Thermal holographic RG flows and bulk-boundary propagators in truncated supergravities

based on a joint work with Eric Gourgoulhon (Paris Observatory), Misha Podoinitsyn (BLTP),

Lev Astrakhantsev (BLTP) 2412.06536, in progress

Anastasia Golubtsova (BLTP JINR)

International Conference "Advances in Quantum Field Theory (AQFT'25)" August 12. BLTP. Dubna

Outline

- 1. Motivation
- 2. Trunced supergravity model
- 3. 3d autonomous dynamical systems,thermal flows $f \neq 1$
- 4. Solutions from near the horizon to the boundary
- 5. Near-horizon solutions and thermodynamics
- 6. Irrelevant deformations, SUGRA with target space \mathbb{S}^2
- 7. Outlook

Motivation

Holography states that the on-shell value of the supergravity action in ${\sf AdS}_{(d+1)}$ is equated with the generating functional of composite operators in ${\sf CFT}_d$

$$e^{-S_{AdS}(\phi)}|_{\lim_{z\to 0}(\phi(x,z)z^{\Delta-d})=\phi_0(x)}=\langle e^{\int d^dx\phi(0)\mathcal{O}(x)}\rangle_{CFT},$$

where $\phi_{(0)}$ is a d-dim. field is a boundary value of a (d+1)-dim. field ϕ , an operator $\mathcal O$ on the field theory side with the conformal dimension Δ .

Maldacena'97, Witten'98, Gubser, Klebanov, Polyakov'98

• Holographic renormalization, RG flows: systematic removing the divergences and identifying the finite expressions, implies a careful analysis near the boundary.

Akhmedov'98; de Boer et.al'98; Skenderis'99, de Haro et.al.'99

Papadimitriou&Skenderis'04

The asymptotically AdS/dS metric (the domain wall) Skenderis'99, de Haro et.al.'99

$$ds^2 = e^{2\mathcal{A}(w)}\eta_{ij}dx^idx^j + dw^2, \quad \phi = \phi(w)$$

- Holographic QGP, holographic RG flows Policastro et. al.'15 Aref'eva&Rannu'18, Aref'eva'19
- ullet Irrelevant deformations, in particular , $Tar{T}$ -deformations Chang, Ferko&Sethi'23
- Thermal holography Witten'98
- Black hole interior Hartnoll et.al.'20, Caceres et al.'23
- de Sitter holography Witten'01, Strominger'01, Maldacena'03

Thermal holographic RG flow

• Thermal states correspond to asymptotically AdS black hole geometries

The ansatz for the metric and the scalar field

$$ds^2 = e^{2A(w)} \left(-f(w)dt^2 + d\vec{x}^2 \right) + \frac{dw^2}{f(w)}, \quad \phi = \phi(w)$$

The Hawking temperature T_H is (dual to T of a dual field theory Witten'98)

$$T_H = \frac{e^{A(w_h)}}{4\pi} \left| \frac{df}{dw} \right| |_{w=w_h}.$$

- The conformal symmetry restores near asymptotical regions, which correspond to fixed points (at the same time, the asymptotic regions correspond to extrema of the scalar potential)
- Imposing boundary conditions on the field content (for example, Dirichlet b.c. indicate that the derivative with respect to the radial variable is asymptotically identified with the dilatation operator of the dual field theory)
- Assuming appropriate b.c. Hamiltonian flow equations, which follow from the gravity action, can be brought to the form of the Callan-Symanzik equation for the generating function (de Boer, Verlinde, Verlinde'98)
- e^A measures the field theory energy scale; $\phi(w)$ identifies with the running coupling along the flow; the β -function of the operator

$$\beta = \frac{d\lambda}{d\log E}|_{QFT} = \frac{d\phi}{dA}_{Holo}$$

$3d \mathcal{N} = 2$ supergravity action

The supergravity model includes a graviton $e_{\mu}^{\ a}$, a gravitini ψ_{μ} , a gauge field A_{μ} and $\mathcal{N}=2$ multiplet (n scalar fields ϕ^{α} and n fermions λ^{r})

