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Motivation



Holography states that the on-shell value of the supergravity action in AdS 4, 1) is
equated with the generating functional of composite operators in CFT;
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where ¢ gy is a d-dim. field is a boundary value of a (d + 1)-dim. field ¢, an operator

O on the field theory side with the conformal dimension A.
Maldacena’97,Witten’98, Gubser,Klebanov,Polyakov’98

e Holographic renormalization, RG flows: systematic removing the divergences and

identifying the finite expressions, implies a careful analysis near the boundary.

Akhmedov’98; de Boer et.al’98; Skenderis’99, de Haro et.al.’99

Papadimitriou&Skenderis’04

The asymptotically AdS/dS metric (the domain wall) Skenderis’99, de Haro et.al.’99
ds® = eQA(w)mjdxidxj +dw?, ¢= P(w)

e Holographic QGP, holographic RG flows Policastro et. al.’15
Aref’eva&Rannu’18,Aref’eva’19

e Irrelevant deformations, in particular , TT-deformations Chang,Ferko&Sethi’23
e Thermal holography Witten’98

e Black hole interior Hartnoll et.al.’20, Caceres et al.’23

e de Sitter holography Witten’01,Strominger’01, Maldacena’03



Thermal holographic RG flow

e Thermal states correspond to asymptotically AdS black hole geometries

The ansatz for the metric and the scalar field
d 2
ds? = 2AM) (= f(w)dt? + da?) + ——, ¢ = p(w)
fw)
The Hawking temperature T is (dual to T of a dual field theory Witten’98)
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e The conformal symmetry restores near asymptotical regions, which correspond to
fixed points (at the same time, the asymptotic regions correspond to extrema of
the scalar potential)

e Imposing boundary conditions on the field content ( for example, Dirichlet b.c.
indicate that the derivative with respect to the radial variable is asymptotically
identified with the dilatation operator of the dual field theory)

e Assuming appropriate b.c. Hamiltonian flow equations, which follow from the
gravity action, can be brought to the form of the Callan-Symanzik equation for
the generating function (de Boer, Verlinde,Verlinde’98)

o ¢ — measures the field theory energy scale; ¢(w) identifies with the running
coupling along the flow; the S-function of the operator
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Trunced supergravity model




3d N = 2 supergravity action

The supergravity model includes a graviton e, a gravitini ¢, a gauge field A, and
N = 2 multiplet (n scalar fields ¢* and n fermions A")
Deger, Kaya, Sezgin, Sundell (2000)

The bosonic part of the Lagrangian with a complex scalar ® (modulus |¢|, phase 0), it

parametrizes the coset space Sgﬁll’)l) = H2
1 e ! |D,,®|?
=l v 10
L=-R-— WP ALO Ay, — ————— — V (D),
N 4 16mat " RIVEP T a2(1—|@)2) ®)

where e = deted, D,® = (9 +i4,)®, —4m? is the AdS3 cosmological constant, a
the curvature of the scalar manifold. V(®) is given by
1+ |92 29
V(®) =2m?C? (2a%|S*-C?) C=——+, S=—"1.
Introducing the following redefinition of the scalar field
C =cosh¢, |S| =sinh¢

allows us to come to
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The 3d truncated supergravity action with H?

The truncated action (6 = 0, A* = 0) is given by

- [a I
ISE= 167Cs /d zv/|g| (R o (00) V(¢)) + G.H.

The potential of the scalar field V' (¢) is

’ V(¢) = 2Auv cosh? ¢ [(1 —2a®) cosh® ¢ + 2a2} , ‘

where Ay, < 0 is a cosmological constant, a is a constant (the curvature of the scalar
target space M), 0 < a? < 1.

3d NV = 2 gauged supregravity with H?: Deger’02, AG&Usova’22, Arkhipova et al.’24,
AG,Nikolaev&Podoinitsyn’24, AG,Gourgoulhon&Podoinitsyn’24,
Gutperle&Hultgreen-Mena'24 (Janus flows)



The behaviour of the dilaton potential with respect to a?
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Figure 1: The dependence of the dilaton potential V' () Figure 2: The dependence of the dilaton potential V ()
for different a2: light blue curve — a2 = 0.25, rose curve - for different a2 orange curve — a2 = 0.8; blue curve -
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1
¢1 =0, ¢2,3=—1In
2 2a2 — 1

a? > % the scalar potential has also zeroes:

¢4 = £ cosh ™!

Extrema of V(¢) — UV/IR fixed points (CFT) of RG flows, AdS geometries.

V (¢) — oo — scaling fixed points, scaling geometries, if Gubser’'s bound is ok.



