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Rotation is ubiquitous

we rotate (together with the earth)

planets rotate

contracting matter tends to rotation (e.g. Kerr black hole)

in heavy ion collisions: plasma rotates

superfluids rotate through the formation of quantized vortices

on lattice - rotation is a mean of exploring

There are many more examples
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in QFT: rotating fields

What is a rotating field?
it is to some extend similar to a rotating rigid body
Consider the formalism: transformation of coordinates

t = tR , r = rR , φ = φR − Ωt, z = zR .

speed of a rotating point: v⃗ = ω⃗ × x⃗ , where ω⃗ = e⃗zΩ, x⃗ = e⃗r r
so, v = Ωr , but what happens for large r? → transformation is non-relativistic

way out: restrict space by boundary condition, e.g., ϕ(R) = 0 with ΩR < 1.

no need to do that in non-relativistic physics, e.g. in laboratory on earth but if
considering a relativistic field?

better way out [1], (1922)

t = tR cosh
(
Ωr
c

)
− rφR

c sinh
(
Ωr
c

)
, r = rR , φ = − ct

r sinh
(
Ωr
c

)
+ φR cosh

(
Ωr
c

)
we have a Gallilei-like transform vs. a Lorentz-like transform of the angle
However, that is technically more involved and not yet well explored

[1] Philip Franklin. The Meaning of Rotation in the Special Theory of Relativity.
Proceedings of the National Academy of Sciences of the United States of America, 8(9):265–268, 1922
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Transformation to a rotating frame
transformation of the differentials:

∂xµ

∂xνR
= Tµ

ν =

(
1 0
−v⃗ D(Ωt)

)
,

∂xµR
∂xν

= (T−1)µν =

(
1 0
v⃗R D

⊤(Ωt)

)
.

The derivatives of the spatial coordinates,

∂x⃗
∂t = ∂tD

⊤x⃗R = ∂tr e⃗r (φR − Ωt) = −Ωr e⃗φ(φ) ≡ −v⃗ ,

defines the speed v⃗ of a rotating point in the rotating frame,

The interval is invariant under the transformation,

ds2 = gµνdx
µdxν = ηµνdx

µ
Rdx

ν
R

where ηµν = diag(1,−1,−1,−1) is the metric of the resting system. This relation
defines the metric in the rotating frame,

gµνT
µ
µ′T ν

ν′ = ηµ′ν′ , gµν = (T−1)µ
′

µ(T
−1)ν

′

νηµ′ν′ ,

and we get the metric tensor in the rotating frame:

gµν =

(
1− v⃗2 −v⃗
−v⃗ −1

)
, gµν =

(
1 −v⃗
−v⃗ −1+ v⃗ ◦ v⃗

)
,

√
−g = 1.

This metric is flat: R... = 0
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from here, we represent the co- and contravariant background fields in the form,

Aµ
R =

(
AR 0(xR)

A⃗R(xR)

)
, Aµ=

(
AR 0(x)− v⃗ A⃗R(x)

−A⃗R(x)

)
, Aµ=

(
A

R 0(x)

−v⃗AR 0(x) + A⃗R(x)

)
.

We consider only the rotating frame (and drop the index ’R’). The derivatives in the
rotating frame are

∂µ =
∂

∂xµ
=

(
∂0
∇⃗

)
, ∂µ = gµν∂µ =

(
∂0 − v⃗∇⃗

−v⃗(∂0 − v⃗∇⃗)− ∇⃗

)
.

This way, we applied a passive transformation (alias) with a resting observer (field)
and a rotating frame. This is in distinction from an active transform (alibi), where
the frame is resting and the observer moving.

