Generation of a scalar vortex in a rotating frame

M. Bordag, D.N. Voskresensky, I.G. Pirozhenko

JINR Dubna, Leipzig university

based on

M. Bordag and D. N. Voskresensky. Generation of a scalar vortex in a rotational frame, 2025. arXiv 2507.10791

M. Bordag and I. G. Pirozhenko. Casimir effect for scalar field rotating on a disk. *Europhys. Lett.*, 150:52001, 2025

- Rotation
- Rotating frames
- Fields in a rotating frame
- Lagrangian with rotation
- Gross-Pitaevskii-like equation for a scalar field
- Formation of a condensate

Rotation is ubiquitous

- we rotate (together with the earth)
- planets rotate
- contracting matter tends to rotation (e.g. Kerr black hole)
- in heavy ion collisions: plasma rotates
- superfluids rotate through the formation of quantized vortices
- on lattice rotation is a mean of exploring

There are many more examples

in QFT: rotating fields

What is a rotating field? it is to some extend similar to a rotating rigid body Consider the formalism: transformation of coordinates

$$t = t_R$$
, $r = r_R$, $\varphi = \varphi_R - \Omega t$, $z = z_R$.

speed of a rotating point: $\vec{v} = \vec{\omega} \times \vec{x}$, where $\vec{\omega} = \vec{e_z} \Omega$, $\vec{x} = \vec{e_r} r$ so, $v = \Omega r$, but what happens for large r? \rightarrow transformation is non-relativistic way out: restrict space by boundary condition, e.g., $\phi(R) = 0$ with $\Omega R < 1$.

no need to do that in non-relativistic physics, e.g. in laboratory on earth but if considering a relativistic field?

better way out [1], (1922)

$$t = t_R \cosh\left(\frac{\Omega r}{c}\right) - \frac{r\varphi_R}{c} \sinh\left(\frac{\Omega r}{c}\right), \quad r = r_R, \quad \varphi = -\frac{ct}{r} \sinh\left(\frac{\Omega r}{c}\right) + \varphi_R \cosh\left(\frac{\Omega r}{c}\right)$$

we have a Gallilei-like transform vs. a Lorentz-like transform of the angle However, that is technically more involved and not yet well explored

[1] Philip Franklin. The Meaning of Rotation in the Special Theory of Relativity. Proceedings of the National Academy of Sciences of the United States of America, 8(9):265–268, 1922

Transformation to a rotating frame

transformation of the differentials:

$$\frac{\partial x^{\mu}}{\partial x_{R}^{\nu}} = T^{\mu}{}_{\nu} = \begin{pmatrix} 1 & 0 \\ -\vec{v} & \mathbf{D}(\Omega t) \end{pmatrix}, \qquad \frac{\partial x_{R}^{\mu}}{\partial x^{\nu}} = (T^{-1})^{\mu}{}_{\nu} = \begin{pmatrix} 1 & 0 \\ \vec{v}_{R} & \mathbf{D}^{\top}(\Omega t) \end{pmatrix}.$$

The derivatives of the spatial coordinates,

$$\frac{\partial \vec{x}}{\partial t} = \partial_t \mathbf{D}^{\top} \vec{x}_R = \partial_t r \vec{e}_r (\varphi_R - \Omega t) = -\Omega r \vec{e}_{\varphi} (\varphi) \equiv -\vec{v},$$

defines the speed \vec{v} of a rotating point in the rotating frame,

The interval is invariant under the transformation,

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = \eta_{\mu\nu}dx_R^{\mu}dx_R^{\nu}$$

where $\eta_{\mu\nu}={\rm diag}(1,-1,-1,-1)$ is the metric of the resting system. This relation defines the metric in the rotating frame,

$$g_{\mu\nu}T^{\mu}{}_{\mu'}T^{\nu}{}_{\nu'} = \eta_{\mu'\nu'}, \quad g_{\mu\nu} = (T^{-1})^{\mu'}{}_{\mu}(T^{-1})^{\nu'}{}_{\nu}\eta_{\mu'\nu'},$$

and we get the metric tensor in the rotating frame:

$$g_{\mu
u}=\left(egin{array}{cc} 1-ec{v}^2 & -ec{v} \ -ec{v} & -\mathbf{1} \end{array}
ight), \quad g^{\mu
u}=\left(egin{array}{cc} 1 & -ec{v} \ -ec{v} & -\mathbf{1} + ec{v} \circ ec{v} \end{array}
ight), \quad \sqrt{-g}=1.$$

