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Rotation is ubiquitous

we rotate (together with the earth)

planets rotate

contracting matter tends to rotation (e.g. Kerr black hole)

in heavy ion collisions: plasma rotates

superfluids rotate through the formation of quantized vortices

on lattice - rotation is a mean of exploring

There are many more examples
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in QFT: rotating fields

What is a rotating field?
it is to some extend similar to a rotating rigid body
Consider the formalism: transformation of coordinates

t = tg, r=rg, p = pr—Qt, zZ = ZzR.
speed of a rotating point: vV =& X X, where & = €,Q, X = &r
so, v = Qr, but what happens for large r? — transformation is non-relativistic
way out: restrict space by boundary condition, e.g., ¢(R) = 0 with QR < 1.

no need to do that in non-relativistic physics, e.g. in laboratory on earth but if
considering a relativistic field?

better way out [1], (1922)

t = tgcosh (&) — & sinh (L), r=rg, ¢ =—%sinh (L) + pgcosh ()
we have a Gallilei-like transform vs. a Lorentz-like transform of the angle
However, that is technically more involved and not yet well explored

[1] Philip Franklin. The Meaning of Rotation in the Special Theory of Relativity.
Proceedings of the National Academy of Sciences of the United States of America, 8(9):265-268, 1922
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Transformation to a rotating frame

transformation of the differentials:

OxH 1 0 Oxh _ 1 0
— TH — R L V-
g = = < _7 D) > o~ (T ( 7 DT(QH) )

The derivatives of the spatial coordinates,

= 9D g = Oré(pr—Qt) = —Qré,(p) = -V,

defines the speed V of a rotating point in the rotating frame,
The interval is invariant under the transformation,
ds® = gy, dx*dx” = 1, dxhdxp

where 7, = diag(1l, —1, -1, —1) is the metric of the resting system. This relation
defines the metric in the rotating frame,

’

8uv TIL/V T, = Nuv's  Buv = (Tﬁl)ﬂ M(Til)u v’y

and we get the metric tensor in the rotating frame:

1-? -7 1
_ pro_ s —
gﬂ"( v —1>’ & (-7 —1+\707)’ vee=1

This metricis flat: R =0
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from here, we represent the co- and contravariant background fields in the form,

u_ ( Aro(xr) [ Arol(x )*VAR( ) b Arol)
=R ) A“‘( ~Ar(x) ) Y= oL ) )

We consider only the rotating frame (and drop the index 'R’). The derivatives in the
rotating frame are

— 8 — 80 Mmoo Ny _ 307\76
a“_axu_(ﬁ)’ o =e a“‘(-ﬁ(ao—ﬁ)—ﬁ '

This way, we applied a passive transformation (alias) with a resting observer (field)
and a rotating frame. This is in distinction from an active transform (alibi), where
the frame is resting and the observer moving.

. . o + iA
The covariant ('long’) derivative is defines by D, = 0, + iA, = ( o + Ao ) ’

vV —iA
In the rotating frame, we arrive at

p,—( 2 Do = 0o + i DH — Do — vD
o D )’ D=V -iA "’ ~(Dy—vD)—D |’

and D,D* = (Do — VD)2 — D2 = |3y — vV + iAol — |V — iA]2.
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The Lagrangian in the rotating frame

We consider a scalar field, L4 = (D,,¢)*D"¢ — m?|¢|> — 5 |o[*.
Without background field, Klein-Gordon equation (without self-interaction) results,

(90 = VV)* = A+ mP)d(x) = 0.

Making the ansatz ¢(x) = > ;= e ™“ttile Ji(ar),

N2
we get the one-particle energies in the form w; , = —=Q/ 4/ m? + (%) ,

where ji , are the zeros of the Bessel function Ji(z).
Note: Q/ reduces this energy, from jj , 2 | + I*/3 this is overcompensated (for
Qr < 1) and the wy, stay real, allowing for the calculation of the vacuum energy of
the scalar field.
Al Br?

However, with a magnetic background A(x) = &, ulr) p(r) = 5 we get

1= u(r)\? A
Ly = o(r) ((w + Q2 A, - (f()) —m - 2¢(r)2> o(r).
Here, the magnetic field may compensate the centrifugal term and an instability is
possible, see below the formation of a condensate (ne needs to keep the
self-interaction to get a stable condensate)
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The vacuum energy (Casimir effect) in a rotating frame
/ N2
With the energies w; , = —Q/ + {/ m? + (J%) , we get the vacuum (ground state)

energy,

125

|=—o00 n=1

where s is the regularization parameter, s — 0 at the end, and p is the dimensional
parameter associated with this regularization.