Deger, Kaya, Sezgin, Sundell (2000)

The bosonic part of the Lagrangian with a complex scalar Φ (modulus $|\phi|$, phase θ), it parametrizes the coset space $\frac{SU(1,1)}{U(1)}=\mathbb{H}^2$

$$e^{-1}\mathcal{L} = \frac{1}{4}R - \frac{e^{-1}}{16m a^4} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} - \frac{|D_{\mu}\Phi|^2}{a^2(1 - |\Phi|^2)} - V(\Phi),$$

where $e=\det e_{\mu}^{~a}$, $D_{\mu}\Phi=(\partial_{\mu}+iA_{\mu})\Phi$, $-4m^2$ is the AdS $_3$ cosmological constant, a the curvature of the scalar manifold. $V(\Phi)$ is given by

$$V(\Phi) = 2m^2 C^2 \left(2a^2 |S|^2 - C^2 \right) \qquad C = \frac{1 + |\Phi|^2}{1 - |\Phi|^2}, \quad S = \frac{2\Phi}{1 - |\Phi|^2}.$$

Introducing the following redefinition of the scalar field

$$C \equiv \cosh \phi$$
, $|S| \equiv \sinh \phi$

allows us to come to

$$e^{-1}\mathcal{L} = \frac{1}{4}R - \frac{e^{-1}}{a^4}\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} - \frac{1}{4a^2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{4a^2}|S|^2(\partial_{\mu}\theta + A_{\mu})(\partial^{\mu}\theta + A^{\mu}) - V(\phi).$$

The 3d truncated supergravity action with \mathbb{H}^2

The truncated action ($\theta=0$, $A^{\mu}=0$) is given by

$$S = \frac{1}{16\pi G_3} \int d^3x \sqrt{|g|} \left(R - \frac{1}{a^2} (\partial\phi)^2 - V(\phi)\right) + \mathsf{G.H.}$$

The potential of the scalar field $V(\phi)$ is

$$V(\phi) = 2\Lambda_{uv} \cosh^2 \phi \left[(1 - 2a^2) \cosh^2 \phi + 2a^2 \right],$$

where $\Lambda_{uv} < 0$ is a cosmological constant, a is a constant (the curvature of the scalar target space \mathcal{M}), $0 < a^2 < 1$.

3d $\mathcal{N}=2$ gauged supregravity with \mathbb{H}^2 : Deger'02, AG&Usova'22, Arkhipova et al.'24, AG,Nikolaev&Podoinitsyn'24, AG,Gourgoulhon&Podoinitsyn'24,

Gutperle&Hultgreen-Mena'24 (Janus flows)

The behaviour of the dilaton potential with respect to a^2

Figure 1: The dependence of the dilaton potential $V(\phi)$ for different a^2 : light blue curve – $a^2=0.25$, rose curve – $a^2=0.5$

Figure 2: The dependence of the dilaton potential $V(\phi)$ for different a^2 orange curve – $a^2=0.8$; blue curve – $a^2=1$

$$\phi_1 = 0, \quad \phi_{2,3} = \frac{1}{2} \ln \left(\frac{1 \pm 2|a|\sqrt{1 - a^2}}{2a^2 - 1} \right).$$

 $a^2>\frac{1}{2}$ the scalar potential has also zeroes:

$$\phi_{\pm} = \pm \cosh^{-1} \left(\frac{a}{\sqrt{a^2 - \frac{1}{2}}} \right).$$

Extrema of $V(\phi)$ – UV/IR fixed points (CFT) of RG flows, AdS geometries.

 $V(\phi)
ightarrow \infty$ – scaling fixed points, scaling geometries, if Gubser's bound is ok.