This metric is flat: R = 0

 $A_{R}^{\mu} = \begin{pmatrix} A_{R\,0}(x_{R}) \\ \vec{A}_{R}(x_{R}) \end{pmatrix}, \ A_{\mu} = \begin{pmatrix} A_{R\,0}(x) - \vec{v}\vec{A}_{R}(x) \\ -\vec{A}_{R}(x) \end{pmatrix}, \ A^{\mu} = \begin{pmatrix} A_{R\,0}(x) \\ -\vec{v}A_{R\,0}(x) + \vec{A}_{R}(x) \end{pmatrix}$

from here, we represent the co- and contravariant background fields in the form,

rotating frame are $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \begin{pmatrix} \partial_{0} \\ \vec{\nabla} \end{pmatrix}, \qquad \partial^{\mu} = g^{\mu\nu}\partial_{\mu} = \begin{pmatrix} \partial_{0} - \vec{v}\vec{\nabla} \\ -\vec{v}(\partial_{0} - \vec{v}\vec{\nabla}) - \vec{\nabla} \end{pmatrix}.$

We consider only the rotating frame (and drop the index 'R'). The derivatives in the

the frame is resting and the observer moving. The covariant ('long') derivative is defines by $D_{\mu} = \partial_{\mu} + iA_{\mu} = \begin{pmatrix} \partial_0 + iA_0 \\ \vec{\nabla} - i\vec{A} \end{pmatrix}$,

The covariant (long) derivative is defines by
$$D_{\mu} = \partial_{\mu} + iA_{\mu} = (\vec{\nabla} - i\vec{A})$$
. In the rotating frame, we arrive at

In the rotating frame, we arrive at
$$\begin{pmatrix}
\nabla - iA \\
\end{pmatrix}$$

 $D_{\mu} = \begin{pmatrix} D_0 \\ \vec{D} \end{pmatrix}, \qquad \begin{array}{c} D_0 = \partial_0 + iA_0 \\ \vec{D} = \vec{\nabla} - i\vec{A} \end{array}, \qquad D^{\mu} = \begin{pmatrix} D_0 - \vec{v}\vec{D} \\ -\vec{v}(D_0 - \vec{v}\vec{D}) - \vec{D} \end{pmatrix},$

and $D_{\mu}D^{\mu} = (D_0 - \vec{v}\vec{D})^2 - \vec{D}^2 = |\partial_0 - \vec{v}\vec{\nabla} + iA_0|^2 - |\vec{\nabla} - i\vec{A}|^2$.

The Lagrangian in the rotating frame

We consider a scalar field, $\mathcal{L}_{\phi} = (D_{\mu}\phi)^*D^{\mu}\phi - m^2|\phi|^2 - \frac{\lambda}{2}|\phi|^4$.

Without background field, Klein-Gordon equation (without self-interaction) results,

$$((\partial_0 - \vec{v}\,\vec{\nabla})^2 - \Delta + m^2)\phi(x) = 0.$$

Making the ansatz $\phi(x) = \sum_{l=-\infty}^{\infty} e^{-i\omega_{l,n}t+il\varphi} J_l(\alpha r)$, we get the one-particle energies in the form $\omega_{l,n} = -\Omega l + \sqrt{m^2 + \left(\frac{j_{l,n}}{R}\right)^2}$, where $j_{l,n}$ are the zeros of the Bessel function $J_l(z)$.

Note: ΩI reduces this energy, from $j_{j,n} \gtrsim I + I^{1/3}$ this is overcompensated (for $\Omega r < 1$) and the $\omega_{l,n}$ stay real, allowing for the calculation of the vacuum energy of the scalar field.

However, with a magnetic background $\vec{A}(x) = \vec{e}_{\varphi} \frac{\mu(r)}{r}, \quad \mu(r) = \frac{Br^2}{2}$ we get

$$\mathcal{L}_{\phi} = \phi(r) \left((\omega + \Omega I)^2 + \Delta_r - \left(\frac{I - \mu(r)}{r} \right)^2 - m^2 - \frac{\lambda}{2} \phi(r)^2 \right) \phi(r).$$

Here, the magnetic field may compensate the centrifugal term and an instability is possible, see below the formation of a condensate (ne needs to keep the self-interaction to get a stable condensate)

The vacuum energy (Casimir effect) in a rotating frame

With the energies $\omega_{I,n} = -\Omega I + \sqrt{m^2 + \left(\frac{j_{I,n}}{R}\right)^2}$, we get the vacuum (ground state) energy,

$$E_0 = \frac{\mu^{2s}}{2} \sum_{l=-\infty}^{\infty} \sum_{n=1}^{\infty} \omega_{l,n}^{1-2s},$$

where s is the regularization parameter, $s \to 0$ at the end, and μ is the dimensional parameter associated with this regularization.

