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Introduction
and motivation



New area: vorticity, acceleration and external
field effects in HICs

* Extreme vorticity (10** sec™) and external fields
observed in heavy ion collisions.

* Unusual quantum effects related to vorticity
and external fields can be observed, e.g.
vortical polarization:

[STAR, Nature (2017), arXiv: 1701.06657] _ ALlAuI@7I7GPlV e I[Ge;l] ' _
[Rogachevsky, Sorin, Teryaev, PRC (2010), e-Print: 1006.1331] - b=0.0fm

F Ty 0.20
[Becattini, Karpenko, Lisa, Upsal, Voloshin, PRC (2017)] s

* Plenty of results have been obtained related with vorticity and
magnetic field effects:

E 2=0.0fm

[Son, Surowka, PRL (2009), e-Print: 0906.5044] - tteon=0.50fm/c 0.00
[Prokhorov, Teryaev, Zakharov, PRL (2022), e-Print: 2207.04449] Acceleration is also high!

[Braguta, Kotov, Kuznedelev, Roenko, PRC (2021), e-Print: 2102.05084]

[GP, Shohonov, Teryaev, Tsegelnik,
Zakharov, 2025, 2502.10146]

)

little studied

Modern development: acceleration and dissipation effects |:>




Unruh effect

[Blasone, (2018), e-Print:

1911.06002]

Formulation

The Minkowski vacuum is perceived
by an accelerated observer as a
medium with a finite (Unruh)
temperature:

[W. G. Unruh, Notes on black hole evaporation,
Phys. Rev. D14, 870 (1976)]




I Minimal viscosity bound

Bound inspired by string theory:

KSS-bound
[Kovtun, Son, Starinets, PRL (2005),

arXiv:hep-th/0405231]

* There are no completely ideal fluids!

* Plenty of work about KSS Bound

* Does not cover case of Rindler space!

Statement of the problem

* Does Unruh radiation have viscosity?
* How is it related to the KSS bound 1/4n?




Shear viscocity
in Rindler space
from Kubo formula






I Rindler coordinates and stretched horizon

* Rindler's metric describes the accelerated reference system:
ds® = p?dr? — dx* — dy* — dp”

Horizon : Joo (p — O) =0

a = acceleration ~ the inverse distance to the horizon.

0
* Fields live above the stretched horizon:

p € |le,00)

[Parikh, Wilczek, PRD (1998), arXiv:gr-qc/9712077]



I Kubo formula: Rindler space

Due to the fluctuation-dissipation theorem, dissipation coefficients can be found from
fluctuations in equilibrium:

Kubo's formula for Viscosity [Zubarev, Non.equilibri.um. statis.tical.
thermodynamics, Studies in soviet science, 1974]
1

n= lim - / A4zt 0(t) [Ty (), Ty (0)])

w—0 W

In the Rindler space: [Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]

n =7 lim 0 dp// pdp/ dx dy dTein<O’TXy(T, X, Y, p)TXy(O, 0,0, p")]0)Mm
l l

w—0
c c — 00

per unit horizon area

nz/l dp’ Nioc(p")

C

*  We consider free y Ty Tyy
fields: e /







I Correlator with two EMTs

* Belinfante energy-momentum tensor for free massless Dirac fields:
i _ _ _
Tw = 7 @100 = 0upyuth + 00t — 0u 7, 001))

* Propagator (Wightman function)

= /) — l (’yx)ab
Sab(x) — <O|wa($)¢b(0)’0>M = 52 (332 - ing)Q .
* The poles are shifted upward relative to ® J feo

the real time axis:

. . 8
The result is: (0T (2)Top(y)|0)Mm = FIMMB(ZE )

Npa'lvs
b3

o bﬂbybabg B n“abybg B nyabﬂbg _ nugbyba B nygbﬂba

NuBMva NuvTaps
Luvap(b) = p12 4p10 Ap10 4p10 Apl0 -

88 1668

_|_

_|_

b2 = b?> —icby  poles are shifted



I Fourier transform in Rindler space

Let's move on to integration by Rindler time d7

We move on to the Rindler coordinates in the integrand

©.@) . 1 ©.@) e’LTw
I — d 1T W — d
7T/ e S5m3as /OO S5m2(p? 4 p'? — 2pp’ cosh(7) + ieT)3 4