The conformal dimension of the operator

Holographic RG flows can be associated with deformations of CFT induced in two
ways: either by a relevant operator or by non-zero VEV of a scalar operator.
Near ¢1 = 0 (Usova&AG’23, Musaev et. al.’24)

V = —2m? +4m?(a® — 1)¢* + O(¢?),
while near the other extrema ¢ = ¢2.3

2a%m? 8a2(a = l)m
2a2 — 1 2a2 —

V== (¢ — d2,3)% + O(¢%).

General solution for the scalar field near extrema

6=6 D £ e w s foo]

¢_ and ¢4 are related to the source and to the VEV of the dual operator (O).

8a4(1 — a2

b1: Ar=1%£|1-2d2|, ¢a3: Ar=1% g B =)

’ 2a2 — 1

For ¢ = 0 with 0 < a? < 1 we have 1 < Ay <2and 0 < A_ < 1. The scale factor
A(w) ~w (as w — o0) near the boundary.



3d autonomous dynamical
systems,thermal flows f # 1



The autonomous dynamical system

e Gukov (2016), Kuipers,Gursoy,Kuznetsov'(2018) E.Kiritsis et.al (2024)

New variables (Kiritsis et.al.’08’14-°19,Aref’eva,Policastro,AG’ 19):

xo @ _b . _ds
A

g 1
=2 = g z=——, zelo1 € (—00;00).
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Then the equations of motion are brought to the dynamical system on R3

j—z =2(z - 1)X,

dx b &

A= <a2 —Y—2> (X +Ca),
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)=V VT (2k-1)z+1)2(2(z — 1)z +1)2 — 2a2(1 — 22)2)

a)T=0 <& Y=0, b) T#0 < Y — oo.



The dynamical system in the cylinder,

The initial conditions

z=[21—6,z1+0] z=0, y=1—c¢,

)

~
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Figure 3: AG,Nikolaev&Podoinitsyn (2024), AG,Gougoulhon&Podoinitsyn (2024)
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Figure 4: Numerical solutions, exact solutions, critical sets, regular and singular points of the 3d
dynamical system with a? = 0.8 in the unit cylinder. Numerical trajectories are: P1,2,3 — P1,2,3
(shown by gray), p2,3 — p1 (shown by blue), p2 — g2, ps — ga (both shown by green), numerical
solutions from 2(b) (both shown by olive). The exact solutions p; — p4 and its mirror image

p1 — p7 are shown by thick orange curves (solid and dashed,
correspondingly).AG,Nikolaev&Podoinitsyn (2024), AG,Gougoulhon&Podoinitsyn (2024)



Solutions from near the horizon to
the boundary



The additional condition

X% ~o0.
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Figure 5: The numerical trajectories of the dynamical systems in the cylinder for a? = 0.25.



The solutions can be obtained using an additional condition

X2~ 0.
The constraint corresponds to a slowly changing scalar field. EOMs come to the form
d
i =2(z - 1)X, 1)
dX a? Vo
— =—(Y+2)(X — |, 2
- (x+ T2 @
dY
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Near the horizon, ¥ — oo
2
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Expansion of the potential near an extremum
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Returning from z to ¢ the other two equations can be represented as

d>®(r) de(r) KM
1-— 1-2 - —® =
rl-n S5l - = - e =0,
where
A(R)
D:=¢—¢dp+ ——, T=exp2(A—Ay),

K(h)’



The regular singular points » = 1 and r» = co correspond to the near-horizon and
boundary regions, respectively.

The solution for the scalar field near the horizon reads off from the fundamental

solution near r = 1
O(r) = 2Fi(ap,1 —ap, 1,1 —7) ,ap =

(1—m).

The solution is finite in the region from r =1 to r =

1
2

The scale factor due to the constraint is

. 174
A=0 = A=cpqw-+ca, c¢4= 7%, co = 0.

The blackness function is f = (1 - e*2°A<w*wh)) . The scalar field takes the form

h h
1—/1—2A( >’ 1+ /1 —2A( >,171_8,A(w_wh)> .
2 2

¢:¢h+2F1<

The constraint brings us that the metric of the solution matches with the metric of
the non-rotating BTZ black hole . This is valid for solutions near ¢1 = 0, with
1 < A4 < 2. ("light operators”) Near ¢2 3, we have A > 2.