The problem to be solved is the analytic continuation of E_0 to s=0. We proceed by transforming the sum over n into an integral using

$$\Phi(\lambda) = \lambda^{-I} J_I(\lambda)$$

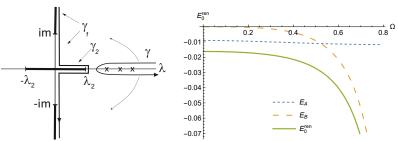
as the mode generating function, $\Phi(j_{l,n}) = 0$, which is regular at $\lambda = 0$. We get

$$E_0 = rac{1}{2} \sum_{i=1}^{\infty} \int_{\Omega} rac{d\lambda}{2\pi i} \, g\left(\lambda/R
ight)^{1-2s} rac{\partial}{\partial \lambda} \ln \Phi(\lambda), \;\; g(\lambda) = -\Omega I + \sqrt{m^2 + \lambda^2},$$

where the integration path γ surrounds the real positive zeros of the mode generating function $\Phi(\lambda)$.

Calculation of the vacuum energy

Proceed by deformation of the integration contour to avoid oscillations,



then perform the renormalization.

Note: Since the background is flat, we have only the 'usual' divergences from the boundary (cylinder).

In the result, the rotation makes the vacuum energy more negative.

Generation of a scalar vortex

Return to the case with the magnetic field, make the ansatz $\phi(\vec{x}) = e^{il\varphi + ik_zz}\phi(r)$, get

$$\left((\Omega I)^2 + \partial_r^2 + \frac{1}{r}\partial_r - \frac{(I - \mu(r))^2}{r^2} - m^2 - \lambda\phi^2(r)\right)\phi(r) = 0, \quad \phi(R) = 0.$$

This is a relativistic generalization of the Gross-Pitaevskii equation. Energetically more favorable is $\omega=0$ (static). This equation describes a condensate, in the sense

$$\hat{\phi} = \phi + \delta \hat{\phi}$$

The energy of the condensate is $E_{GP}=-\frac{\lambda}{2}\int d^2x\ |\phi|^4$, provided a non-zero solution exists.

There is an approximation (linearization) by substituting
$$\lambda\phi(r)^2 \to \epsilon^2$$
, $\left((\Omega I)^2 + \partial_r^2 + \frac{1}{r}\partial_r - \frac{(I-\mu(r))^2}{r^2} - m^2 - \epsilon^2\right)\phi(r) = 0$.

The existence of non-zero solution for ϕ depends on the parameters We consider two examples,

a thin flux tube, $\mu(r) = \delta_{\phi}$, $\vec{B} = \lim_{R_s \to 0} \vec{e}_z \frac{\mu'(r)}{r} = \vec{e}_z \Phi \delta^2(\vec{x}_{(2)})$,

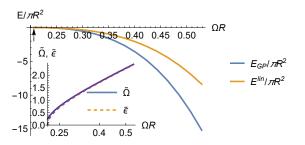
and a homogeneous field in the cylinder, $\mu(r)=rac{Br^2}{2}$, $ec{B}=ec{e_z}B$

Thin flux tube

A 'thin' flux tube: $\mu(r) = \delta_{\phi}$, $B = \vec{e}_z \Phi \delta^2(\vec{x})$, this is a flux tube in the limit of vanishing radius

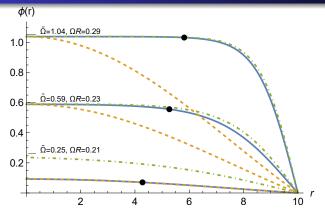
$$\left(-\partial_r^2 - \frac{1}{r}\partial_r + \frac{\nu^2}{r^2} - \tilde{\Omega}^2 + \lambda \phi^2(r)\right)\phi(r) = 0, \qquad \nu = |\delta_{\Phi} - I|,$$

energy for the thin flux tube



Solution for thin flux tube

be small.