_m —_—

An infinite number of periodic poles located parallel to the imaginary
axis:

r=+In L (1 i)+ 2min n=0,+1,42..
0




Fourier transform in Rindler space

Using the periodicity of the integrand with respect to the shift in the direction of

the imaginary axis, we can

close the integral:

: A ImT :
T | ar ;
: 2m :
.................. S A T <
e S NS N
/ : . \
i . . \
1 P . : p |
\ —|In = |: In — |
\ : : Ret
O P ° P » -
""""""""" N2 e N S
I : :
: — 27 :
, .................................. .

Let's use Cauchy's theorem and find the residues at the poles:

1TW
(&

Ifull == 27T’i

To==xIn v

[p* + p'* — 2pp’ cosh(T)]?

The relationship between
the desired integral and the
integral over a closed
contour:

I=(1—e ™) Iy

Only two poles fall
inside the circuit.

T:ilnﬁl
I



I Fourier transform in Rindler space

We obtain the local viscosity:

Dirac ) _ p|p*+4p%12 — BlE —412(2p* +12)In £
Moc P 40(p? — 12)472

By directly integrating over the distance to the horizon, we obtain the viscosity per
unit area of the horizon:




[Page, PRD 25, 1499 (1982)]

I Entropy
[Prokhorov, Teryaev, Zakharov, PRD (2019), arXiv:1903.09697]

The energy-momentum tensor is known: [Buzzegoli, Grossi, Becattini, JHEP (2017), arXiv:1704.02808]

o 7 2T4 T2 2 17 4 A y
<T21rac> — ( n 4+ |CL| . |a| ) (’LLM’LLV R )
H 60 24 96072 3

Unlike a scalar field, the quadratic acceleration term contributes to the entropy

23 2
- ap :> Dirac T _ s T’CL‘
Sloc = A Sloc ( ,CL)— T
0T |a 45 30
. [Becattini, Daher, Sheng, PLB
We apply aPPFOOE}C}} (2024), arXiv:2309.05789]
fl‘O.IIl the l“ElathlStl.C [Obukhov, Piskareva, Class.
spin hydrodynamics Quantum Grav.(1989)]
Local entropy (for Minkowski vacuum): Entropy per unit area of the horizon:
Dirac 1
Sloc (p )

~ 3073




I Shear viscosity/entropy ratio

Global viscosity and entropy:

Dirac 1 Dirac __ 1
— S -
24072[2 6072

U

* Ratio is finite and does not depend on [,

Saturates KSS bound

The ratio of local viscosity to local entropy is described by the function:

Toc (5) = F(p/le)

Sloc

t(xt +42° — 5 — 4(22* + 1) Inx)
4r(x — 1)4




Spin 0

[Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]



I Shear viscosity/entropy ratio
* Viscosity and entropy:

scalar __ 1 scalar __ 1

 144072]2  360m2

Ui

* Ratio is finite and does not depend on [,

Saturates KSS bound

* The ratio of local viscosity to local entropy is described by a function

depending on [ :

T (p) = f(p/le)

Sloc

vt (x* +42% =5 —4(22° + 1) Inx)
Ar(x — 1)4







I Shear viscosity/entropy ratio

Viscosity and entropy differ from the case of spins 0 and %2

n photon __ 1 S photon _ 1
1207212 3072

The ratio satisfies the KSS bound

U

S ‘photon 47

The ratio of local viscosity to local entropy is described by the same
universal function as for spins 0 and V5:

M loc
(p
S loc

— f(p/lc)

photon

vt (x* + 42° — 5 —4(22° + 1) Inx)
4 (x — 1)4

fla) =




Discussion



I Discussion

Comparison with string theory

[Buchel, Liu and Starinets, Nucl.Phys.B (2005) arXiv:hep-th/0406264]

n 1 135¢(3) | From string theory: KSS-bound is saturated

" = A + 2 ( 2g2 Nc)3 72 Tl for strong coupling (big 't Hooft coupling)

* In our case, the opposite situation — KSS-bound is saturated for free fields.