The conformal dimension of the operator

Holographic RG flows can be associated with deformations of CFT induced in two ways: either by a relevant operator or by non-zero VEV of a scalar operator. Near $\phi_1 = 0$ (Usova&AG'23, Musaev et. al.'24)

$$V = -2m^2 + 4m^2(a^2 - 1)\phi^2 + \mathcal{O}(\phi^3),$$

while near the other extrema $\phi = \phi_{2,3}$

$$V = -\frac{2a^4m^2}{2a^2 - 1} - \frac{8a^2(a^2 - 1)m^2}{2a^2 - 1}(\phi - \phi_{2,3})^2 + \mathcal{O}(\phi^3).$$

General solution for the scalar field near extrema

$$\phi = \phi_- e^{-\Delta_- w} + \phi_+ e^{-\Delta_+ w}, \quad w \to +\infty,$$

 ϕ_- and ϕ_+ are related to the source and to the VEV of the dual operator $\langle \mathcal{O} \rangle$.

$$\phi_1:$$
 $\Delta_{\pm} = 1 \pm |1 - 2a^2|, \quad \phi_{2,3}:$ $\Delta_{\pm} = 1 \pm \sqrt{1 + \frac{8a^4(1 - a^2)}{2a^2 - 1}},$

For $\phi_1=0$ with $0<a^2<1$ we have $1\leq \Delta_+<2$ and $0<\Delta_-<1$. The scale factor $A(w)\sim w$ (as $w\to\infty$) near the boundary.

3d autonomous dynamical systems,thermal flows $f \neq 1$

The autonomous dynamical system

• Gukov (2016), Kuipers, Gursoy, Kuznetsov' (2018) E. Kiritsis et.al (2024)

New variables (Kiritsis et.al.'08'14-'19, Aref'eva, Policastro, AG'19):

$$X = \frac{d\phi}{dA} = \frac{\dot{\phi}}{\dot{A}}, \qquad Y = \frac{dg}{dA} = \frac{\dot{g}}{\dot{A}}, \quad z = \frac{1}{1 + e^{\phi}}, \quad z \in [0, 1] \quad \text{as} \quad \phi \in (-\infty; \infty).$$

Then the equations of motion are brought to the dynamical system on ${f R}^3$

$$\frac{dz}{dA} = z(z-1)X,$$

$$\frac{dX}{dA} = \left(\frac{X^2}{a^2} - Y - 2\right) \left(X + \mathcal{C}_{(z,a)}\right),$$

$$\frac{dY}{dA} = Y\left(\frac{X^2}{a^2} - Y - 2\right),$$

where

$$\mathcal{C}_{(z,a)} := \frac{a^2}{2} \frac{V_\phi}{V}, \quad \frac{V_\phi}{V} = \frac{4 \left(\left(1 - 2a^2 \right) \left((z-1)^8 - z^8 \right) - 2z^6 (z-1)^2 + 2z^2 (z-1)^6 \right)}{(2(z-1)z+1)^2 \left((2(z-1)z+1)^2 - 2a^2 (1-2z)^2 \right)}.$$

a)
$$T = 0 \Leftrightarrow Y = 0$$
, b) $T \neq 0 \Leftrightarrow Y \to \infty$.

The dynamical system in the cylinder, (SUGRA with \mathbb{H}^2)

The initial conditions

$$z = [z_1 - \delta, z_1 + \delta]$$
 $x = 0$, $y = 1 - \varepsilon$,

Figure 3: AG, Nikolaev&Podoinitsyn (2024), AG, Gougoulhon&Podoinitsyn (2024)

Figure 4: Numerical solutions, exact solutions, critical sets, regular and singular points of the 3d dynamical system with $a^2=0.8$ in the unit cylinder. Numerical trajectories are: $\bar{p}_{1,2,3}-p_{1,2,3}$ (shown by gray), $\bar{p}_{2,3}-p_1$ (shown by blue), \bar{p}_2-g_2 , \bar{p}_3-g_4 (both shown by green), numerical solutions from 2(b) (both shown by olive). The exact solutions p_1-p_4 and its mirror image p_1-p_7 are shown by thick orange curves (solid and dashed, correspondingly).AG,Nikolaev&Podoinitsyn (2024), AG,Gougoulhon&Podoinitsyn (2024)

Solutions from near the horizon to

the boundary

Figure 5: The numerical trajectories of the dynamical systems in the cylinder for $a^2=0.25.$

The solutions can be obtained using an additional condition

$$X^2 \sim 0$$
.

