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Motivation



Holography states that the on-shell value of the supergravity action in AdS(d+1) is

equated with the generating functional of composite operators in CFTd

e−SAdS(ϕ)|limz→0(ϕ(x,z)z∆−d)=ϕ0(x)
= ⟨e

∫
ddxϕ(0)O(x)⟩CFT ,

where ϕ(0) is a d-dim. field is a boundary value of a (d+ 1)-dim. field ϕ, an operator

O on the field theory side with the conformal dimension ∆.

Maldacena’97,Witten’98, Gubser,Klebanov,Polyakov’98

• Holographic renormalization, RG flows: systematic removing the divergences and

identifying the finite expressions, implies a careful analysis near the boundary.

Akhmedov’98; de Boer et.al’98; Skenderis’99, de Haro et.al.’99

Papadimitriou&Skenderis’04

The asymptotically AdS/dS metric (the domain wall) Skenderis’99, de Haro et.al.’99

ds2 = e2A(w)ηijdx
idxj + dw2, ϕ = ϕ(w)

• Holographic QGP, holographic RG flows Policastro et. al.’15

Aref’eva&Rannu’18,Aref’eva’19

• Irrelevant deformations, in particular , T T̄ -deformations Chang,Ferko&Sethi’23

• Thermal holography Witten’98

• Black hole interior Hartnoll et.al.’20, Caceres et al.’23

• de Sitter holography Witten’01,Strominger’01, Maldacena’03
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Thermal holographic RG flow

• Thermal states correspond to asymptotically AdS black hole geometries

The ansatz for the metric and the scalar field

ds2 = e2A(w)
(
−f(w)dt2 + dx⃗2

)
+

dw2

f(w)
, ϕ = ϕ(w)

The Hawking temperature TH is (dual to T of a dual field theory Witten’98)

TH =
eA(wh)

4π

∣∣∣ df
dw

∣∣∣|w=wh .

• The conformal symmetry restores near asymptotical regions, which correspond to

fixed points (at the same time, the asymptotic regions correspond to extrema of

the scalar potential)

• Imposing boundary conditions on the field content ( for example, Dirichlet b.c.

indicate that the derivative with respect to the radial variable is asymptotically

identified with the dilatation operator of the dual field theory)

• Assuming appropriate b.c. Hamiltonian flow equations, which follow from the

gravity action, can be brought to the form of the Callan-Symanzik equation for

the generating function (de Boer, Verlinde,Verlinde’98)

• eA – measures the field theory energy scale; ϕ(w) identifies with the running

coupling along the flow; the β-function of the operator

β =
dλ

d logE
|QFT =

dϕ

dA
Holo
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Trunced supergravity model



3d N = 2 supergravity action

The supergravity model includes a graviton e a
µ , a gravitini ψµ, a gauge field Aµ and

N = 2 multiplet (n scalar fields ϕα and n fermions λr)

Deger, Kaya, Sezgin, Sundell (2000)

The bosonic part of the Lagrangian with a complex scalar Φ (modulus |ϕ|, phase θ), it
parametrizes the coset space SU(1,1)

U(1)
= H2

e−1L =
1

4
R−

e−1

16ma4
ϵµνρAµ∂νAρ −

|DµΦ|2

a2(1− |Φ|2)
− V (Φ),

where e = det e a
µ , DµΦ = (∂µ + iAµ)Φ, −4m2 is the AdS3 cosmological constant, a

the curvature of the scalar manifold. V (Φ) is given by

V (Φ) = 2m2C2
(
2a2|S|2 − C2

)
C =

1 + |Φ|2

1− |Φ|2
, S =

2Φ

1− |Φ|2
.

Introducing the following redefinition of the scalar field

C ≡ coshϕ , |S| ≡ sinhϕ

allows us to come to

e−1L =
1

4
R−

e−1

a4
ϵµνρAµ∂νAρ−

1

4a2
∂µϕ∂

µϕ−
1

4a2
|S|2(∂µθ+Aµ)(∂

µθ+Aµ)−V (ϕ).
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The 3d truncated supergravity action with H2

The truncated action (θ = 0, Aµ = 0) is given by

S =
1

16πG3

∫
d3x
√

|g|
(
R−

1

a2
(∂ϕ)2 − V (ϕ)

)
+ G.H.

The potential of the scalar field V (ϕ) is

V (ϕ) = 2Λuv cosh2 ϕ
[
(1− 2a2) cosh2 ϕ+ 2a2

]
,

where Λuv < 0 is a cosmological constant, a is a constant (the curvature of the scalar

target space M), 0 < a2 < 1.