The asymptotics near the boundary
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near the boundary 7 — co with A(") ~ 0. The expansion  — +oco leads to
F(A; — 1) e—A+UJ/Z
(=)

where we used that near ¢p, =0, ¢4 = 1/£. The conformal dimensions Ay of the dual
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operator are defined by
2
Ag =1+ V14 M2 =134 [1+4 —Vie(61)E?, M? = Vyg(h1)

the coefficients coincide with those from Balasubramanian, Kraus, and Lawrence'98.
The scalar field near the boundary

A

BTZ in the Poincare like coordinates can be related with AdS3 . Coming to the
Poincaré coordinates and doing the change r}% = —1 we get

A_ A
O(r) = 2F1 <71 %71714‘7‘2)

in agreement with Freedman et.al.’98,Balasubramanian’98 ( tan=!r = p,
tan p = sinh p.



Near-horizon solutions and
thermodynamics




Asymptotically BTZ non-rotating BH

The black hole metric can be represented as
2/Kk dw?
ds? =~ (1 + iw) (—fde® +da?) + =,
ca f
where we introduced the quantity
R)\2 21/,
. (Mi;)7 Ah) _ 1V¢(¢h)7 S -
a 2 V(¢n) V(¢n)
with the blackening function reads
c 1+ Ew 2
f:egln % , Cg=In 2<1+iwh) .
K 1+ awh ca

The scalar field of the solution is given by

AR 1+ Zw
¢(A) =¢n — T In <A> .

1+£wh

For vanishing AR, corresponding to V; = 0, the near-horizon solution turns to be the
BTZ black hole with a constant scalar field.



2hS %, the scalar field at the horizon ¢; can take any value on the range of V;
% < a? < 1 we are restricted as ¢, € (¢2, ¢3).

The Hawking temperature reads

eAlwn) df 1 B~+1
7= ‘d ‘lw 27TCA :
where we introduced the quantity
Ah))2 2y 2
B:1+iwh, H:%’ /\(h):(LM7 cA=4/— )
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At the extrema of the potentials , Kk — 0, the thermodynamics becomes conformal.
This can be checked expanding in series by small A(")| the temperature reads
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Figure 6: Hawking temperature as a function of ¢, a) a? = 0.25, b) a? = 0.8; wy, = 0.01.



1
The entropy of the black hole solution is given by s = 47 M,B* .
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Figure 7: Entropy density as a function of ¢;: a) a? = 0.25, b) a? = 0.8; for all w;, = 0.01.

The behaviour of s as a function of T'y.
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Figure 8: Entropy density vs Hawking temperature for a) a? = 0.25, b) a? = 0.8; for all
wp, = 0.01 .



Near ¢p =0 (i.e. AR ~ 0) the entropy density can be represented as
s~ AT Mpe®h/cA 4 .

Taking into account £ = c4 and doing some algebra we can see that at first order of

A) we have the conformal behavior of the entropy density s ~ ¢TI', where ¢ = %.

The free energy can be found as follows

2M, k+1 2
F=—[sdlTg=—"22"_ (Bt% —1).
/S " ca l~c+2< )

For ¢}, = ¢1 the thermodynamics is conformal, that can be seen from

Q?fh 2’.wh 2 2
From __eca eca (CA_2wh+2CAwh)(A(h))2+ .
AR =0 ca 2a2c? ’

i.e. we get as expected



The dependence of F on Ty
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Figure 9: Free energy as a function of Hawking temperature for a) a? = 0.25, b) a? = 0.8; for all
we set wy = 0.01



Irrelevant deformations, SUGRA
with target space S?




The dynamical system in the cylinder,

o dShy o dShy o hy

® hy ® dShy dShy hy

AdS, o ds, o M, ° ds, o AdS,

® AdS3 ® dSs

® hm

Figure 10: Initial conditions: green curves - (¢0, z0,%0) = (¢as; —6,0,1 —¢€),0< e 1,
0 € (0,5 — |pas,|); cyan curves - (o, z0,y0) = (0+6,0,1 —¢), 0 <e K 1,

0 € (—|¢pn1l, pn2); red curves - (po, o, y0) = (pas; —6,0,1 —¢), 0 < e K 1,

é € (U, % = ‘d)dsl )
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The dynamical system in the unit ball, (SUGRA with S?)

Figure 11: The flows: AdS-H (BTZ), AdS-N (AdS-Minkowski), H-dS (SdS), H-dS-S, H-AdS-N.

21



Outlook




Summary

e Numerical thermal RG flows with asymptotics AdS (BTZ)

e The dynamics of the flows can be described by stability analysis
e Analytic form of the solutions near horizon has found

e Special case X2 = 0: the scalar field in BTZ background

e No flows between two dS or two AdS

e No flows between dS and AdS

e New solutions with horizons and singularities (AdS(dS)-strings?)
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Thank you for attention!
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