The constraint corresponds to a slowly changing scalar field. EOMs come to the form

$$\frac{dz}{dA} = z(z-1)X,\tag{1}$$

$$\frac{dX}{dA} = -\left(Y+2\right)\left(X + \frac{a^2}{2}\frac{V_{\phi}}{V}\right),\tag{2}$$

$$\frac{dY}{dA} = -Y(Y+2) . \tag{3}$$

Near the horizon, $Y \to \infty$

$$Y(A) = \frac{2}{e^{2(A-A_h)} - 1}$$
.

Expansion of the potential near an extremum

$$\frac{a^2}{2} \frac{V_{\phi}(\phi)}{V(\phi)} \Big|_{\phi_h} = \Lambda^{(h)} + \mathsf{K}^{(h)}(\phi - \phi_h),$$

$$\Lambda^{(h)} = \frac{a^2}{2} \frac{V_{\phi}(\phi_h)}{V(\phi_h)}, \quad \Delta^{(h)} = \frac{a^2}{2} \frac{V_{\phi\phi}(\phi_h)}{V(\phi_h)}, \quad \mathsf{K}^{(h)} = \left(\Delta^{(h)} - \frac{2}{a^2} \left(\Lambda^{(h)}\right)^2\right).$$

Returning from z to ϕ the other two equations can be represented as

$$r(1-r)\frac{d^2\Phi(r)}{dr^2} + (1-2r)\frac{d\Phi(r)}{dr} - \frac{\mathsf{K}^{(h)}}{2}\Phi(r) = 0,$$

where

$$\Phi := \phi - \phi_h + \frac{\Lambda^{(h)}}{\kappa^{(h)}}, \quad r = \exp 2(A - A_h),$$

The regular singular points r=1 and $r=\infty$ correspond to the near-horizon and boundary regions, respectively.

The solution for the scalar field near the horizon reads off from the fundamental solution near $r=1\,$

$$\Phi(r) = {}_{2}F_{1}(a_{h}, 1 - a_{h}, 1, 1 - r) , a_{h} = \frac{1}{2} \left(1 - \sqrt{1 - 2\mathsf{K}^{(h)}} \right).$$

The solution is finite in the region from r=1 to $r=\infty$.

The scale factor due to the constraint is

$$\ddot{A} = 0 \quad \Rightarrow \quad A = \mathfrak{c}_A w + \mathbf{c}_2, \quad \mathfrak{c}_A = \sqrt{-\frac{V(\phi_h)}{2}}, \quad \mathbf{c}_2 = 0.$$

The blackness function is $f = \left(1 - e^{-2\mathfrak{c}_A(w - w_h)}\right)$. The scalar field takes the form

$$\phi = \phi_h + {}_{2}F_{1}\left(\frac{1 - \sqrt{1 - 2\Delta^{(h)}}}{2}, \frac{1 + \sqrt{1 - 2\Delta^{(h)}}}{2}, 1, 1 - e^{\mathfrak{c}_{A}(w - w_h)}\right).$$

The constraint brings us that the metric of the solution matches with the metric of the non-rotating BTZ black hole . This is valid for solutions near $\phi_1=0$, with $1\leq \Delta_+<2$. ("light operators") Near $\phi_{2,3}$, we have $\Delta_+>2$.