(solid lines) and the solutions of the linearized equation (dashed lines) for several values of the parameter ΩR , $I=\delta_{\Phi}=50$, and $R=10, m=1, \lambda=1$. The dash-dotted line shows the approximate solution $\phi_{appr}(r)=\frac{\tilde{\Omega}}{\sqrt{\lambda}}\tanh\left(\frac{R-r}{\sqrt{2}}\tilde{\Omega}\right)$. of the GP-like equation. The dots indicate the mean radius.

In this example, the mean radius is quite far from the boundary and its influence may

For the thin flux tube, at $\nu = 0$, the exact solutions $\phi(r)$ of the GP-like equation

11 / 17

Another example

formation of a plateau

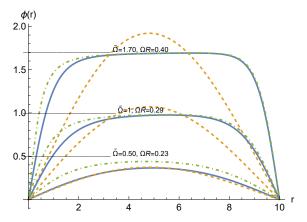


Figure: For the thin flux tube, at $\nu=1$, the exact solutions $\phi(r)$ of the GP-like equation (solid lines), the solutions of the linearized equation (dashed lines) and the interpolating solution (dot-dashed lines) for several values of the parameter ΩR , I=49, $\delta_{\Phi}=50$, and R=10, m=1, $\lambda=1$.

An example with the homogeneous field inside the cylinder

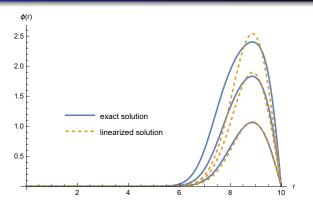


Figure: The case of the magnetic field in the whole cylinder $r \leq R$. The solutions $\phi(r)$ of the exact equation (solid lines) and of the linearized equation, (dashed lines) for l=45, $\delta_{\Phi}=50$ and $\Omega R=0.45, 0.53, 0.62$, correspondingly $\epsilon=0.07, 1.33, 1.97$, from bottom to top. Other parameters are m=1, R=10 (in units of the pion mass).

Here the condensate function is concentrated near the surface, so that its influence may be not small.

The energy of the condensate

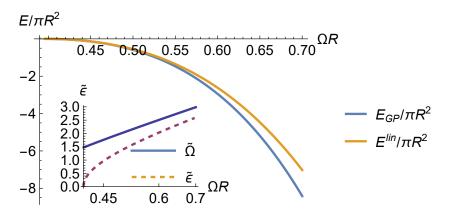
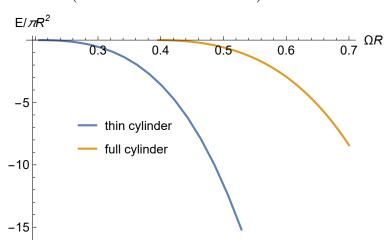


Figure: For the magnetic field in the whole cylinder, the condensate energy density, $\frac{E^{GP}}{\pi R^2}$, and $\frac{E^{lin}}{\pi R^2}$, as functions of ΩR . The parameters are m=1, R=10, $\delta_{\phi}=50$ and l=45. The inset shows the dependence of $\tilde{\Omega}$ and ϵ on ΩR .

Different magnetic fields

A 'thin' flux tube: $\mu(r) = \delta_{\phi}$, $B = \vec{e}_z \Phi \delta^2(\vec{x})$, this is a flux tube in the limit of vanishing radius

$$\left(-\partial_r^2 - \frac{1}{r}\partial_r + \frac{\nu^2}{r^2} - \tilde{\Omega}^2 + \lambda \phi^2(r)\right)\phi(r) = 0, \qquad \nu = |\delta_{\Phi} - I|,$$



Conclusions

- We studied rotation of a scalar field, having in mind possible applications to heavy ion collisions and took parameters in terms of m_{π} .
- We considered a passive transform to a rigidly rotating frame, taking the magnetic field, considered as external, from a rest frame
- To obey the causality condition $\Omega r \leq 1$ we introduced Dirichlet boundary conditions at r=R with $\Omega R < 1$. We discussed the influence of the boundary on the results.
- We calculated the vacuum energy resulting from rotation, it is negative.
- For the solution of the (nonlinear) Gross-Pitaevskii equation we used a linearized version, an approximate solution and direct numerical methods.
- The condensate energy shows a minimum at orbital momenta close to the flux.
- Smaller flux tube has larger condensate (at equal flux).
- To do: account for the backreaction
- To do: consider relativistic rotation

Thank you for attention.