Free fields - what is the source of viscosity?

Key question: what is the source of
nontrivial viscosity for free fields?




“Entanglement” viscosity?

Indirect indication of a connection with entanglement:

.. : : 1 1
* Entropy is in the denominator gscalar _ ~ gDirac _ _~ gphoton _

6 12 ~ 360mi2

is related to entanglement — viscosity in numerator is also related to entanglement

*  Correlator as in Minkowski space (0|7, (x)Tws(y)|0) 1

1L

Question: why the non-trivial answer being received?

1L

Integration when taking the Fourier transform is performed only over a part of the
Minkowski space — the right Rindler wedge

* No final answer — consider other systems with entanglement entropy?




Local vs global

For all cases considered, the ratio of local shear viscosity and entropy is described
by the universal function

ot (x* +42* — 5 — 4(22° + 1) Inx)
where f(x) = dr(z — 1)

Nloc * On the surface of the membrane:
Sloc A 7777777777777777777777777777777777777777777777777777 i
47
020 =
@
0.15 %—-
S
0.10E * On the contrary, far away from the
membrane, the ratio is higher than the
0.05 KSS bound:
Mloc \ 3
o (p = 00) = 4=




Preliminary
results



Generalization: universality for conformal
field theories

* For conformal field theory, the correlator of two EMTs has a universal form up to a

common coefficient: 1y i enoer and H. Osborn, Nucl. Phys. B 483, 431-474 (1997)]

—
CrJuw,ap (r —y)

(@ —y)? —ie(z — y)o]*

Conformal central charge

* All calculations using Kubo formula are exactly the same for different fields -
universality of function describing local shear viscosity:

Con? P [p4 +4p22 — 514 — 412(2p2 + 12) ln(ﬁ)}

7710c(/0) Y : (p2 _ 12)47r2

global
viscosity



Generalization: universality for conformal
field theories

There is technique to find perturbatively effects of small angular deficit using
modular Hamiltonian (which is actually a boost operator):

[M. Smolkin and S. N. Solodukhin, Phys. Rev. D 91, no.4, 044008 (2015)]

) 8 ~ A A OT’T('ZCS?;J'
lim ——(T;;) = —(Ti;Ko) = — 120,

v—1 Qv

The derivative with respect to the angular deficit corresponds to the derivative with
respect to temperature:

27T .0 , 0
V= — —) Imgs S lm o7

Thus, the derivative found with respect to the angular deficit gives the entropy for
an arbitrary conformal field theory:

op Cps
oc — li ~ —
Sloc = O AT 60,8

a=const




Generalization: universality for conformal
field theories

* Thus, shear viscosity and entropy are proportional to the conformal central charge.
The ratio is universal and saturates the KSS bound:

n Crr? ) Cprs 1

s 48012/ 12012  4r

* A similar answer can be obtained in a slightly different way, using the results of the
work:

[M. R. Brown, A. C. Ottewill and D. N. Page, Phys. Rev. D 33, 2840-2850 (1986)]




Anomalous transport: relation to conformal
anomaly

* Various new transport phenomena related to quantum anomalies
(see talk of Oleg V. Teryaev).

* Novel transport phenomenon in accelerated system, associated with
conformal gravitational quantum anomaly!

R 2
conformal (Tﬁ“) = Q (H + —VZR) + bG + ¢V?R
anomaly: 3
H = Ouyaﬁc/“/aﬁ term with Weyl tensor
* [t can be shown, that: 640
[H. Osborn and A. C. Petkou, Annals C1T — T 5 «
Phys. 231, 311-362 (1994)] m

* Then the viscosity of the accelerated system (curvature is zero) is
determined by the anomaly in the curved space:

CT7T2
T 48012 —




Bound for bulk viscosity

Lowest order mass corrections to bulk viscosity and

speed of sound:

m?|a) , 1 5m?

oo = 3gmz  C T3 olaP
- /

The bound for bulk viscosity (also predicted
within holographic approach) is saturated!