The covariant (’long’) derivative is defines by Dµ = ∂µ + iAµ =

(
∂0 + iA0

∇⃗ − i A⃗

)
,

In the rotating frame, we arrive at

Dµ =

(
D0

D⃗

)
,

D0 = ∂0 + iA0

D⃗ = ∇⃗ − i A⃗
, Dµ =

(
D0 − v⃗ D⃗

−v⃗(D0 − v⃗ D⃗)− D⃗

)
,

and DµD
µ = (D0 − v⃗ D⃗)2 − D⃗2 = |∂0 − v⃗∇⃗+ iA0|2 − |∇⃗ − i A⃗|2.
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The Lagrangian in the rotating frame
We consider a scalar field, Lϕ = (Dµϕ)

∗Dµϕ−m2|ϕ|2 − λ
2 |ϕ|

4.
Without background field, Klein-Gordon equation (without self-interaction) results,

((∂0 − v⃗ ∇⃗)2 −∆+m2)ϕ(x) = 0.

Making the ansatz ϕ(x) =
∑∞

l=−∞ e−iωl,nt+ilφJl(αr),

we get the one-particle energies in the form ωl,n = −Ωl +

√
m2 +

(
jl,n
R

)2
,

where jl,n are the zeros of the Bessel function Jl(z).
Note: Ωl reduces this energy, from jj,n ≳ l + l1/3 this is overcompensated (for
Ωr < 1) and the ωl,n stay real, allowing for the calculation of the vacuum energy of
the scalar field.

However, with a magnetic background A⃗(x) = e⃗φ
µ(r)
r , µ(r) = Br2

2 we get

Lϕ = ϕ(r)

(
(ω +Ωl)2 +∆r −

(
l − µ(r)

r

)2

−m2 − λ

2
ϕ(r)2

)
ϕ(r).

Here, the magnetic field may compensate the centrifugal term and an instability is
possible, see below the formation of a condensate (ne needs to keep the
self-interaction to get a stable condensate)
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The vacuum energy (Casimir effect) in a rotating frame

With the energies ωl,n = −Ωl +

√
m2 +

(
jl,n
R

)2
, we get the vacuum (ground state)

energy,

E0 =
µ2s

2

∞∑
l=−∞

∞∑
n=1

ω1−2s
l,n ,

where s is the regularization parameter, s → 0 at the end, and µ is the dimensional
parameter associated with this regularization.
The problem to be solved is the analytic continuation of E0 to s = 0. We proceed by
transforming the sum over n into an integral using

Φ(λ) = λ−lJl(λ)

as the mode generating function, Φ(jl,n) = 0, which is regular at λ = 0. We get

E0 =
1

2

∞∑
l=−∞

∫
γ

dλ

2πi
g (λ/R)1−2s ∂

∂λ
ln Φ(λ), g(λ) = −Ωl +

√
m2 + λ2,

where the integration path γ surrounds the real positive zeros of the mode
generating function Φ(λ).
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Calculation of the vacuum energy

Proceed by deformation of the integration contour to avoid oscillations,

im

-im

l
2

g

g
1

2 g

l
2

-

x x x

EA

EB

E0
ren
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Ω

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

E0
ren

then perform the renormalization.
Note: Since the background is flat, we have only the ’usual’ divergences from the
boundary (cylinder).
In the result, the rotation makes the vacuum energy more negative.
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Generation of a scalar vortex

Return to the case with the magnetic field, make the ansatz ϕ(x⃗) = e ilφ+ikzzϕ(r), get(
(Ωl)2 + ∂2

r +
1

r
∂r −

(l − µ(r))2

r2
−m2 − λϕ2(r)

)
ϕ(r) = 0, ϕ(R) = 0.

This is a relativistic generalization of the Gross-Pitaevskii equation. Energetically
more favorable is ω = 0 (static). This equation describes a condensate, in the sense

ϕ̂ = ϕ+ δϕ̂

The energy of the condensate is EGP = −λ
2

∫
d2x |ϕ|4, provided a non-zero solution

exists.
There is an approximation (linearization) by substituting λϕ(r)2 → ϵ2,(
(Ωl)2 + ∂2

r +
1
r ∂r −

(l−µ(r))2

r2 −m2 − ϵ2
)
ϕ(r) = 0.