3d N = 2 gauged supregravity with H2: Deger’02, AG&Usova’22, Arkhipova et al.’24,

AG,Nikolaev&Podoinitsyn’24, AG,Gourgoulhon&Podoinitsyn’24,

Gutperle&Hultgreen-Mena’24 (Janus flows)

5



The behaviour of the dilaton potential with respect to a2

Figure 1: The dependence of the dilaton potential V (ϕ)

for different a2 : light blue curve – a2 = 0.25, rose curve -

a2 = 0.5

Figure 2: The dependence of the dilaton potential V (ϕ)

for different a2 orange curve – a2 = 0.8; blue curve -

a2=1

ϕ1 = 0, ϕ2,3 =
1

2
ln

(
1 ± 2|a|

√
1 − a2

2a2 − 1

)
.

a2 > 1
2

the scalar potential has also zeroes:

ϕ± = ± cosh
−1

 a√
a2 − 1

2

 .

Extrema of V (ϕ) – UV/IR fixed points (CFT) of RG flows, AdS geometries.

V (ϕ) → ∞ – scaling fixed points, scaling geometries, if Gubser’s bound is ok.
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The conformal dimension of the operator

Holographic RG flows can be associated with deformations of CFT induced in two

ways: either by a relevant operator or by non-zero VEV of a scalar operator.

Near ϕ1 = 0 (Usova&AG’23, Musaev et. al.’24)

V = −2m2 + 4m2(a2 − 1)ϕ2 +O(ϕ3),

while near the other extrema ϕ = ϕ2,3

V = −
2a4m2

2a2 − 1
−

8a2(a2 − 1)m2

2a2 − 1
(ϕ− ϕ2,3)

2 +O(ϕ3).

General solution for the scalar field near extrema

ϕ = ϕ−e
−∆−w + ϕ+e

−∆+w, w → +∞,

ϕ− and ϕ+ are related to the source and to the VEV of the dual operator ⟨O⟩.

ϕ1 : ∆± = 1± |1− 2a2|, ϕ2,3 : ∆± = 1±

√
1 +

8a4(1− a2)

2a2 − 1
,

For ϕ1 = 0 with 0 < a2 < 1 we have 1 ≤ ∆+ < 2 and 0 < ∆− < 1. The scale factor

A(w) ∼ w (as w → ∞) near the boundary.
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3d autonomous dynamical
systems,thermal flows f ̸= 1



The autonomous dynamical system

• Gukov (2016), Kuipers,Gursoy,Kuznetsov’(2018) E.Kiritsis et.al (2024)

New variables (Kiritsis et.al.’08’14-’19,Aref’eva,Policastro,AG’19):

X =
dϕ

dA
=
ϕ̇

Ȧ
, Y =

dg

dA
=

ġ

Ȧ
, z =

1

1 + eϕ
, z ∈ [0, 1] as ϕ ∈ (−∞;∞).

Then the equations of motion are brought to the dynamical system on R3

dz

dA
= z(z − 1)X,

dX

dA
=

(
X2

a2
− Y − 2

)(
X + C(z,a)

)
,

dY

dA
= Y

(
X2

a2
− Y − 2

)
,

where

C(z,a) :=
a2

2

Vϕ

V
,

Vϕ

V
=

4
((
1− 2a2

) (
(z − 1)8 − z8

)
− 2z6(z − 1)2 + 2z2(z − 1)6

)
(2(z − 1)z + 1)2 ((2(z − 1)z + 1)2 − 2a2(1− 2z)2)

.

a) T = 0 ⇔ Y = 0, b) T ̸= 0 ⇔ Y → ∞.
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The dynamical system in the cylinder, (SUGRA with H2)

The initial conditions

z = [z1 − δ, z1 + δ] x = 0, y = 1− ε,

y

z

x

Figure 3: AG,Nikolaev&Podoinitsyn (2024), AG,Gougoulhon&Podoinitsyn (2024)
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Figure 4: Numerical solutions, exact solutions, critical sets, regular and singular points of the 3d

dynamical system with a2 = 0.8 in the unit cylinder. Numerical trajectories are: p̄1,2,3 − p1,2,3

(shown by gray), p̄2,3 − p1 (shown by blue), p̄2 − g2, p̄3 − g4 (both shown by green), numerical

solutions from 2(b) (both shown by olive). The exact solutions p1 − p4 and its mirror image

p1 − p7 are shown by thick orange curves (solid and dashed,

correspondingly).AG,Nikolaev&Podoinitsyn (2024), AG,Gougoulhon&Podoinitsyn (2024)
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Solutions from near the horizon to
the boundary



The additional condition

X2 ∼ 0.