The problem to be solved is the analytic continuation of Eg to s = 0. We proceed by
transforming the sum over n into an integral using

d(A) = 110N

as the mode generating function, ®(jj ,) = 0, which is regular at A = 0. We get

1 252 _ 2 2
-3 Z /27” (), g(\) = —Qf + v/m? + 22,

oA

where the integration path - surrounds the real positive zeros of the mode
generating function ®(\).
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Calculation of the vacuum energy

Proceed by deformation of the integration contour to avoid oscillations,

.~ £
“y ‘ o
m ! 0.2 0.4 0.6 0.8
¥ . L e S
/Yz Y
S/ -0.02F
— A
2 A -0.03F
] 7"2 ,,/ -0.04F
. /
-im S -005F  ==e-- Ep
-0.06} Es
-0.07F &

then perform the renormalization.

Note: Since the background is flat, we have only the "usual’ divergences from the
boundary (cylinder).
In the result, the rotation makes the vacuum energy more negative.
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Generation of a scalar vortex

Return to the case with the magnetic field, make the ansatz ¢(X) = e”#+k2¢(r), get

((Q/)2 + 9% + %a, — (/_:“‘72“))2 —m? - )\¢2(r)) #(r)=0, ¢(R)=0.

This is a relativistic generalization of the Gross-Pitaevskii equation. Energetically
more favorable is w = 0 (static). This equation describes a condensate, in the sense

$=0¢+09

The energy of the condensate is Egp = —% J d’x |¢|*, provided a non-zero solution
exists.
There is an approximation (linearization) by substituting A¢(r)? — €2,

(@02 + 02 + Lo, - T — 2 — 2) 6(r) = 0.

The existence of non-zero solution for ¢ depends on the parameters
We consider two examples,

hin fl — by, B= lim &) — g
a thin flux tube, p(r) = dy, Aim, & 5%(X2)),

r

and a homogeneous field in the cylinder, u(r) = BT, B=g¢,B
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Thin flux tube

A 'thin’ flux tube: u(r) = d4, B = €,$4°(x), this is a flux tube in the limit of
vanishing radius

2
(—83 — %ar + % - 0%+ A¢2(r)) o(r) =0, v=|6e — I,

energy for the thin flux tube

— Egpl iR?
E/in / /7R2
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Solution for thin flux tube

@(r)
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For the thin flux tube, at v = 0, the exact solutions ¢(r) of the GP-like equation
(solid lines) and the solutions of the linearized equation (dashed lines) for several
values of the parameter QR, | = d¢ =50, and R=10,m=1,A=1. The

dash-dotted line shows the approximate solution ¢,ppr(r) = £ tanh (R”Q) . of the

VA V2
GP-like equation. The dots indicate the mean radius.

In this example, the mean radius is quite far from the boundary and its influence may

be small.
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Another example

formation of a plateau
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Figure: For the thin flux tube, at v = 1, the exact solutions ¢(r) of the GP-like equation
(solid lines), the solutions of the linearized equation (dashed lines) and the interpolating
solution (dot-dashed lines) for several values of the parameter QR, | = 49, §» = 50, and
R=100m=1)=1.
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An example with the homogeneous field inside the cylinder

@(r)

251

20+

exact solution

linearized solution
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Figure: The case of the magnetic field in the whole cylinder r < R. The solutions ¢(r) of
the exact equation (solid lines) and of the linearized equation, (dashed lines) for | = 45,
0o = 50 and QR = 0.45,0.53,0.62, correspondingly e = 0.07,1.33,1.97, from bottom to
top. Other parameters are m =1, R = 10 (in units of the pion mass).

Here the condensate function is concentrated near the surface, so that its influence

may be not small.
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The energy of the condensate
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Figure: For the magnetic field in the whole cylinder, the condensate energy density, el
and f—:;, as functions of QR. The parameters are m =1, R =10, §4 = 50 and / = 45. The

inset shows the dependence of ) and € on QR.

14/17



Different magnetic fields

A 'thin’ flux tube: u(r) = d4, B = €,$°(x), this is a flux tube in the limit of
vanishing radius

2
(—8,2—18,+i2—§~22+)\¢2(r)> o(r) =0, v = — |,

-15+

05 0.6 0.7

= thin cylinder

full cylinder
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Conclusions

@ We studied rotation of a scalar field, having in mind possible applications to
heavy ion collisions and took parameters in terms of m,.

@ We considered a passive transform to a rigidly rotating frame, taking the
magnetic field, considered as external, from a rest frame

@ To obey the causality condition Qr < 1 we introduced Dirichlet boundary
conditions at r = R with QR < 1. We discussed the influence of the boundary
on the results.

@ We calculated the vacuum energy resulting from rotation, it is negative.

For the solution of the (nonlinear) Gross-Pitaevskii equation we used a
linearized version, an approximate solution and direct numerical methods.

The condensate energy shows a minimum at orbital momenta close to the flux.
Smaller flux tube has larger condensate (at equal flux).

To do: account for the backreaction

To do: consider relativistic rotation
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Thank you for attention.
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