The asymptotics near the boundary

$$\phi = \phi_h + {}_{2}F_{1}\left(\frac{1 - \sqrt{1 - 2\Delta^{(h)}}}{2}, \frac{1 + \sqrt{1 - 2\Delta^{(h)}}}{2}, 1, 1 - e^{\epsilon_A(w - w_h)}\right).$$

near the boundary $r \to \infty$ with $\Lambda^{(h)} \sim 0$. The expansion $r \to +\infty$ leads to

$$\phi_{A\to\infty} \simeq \frac{\Gamma(\Delta_- - 1)}{\Gamma(\frac{\Delta_-}{2})^2} e^{-\Delta_+ w/\ell} + \ldots + \frac{\Gamma(\Delta_+ - 1)}{\Gamma(\frac{\Delta_+}{2})^2} e^{-\Delta_- w/\ell} + \ldots,$$

where we used that near $\phi_h=0$, $\mathfrak{c}_A=1/\ell$. The conformal dimensions Δ_\pm of the dual operator are defined by

$$\Delta_{\pm} = 1 \pm \sqrt{1 + M^2 \ell^2} = 1 \pm \sqrt{1 + \frac{a^2}{2} V_{\phi\phi}(\phi_1) \ell^2}, \quad M^2 = V_{\phi\phi}(\phi_1)$$

the coefficients coincide with those from Balasubramanian, Kraus, and Lawrence'98. The scalar field near the boundary

$$\phi \simeq \phi_- e^{-\Delta_- w} + \ldots + \phi_+ e^{\Delta_+ w/\ell} + \ldots$$

BTZ in the Poincare like coordinates can be related with ${\rm AdS}_3$. Coming to the Poincaré coordinates and doing the change $r_h^2=-1$ we get

$$\Phi(r) = {}_{2}F_{1}\left(\frac{\Delta_{-}}{2}, \frac{\Delta_{+}}{2}, 1, 1 + r^{2}\right)$$

in agreement with Freedman et.al.'98,Balasubramanian'98 ($\tan^{-1}r=\rho$, $\tan\rho=\sinh\mu$.

Near-horizon solutions and

thermodynamics

Asymptotically BTZ non-rotating BH

The black hole metric can be represented as

$$ds^2 \simeq \left(1 + \frac{\kappa}{c_A}w\right)^{2/\kappa} \left(-fdt^2 + dx^2\right) + \frac{dw^2}{f},$$

where we introduced the quantity

$$\kappa = \frac{(\Lambda^{(h)})^2}{a^2}, \quad \Lambda^{(h)} = \frac{a^2}{2} \frac{V_{\phi}(\phi_h)}{V(\phi_h)}, \quad c_{\mathcal{A}} = \sqrt{-\frac{2}{V(\phi_h)}},$$

with the blackening function reads

$$f = \frac{e^{c_g}}{\kappa} \ln \left(\frac{1 + \frac{\kappa}{c_A} w}{1 + \frac{\kappa}{c_A} w_h} \right), \quad c_g = \ln \left(2 \left(1 + \frac{\kappa}{c_A} w_h \right)^2 \right).$$

The scalar field of the solution is given by

$$\phi(A) = \phi_h - \frac{\Lambda^{(h)}}{\kappa} \ln \left(\frac{1 + \frac{\kappa}{c_A} w}{1 + \frac{\kappa}{c_A} w_h} \right).$$

For vanishing $\Lambda^{(h)}$, corresponding to $V_\phi=0$, the near-horizon solution turns to be the BTZ black hole with a constant scalar field.

 $a^2 \leq \frac{1}{2}$, the scalar field at the horizon ϕ_h can take any value on the range of V; $\frac{1}{2} < a^2 < 1$ we are restricted as $\phi_h \in (\phi_2, \phi_3)$.

The Hawking temperature reads

$$T_H = \frac{e^{A(w_h)}}{4\pi} \left| \frac{df}{dw} \right|_{w=w_h} = \frac{1}{2\pi c_A} \mathsf{B}^{\frac{\kappa+1}{\kappa}},$$

where we introduced the quantity

$$\mathsf{B} = 1 + \frac{\kappa}{\mathsf{c}_A} w_h, \quad \kappa = \frac{(\mathsf{\Lambda}^{(h)})^2}{a^2}, \quad \mathsf{\Lambda}^{(h)} = \frac{a^2}{2} \frac{V_\phi(\phi_h)}{V(\phi_h)}, \quad \mathsf{c}_\mathsf{A} = \sqrt{-\frac{2}{V(\phi_h)}}.$$

At the extrema of the potentials , $\kappa \to 0$, the thermodynamics becomes conformal. This can be checked expanding in series by small $\Lambda^{(h)}$, the temperature reads

$$T_{H,\Lambda^{(h)}\to 0} = \frac{e^{w_h/c_A}}{2\pi c_A} + \frac{e^{w_h/c_A}(2c_A - w_h)w_h(\Lambda^{(h)})^2}{4\pi a^2 c_A^3} + \dots$$

Figure 6: Hawking temperature as a function of ϕ_h : a) $a^2=0.25$, b) $a^2=0.8$; $w_h=0.01$.