Figure 5: The numerical trajectories of the dynamical systems in the cylinder for a2 = 0.25.
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The solutions can be obtained using an additional condition

X2 ∼ 0.

The constraint corresponds to a slowly changing scalar field. EOMs come to the form

dz

dA
= z(z − 1)X, (1)

dX

dA
= − (Y + 2)

(
X +

a2

2

Vϕ

V

)
, (2)

dY

dA
= −Y (Y + 2) . (3)

Near the horizon, Y → ∞
Y (A) =

2

e2(A−Ah) − 1
.

Expansion of the potential near an extremum

a2

2

Vϕ(ϕ)

V (ϕ)

∣∣∣
ϕh

= Λ(h) + K(h)(ϕ− ϕh),

Λ(h) =
a2

2

Vϕ(ϕh)

V (ϕh)
, ∆(h) =

a2

2

Vϕϕ(ϕh)

V (ϕh)
, K(h) =

(
∆(h) −

2

a2

(
Λ(h)

)2)
.

Returning from z to ϕ the other two equations can be represented as

r(1− r)
d2Φ(r)

dr2
+ (1− 2r)

dΦ(r)

dr
−

K(h)

2
Φ(r) = 0,

where

Φ := ϕ− ϕh +
Λ(h)

K(h)
, r = exp 2(A−Ah),
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The regular singular points r = 1 and r = ∞ correspond to the near-horizon and

boundary regions, respectively.

The solution for the scalar field near the horizon reads off from the fundamental

solution near r = 1

Φ(r) = 2F1(ah, 1− ah, 1, 1− r) , ah =
1

2

(
1−

√
1− 2K(h)

)
.

The solution is finite in the region from r = 1 to r = ∞.

The scale factor due to the constraint is

Ä = 0 ⇒ A = cAw + c2, cA =

√
−
V (ϕh)

2
, c2 = 0.

The blackness function is f =
(
1− e−2cA(w−wh)

)
. The scalar field takes the form

ϕ = ϕh + 2F1

(
1−

√
1− 2∆(h)

2
,
1 +

√
1− 2∆(h)

2
, 1, 1− ecA(w−wh)

)
.

The constraint brings us that the metric of the solution matches with the metric of

the non-rotating BTZ black hole . This is valid for solutions near ϕ1 = 0, with

1 ≤ ∆+ < 2. (”light operators”) Near ϕ2,3, we have ∆+ > 2.
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The asymptotics near the boundary

ϕ = ϕh + 2F1

(
1−

√
1− 2∆(h)

2
,
1 +

√
1− 2∆(h)

2
, 1, 1− ecA(w−wh)

)
.

near the boundary r → ∞ with Λ(h) ∼ 0. The expansion r → +∞ leads to

ϕA→∞ ≃
Γ(∆− − 1)

Γ(
∆−
2

)2
e−∆+w/ℓ + . . .+

Γ(∆+ − 1)

Γ(
∆+

2
)2

e−∆−w/ℓ + . . . ,

where we used that near ϕh = 0, cA = 1/ℓ. The conformal dimensions ∆± of the dual

operator are defined by

∆± = 1±
√

1 +M2ℓ2 = 1±

√
1 +

a2

2
Vϕϕ(ϕ1)ℓ2, M2 = Vϕϕ(ϕ1)

the coefficients coincide with those from Balasubramanian, Kraus, and Lawrence’98.

The scalar field near the boundary

ϕ ≃ ϕ−e
−∆−w + . . .+ ϕ+e

∆+w/ℓ + . . . .

BTZ in the Poincare like coordinates can be related with AdS3 . Coming to the

Poincaré coordinates and doing the change r2h = −1 we get

Φ(r) = 2F1

(
∆−

2
,
∆+

2
, 1, 1 + r2

)
in agreement with Freedman et.al.’98,Balasubramanian’98 ( tan−1 r = ρ,

tan ρ = sinhµ. 14



Near-horizon solutions and
thermodynamics



Asymptotically BTZ non-rotating BH

The black hole metric can be represented as

ds2 ≃
(
1 +

κ

cA
w

)2/κ (
−fdt2 + dx2

)
+
dw2

f
,

where we introduced the quantity

κ =
(Λ(h))2

a2
, Λ(h) =

a2

2

Vϕ(ϕh)

V (ϕh)
, cA =

√
−

2

V (ϕh)
,

with the blackening function reads

f =
ecg

κ
ln

(
1 + κ

cA
w

1 + κ
cA
wh

)
, cg = ln

(
2

(
1 +

κ

cA
wh

)2
)
.