The existence of non-zero solution for ϕ depends on the parameters
We consider two examples,

a thin flux tube, µ(r) = δϕ, B⃗ = lim
Rs→0

e⃗z
µ′(r)
r = e⃗zΦ δ2(x⃗(2)),

and a homogeneous field in the cylinder, µ(r) = Br2

2 , B⃗ = e⃗zB
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Thin flux tube

A ’thin’ flux tube: µ(r) = δϕ, B = e⃗zΦδ
2(x⃗), this is a flux tube in the limit of

vanishing radius(
−∂2

r −
1

r
∂r +

ν2

r2
− Ω̃2 + λϕ2(r)

)
ϕ(r) = 0, ν = |δΦ − l |,

energy for the thin flux tube
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Solution for thin flux tube

__ Ω

=0.25, ΩR=0.21

__ Ω

=0.59, ΩR=0.23

__ Ω

=1.04, ΩR=0.29
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For the thin flux tube, at ν = 0, the exact solutions ϕ(r) of the GP-like equation
(solid lines) and the solutions of the linearized equation (dashed lines) for several
values of the parameter ΩR, l = δΦ = 50, and R = 10,m = 1, λ = 1. The

dash-dotted line shows the approximate solution ϕappr (r) =
Ω̃√
λ
tanh

(
R−r√

2
Ω̃
)
. of the

GP-like equation. The dots indicate the mean radius.
In this example, the mean radius is quite far from the boundary and its influence may
be small.
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Another example
formation of a plateau

___________________________ Ω

=0.50, ΩR=0.23

___________________________ Ω

=1, ΩR=0.29

___________________________ Ω

=1.70, ΩR=0.40
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Figure: For the thin flux tube, at ν = 1, the exact solutions ϕ(r) of the GP-like equation
(solid lines), the solutions of the linearized equation (dashed lines) and the interpolating
solution (dot-dashed lines) for several values of the parameter ΩR, l = 49, δΦ = 50, and
R = 10,m = 1, λ = 1.
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An example with the homogeneous field inside the cylinder

exact solution

linearized solution
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Figure: The case of the magnetic field in the whole cylinder r ≤ R. The solutions ϕ(r) of
the exact equation (solid lines) and of the linearized equation, (dashed lines) for l = 45,
δΦ = 50 and ΩR = 0.45, 0.53, 0.62, correspondingly ϵ = 0.07, 1.33, 1.97, from bottom to
top. Other parameters are m = 1, R = 10 (in units of the pion mass).

Here the condensate function is concentrated near the surface, so that its influence
may be not small.
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The energy of the condensate
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Figure: For the magnetic field in the whole cylinder, the condensate energy density, EGP

πR2 ,

and E lin

πR2 , as functions of ΩR. The parameters are m = 1, R = 10, δϕ = 50 and l = 45. The

inset shows the dependence of Ω̃ and ϵ on ΩR.
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Different magnetic fields
A ’thin’ flux tube: µ(r) = δϕ, B = e⃗zΦδ

2(x⃗), this is a flux tube in the limit of
vanishing radius(

−∂2
r −

1

r
∂r +

ν2

r2
− Ω̃2 + λϕ2(r)

)
ϕ(r) = 0, ν = |δΦ − l |,

thin cylinder

full cylinder
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Conclusions

We studied rotation of a scalar field, having in mind possible applications to
heavy ion collisions and took parameters in terms of mπ.

We considered a passive transform to a rigidly rotating frame, taking the
magnetic field, considered as external, from a rest frame

To obey the causality condition Ωr ≤ 1 we introduced Dirichlet boundary
conditions at r = R with ΩR < 1. We discussed the influence of the boundary
on the results.

We calculated the vacuum energy resulting from rotation, it is negative.

For the solution of the (nonlinear) Gross-Pitaevskii equation we used a
linearized version, an approximate solution and direct numerical methods.

The condensate energy shows a minimum at orbital momenta close to the flux.

Smaller flux tube has larger condensate (at equal flux).

To do: account for the backreaction

To do: consider relativistic rotation
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Thank you for attention.
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