The entropy of the black hole solution is given by $s=4\pi M_p \mathsf{B}^{\frac{1}{\kappa}}$.

Figure 7: Entropy density as a function of ϕ_h : a) $a^2=0.25$, b) $a^2=0.8$; for all $w_h=0.01$.

The behaviour of s as a function of T_H .

Figure 8: Entropy density vs Hawking temperature for a) $a^2=0.25$, b) $a^2=0.8$; for all $w_h=0.01$.

Near $\phi_h=0$ (i.e. $\Lambda^{(h)}\simeq 0$) the entropy density can be represented as

$$s \sim 4\pi M_p e^{w_h/c_A} + \dots$$

Taking into account $\ell=c_A$ and doing some algebra we can see that at first order of $\Lambda^{(h)}$ we have the conformal behavior of the entropy density $s\sim cT$, where $c=\frac{3\ell}{2G_A}$.

The free energy can be found as follows

$$\mathcal{F} = -\int s dT_H = -\frac{2M_p}{c_A} \frac{\kappa + 1}{\kappa + 2} \left(\mathsf{B}^{1 + \frac{2}{\kappa}} - 1 \right).$$

For $\phi_h = \phi_1$ the thermodynamics is conformal, that can be seen from

$$\mathcal{F}_{\Lambda^{(h)}\to 0} = -\frac{e^{2\frac{w_h}{c_A}}}{c_A} - \frac{e^{\frac{2w_h}{c_A}}(c_A^2 - 2w_h^2 + 2c_Aw_h)}{2a^2c_A^3}(\Lambda^{(h)})^2 + \dots,$$

i.e. we get as expected

$$\mathcal{F} \sim T^d$$
, $d = 2$.

The dependence of ${\mathcal F}$ on T_H

Figure 9: Free energy as a function of Hawking temperature for a) $a^2=0.25$, b) $a^2=0.8$; for all we set $w_h=0.01$

Irrelevant deformations, SUGRA with target space \mathbb{S}^2

The dynamical system in the cylinder, (SUGRA with \mathbb{S}^2)

Figure 10: Initial conditions: green curves - $(\phi_0,x_0,y_0)=(\phi_{dS_1}-\delta,0,1-\epsilon)$, $0<\epsilon\ll 1$, $\delta\in(0,\frac{\pi}{2}-|\phi_{dS_1}|)$; cyan curves - $(\phi_0,x_0,y_0)=(0+\delta,0,1-\epsilon)$, $0<\epsilon\ll 1$, $\delta\in(-|\phi_{n1}|,\phi_{n2})$; red curves - $(\phi_0,x_0,y_0)=(\phi_{dS_1}-\delta,0,1-\epsilon)$, $0<\epsilon\ll 1$, $\delta\in(0,\frac{\pi}{2}-|\phi_{dS_1}|)$.

The dynamical system in the unit ball, (SUGRA with \mathbb{S}^2)

Figure 11: The flows: AdS-H (BTZ), AdS-N (AdS-Minkowski), H-dS (SdS), H-dS-S, H-AdS-N.

Summary

- Numerical thermal RG flows with asymptotics AdS (BTZ)
- The dynamics of the flows can be described by stability analysis
- Analytic form of the solutions near horizon has found
- Special case $X^2=0$: the scalar field in BTZ background
- No flows between two dS or two AdS
- No flows between dS and AdS
- New solutions with horizons and singularities (AdS(dS)-strings?)

Thank you for attention!