The scalar field of the solution is given by

ϕ(A) = ϕh −
Λ(h)

κ
ln

(
1 + κ

cA
w

1 + κ
cA
wh

)
.

For vanishing Λ(h), corresponding to Vϕ = 0, the near-horizon solution turns to be the

BTZ black hole with a constant scalar field.
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a2 ≤ 1
2
, the scalar field at the horizon ϕh can take any value on the range of V ;

1
2
< a2 < 1 we are restricted as ϕh ∈ (ϕ2, ϕ3).

The Hawking temperature reads

TH =
eA(wh)

4π

∣∣∣ df
dw

∣∣∣|w=wh =
1

2πcA
B

κ+1
κ ,

where we introduced the quantity

B = 1 +
κ

cA
wh, κ =

(Λ(h))2

a2
, Λ(h) =

a2

2

Vϕ(ϕh)

V (ϕh)
, cA =

√
−

2

V (ϕh)
.

At the extrema of the potentials , κ→ 0 , the thermodynamics becomes conformal.

This can be checked expanding in series by small Λ(h), the temperature reads

TH,Λ(h)→0 =
ewh/cA

2πcA
+
ewh/cA (2cA − wh)wh(Λ

(h))2

4πa2c3A
+ . . .
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Figure 6: Hawking temperature as a function of ϕh: a) a2 = 0.25, b) a2 = 0.8; wh = 0.01.
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The entropy of the black hole solution is given by s = 4πMpB
1
κ .
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Figure 7: Entropy density as a function of ϕh: a) a2 = 0.25, b) a2 = 0.8; for all wh = 0.01.

The behaviour of s as a function of TH .
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Figure 8: Entropy density vs Hawking temperature for a) a2 = 0.25, b) a2 = 0.8; for all

wh = 0.01 .
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Near ϕh = 0 (i.e. Λ(h) ≃ 0) the entropy density can be represented as

s ∼ 4πMpe
wh/cA + . . . .

Taking into account ℓ = cA and doing some algebra we can see that at first order of

Λ(h) we have the conformal behavior of the entropy density s ∼ cT , where c = 3ℓ
2G3

.

The free energy can be found as follows

F = −
∫
sdTH = −

2Mp

cA

κ+ 1

κ+ 2

(
B1+ 2

κ − 1
)
.

For ϕh = ϕ1 the thermodynamics is conformal, that can be seen from

FΛ(h)→0 = −
e
2
wh
cA

cA
−
e

2wh
cA (c2A − 2w2

h + 2cAwh)

2a2c3A
(Λ(h))2 + . . . ,

i.e. we get as expected

F ∼ T d, d = 2.
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The dependence of F on TH
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Figure 9: Free energy as a function of Hawking temperature for a) a2 = 0.25, b) a2 = 0.8; for all

we set wh = 0.01
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Irrelevant deformations, SUGRA
with target space S2



The dynamical system in the cylinder, (SUGRA with S2)

Figure 10: Initial conditions: green curves - (ϕ0, x0, y0) = (ϕdS1
− δ, 0, 1 − ϵ), 0 < ϵ ≪ 1 ,

δ ∈ (0, π
2 − |ϕdS1

|); cyan curves - (ϕ0, x0, y0) = (0 + δ, 0, 1 − ϵ), 0 < ϵ ≪ 1,

δ ∈ (−|ϕn1|, ϕn2); red curves - (ϕ0, x0, y0) = (ϕdS1
− δ, 0, 1 − ϵ), 0 < ϵ ≪ 1,

δ ∈ (0, π
2 − |ϕdS1

|).
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The dynamical system in the unit ball, (SUGRA with S2)

Figure 11: The flows: AdS-H (BTZ), AdS-N (AdS-Minkowski), H-dS (SdS), H-dS-S, H-AdS-N.
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Outlook



Summary

• Numerical thermal RG flows with asymptotics AdS (BTZ)

• The dynamics of the flows can be described by stability analysis

• Analytic form of the solutions near horizon has found

• Special case X2 = 0: the scalar field in BTZ background

• No flows between two dS or two AdS

• No flows between dS and AdS

• New solutions with horizons and singularities (AdS(dS)-strings?)
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Thank you for attention!
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