phot}(x)$$
 $aA_{\mu}^{a,mon}(x) \equiv heta_{\mu}^{a,mon} = \sum_{v} D(x-y) \partial_{\nu} m_{\mu,\nu}(y)$

The following decomposition was introduced in Bornyakov, Polikarpov, Schierholz, Suzuki, Syritsyn, 2006

$$A_{\mu}(x) = A_{\mu}^{mod}(x) + A_{\mu}^{mon}(x)$$
(non-confining) (confining)

$$A_{\mu}^{mod}(x) = A_{\mu}^{offd}(x) + A_{\mu}^{phot}(x)$$

Static quark potential

$$W(r,t) = rac{1}{N_c} \operatorname{Tr} \prod_{l \in C} U_l$$
 $\langle W(r,t)
angle = C_0 e^{-tV(r)} + C_1 e^{-tE_1(r)} + ...$
 $aV(r) = \lim_{t \to \infty} \log rac{\langle W(r,t)
angle}{\langle W(r,t+a)
angle}$
 \overrightarrow{r}

We measure three types of $\langle W(r,t) \rangle$:

- for nonabelian gauge field $A_{\mu}(x)$,
- for monopole component $A_{\mu}^{mon}(x)$,
- for modified component $A_{\mu}^{mod}(x)$,

Decomposition of static potential V(r) in SU(2) gluodynamics and in SU(2) QCD

First results on properties of this decomposition: Bornyakov, Polikarpov, Schierhilz, Suzuki, Syritsyn, 2006 It was found that

$$V(r) \approx V_{mon}(r) + V_{mod}(r)$$

We demonstrated (Bornyakov, Kudrov, Rogalyov, 2021) that in SU(2) gluodynamics the precision of this relation improves when lattice spacing a is decreasing (i.e. in the continuum limit)

Furthermore, we observed this decomposition in lattice SU(2) gluodynamics with improved lattice action (universality) and in lattice $N_c = 2$ QCD.

Decomposition of static potential V(r) in SU(2) gluodynamics and in SU(2) QCD

 $V_{mon}(r) + V_{mod}(r)$ vs. physical static potential V(r)Bornyakov, Kudrov, Rogalyov, 2021

Interpretation of this result for V(r):

 $A_{\mu}^{mon}(x)$ is responsible for the linear part of V(r), i.e. it is a confining component,

 $A_{\mu}^{mod}(x)$ is responsible for the perturbative part at small r and for hadron string fluctuations at large r, i.e. it is a non-confining component

Decomposition of static potential in SU(3) gluodynamics

 $V_{mon}(r) + V_{mod}(r)$ is compared with V(r), results for a few values of lattice spacing $a \in [0.06, 0.09]$ fm With 'global' minima of F_{MAG} we find agreement at small r and disagreement at large r

Disagreement comes from low string tension in $V_{mon}(r)$

Decomposition of static potential in SU(3) gluodynamics, cont.

 $V_{mon}(r) + V_{mod}(r)$ is compared with V(r), With 'proper' minima (Gribov copies) we find agreement at all distances r

Abelian dominance

Abelian static potential $V^{abel}(r)$ for 'optimal' and 'proper' Gribov copies vs. physical static potential V(r)We find perfect Abelian dominance for 'proper' Gribov copies

This conclusion contradicts that of Sakumichi, Suganuma, 2014

Decomposition at T > 0 in SU(2) gluodynamics

We extend the study of the gauge field decomposition

$$A_{\mu}(x) = A_{\mu}^{mod}(x) + A_{\mu}^{mon}(x)$$

to the finite temperature case.

We study the Polyakov loop correlator and respective free energy $F_{q\bar{q}}$. Polyakov loop

$$P_{x} = \frac{1}{2} \operatorname{Tr} L_{x}; \ L_{x} = \prod_{n=0}^{N_{t}-1} U_{4}(x+\hat{4}n); \ P_{x}^{mon,mod} = \frac{1}{2} \operatorname{Tr} \prod_{n=0}^{N_{t}-1} U_{4}^{mon,mod}(x+\hat{4}n)$$

Polyakov loop correlators C_{xy} (color averaged) and C_{xy}^s (color singlet):

$$C_{xy} = \langle P_x P_y^{\dagger} \rangle = \frac{1}{4} \langle \operatorname{Tr} L_x \operatorname{Tr} L_y^{\dagger} \rangle; \qquad C_{xy}^{s} = \frac{1}{2} \langle \operatorname{Tr} L_x L_y^{\dagger} \rangle$$

Free energy

$$F_{qar{q}}(r) = -T \log C_{xy}$$
 $F_{qar{q}}^s(r) = -T \log C_{xy}^s$

Free energy at $T/T_c=0.76$

Free energy at $T/T_c = 0.90$

Conclusions

In our study of the gauge field decomposition

$$A_{\mu}(x) = A_{\mu}^{mon}(x) + A_{\mu}^{mod}(x) \tag{1}$$

in MA gauge of SU(3) gluodynamics we observed that Gribov copies exist which produce a numerically precise decomposition for the static potential

$$V(r) = V_{mon}(r) + V_{mod}(r)$$
 (2)

- As a byproduct, we show that $\sigma_{abel} \approx \sigma$ (Abelian dominance, long standing problem) with high precision on these Gribov copies independent of the volume.
- We found in SU(2) gluodynamics that at T>0 the decomposition works for the free energy $F_{q\bar{q}}(\mathbf{r})$ of static quark-antiquark pair.

Conclusions, cont.

Future plans:

- better understanding of differences between Gribov copies found in our study
- **②** To compute the gauge field propagators for A^{mon} and A^{mod} including mixed propagator
- ullet To compute the quark propagator for A^{mon} and A^{mod}
- to study properties of this gauge field decomposition in QCD (i.e. with quarks)
- to study decomposition for other observables, in particular, for hadron spectrum