[A. Buchel, Phys. Lett. B 663, 286 (2008)]




“Wandering” Planck constant
g

* In the original holographic derivation of KSS bound the viscosity is “classical” —
Planck’s constant comes from the “quantum” Bekenstein-Hawking entropy:

~
n~ O(h°)
A > 77_71
~ O s 4w
e O(h™7)

* In our case, the viscosity is determined by a one-loop diagram calculated directly
within the framework of the QFT - it contains Planck's constant:

~
3
o
Moc 2 n h However, the result is the same:
h i — €€ s »
> - = — Wandering” Planck constant
Tll)} s A4r
Sloc ™ ?
7




I Problem: higher dimensions, d=6,8...

That is, shear viscosity/entropy density ratio n 9n (d)
doesn’t depend on type of the conformal field, — =
but can depend on number of dimensions: S Js (d)
In particular: * In higher dimensions does not meet
the expected KSS bound.
— q ( 4) — E * Problem also discussed in:
° [Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]
d=06: In <6) — i/ * Peculiarities of entropy calculation —
Js (6> 8 why only one regularized integral?
~ gn(8) 1 * We assumed that the KSS bound is
d=8: 75(8) — 1007 valid for quantities integrated over the
° distance from the horizon. Doesn't

work in higher dimensions?




Conclusion



I Conclusion

The viscosity in the Rindler space for fields with spins % and 1 is calculated
directly. This viscosity is, apparently, is a manifestation of entanglement.

The average values of shear viscosity and entropy are different for different fields.
However, their ratio satisfies the KSS bound for all considered fields: n/s = 1/4 .
The obtained results support the “objective” interpretation of the Unruh effect — a
medium arises that has finite temperature 7" = Ty; and viscosity /s = 1/4m .

Locally, the viscosity-to-entropy ratio may violate KSS bound. On the stretched
horizon 710c/S10c = 1/87 . In general, the ratio is described by a universal
function that is the same for different types of fields.

The result is generalized to an arbitrary conformal field theory in 4 dimensions.

The obtained viscosity is a new type of anomalous transport phenomenon related
with conformal gravitational anomaly.

In order m? also another bound for bulk viscosity is also saturated (for local
quantities and massive Dirac fields).

Unlike the original duality derivation, viscosity and entropy are "quantum' —
“wandering” Planck constant.

Problem: the ratio 7/ depends on the dimension of spacetime (but does not
depend on the (conformal) field type).



Thank you for your attention!




Emergent gravity and Membrane paradigm

(general idea and very superficial overview)
[Jacobson, PRL (1995), e-Print: gr-qc/9504004]

1 Scenario: Emergent gravity
[Eling, JHEP (2008), e-Print: 0806.3165]

EMT of matter contributes to the

heat flux (and entropy increase)

inside horizon

[TpuHUMT
5KBUBAJ/IECHTHOCTHU:
JIOKAJIbHBIV TOPU30HT

Punepa B KaKI0M TOUKe . 6 Q =T 6 S S Q — f Tyv Eu d>v

Raychaudhuri equation relates
horizon area (and entropy)
nonequilibrium increase to Einstein tensor

equilibrium

+

Horizon area is
related to entropy

- 5Q = TS + W !
4l

A

S =

Einstein equation

Work of shear forses in
hydrodynamics

Raychaudhuri equation relates
horizon area (and entropy)

increase to shear (constructed SW = 277 / g oY
— L

from tangent vectors to

geodesics) :> g = E




Emergent gravity and Membrane paradigm

(general idea and very superficial overview)
[Jacobson, PRL (1995), e-Print: gr-qc/9504004]
[Eling, JHEP (2008), e-Print: 0806.3165]

1 Scenario: Emergent gravity

The principle of equilibrium |:> Einstein equation

equivalence:

Ridler's local horizon at o) Q =T6S

each point Prediction for viscosity
kA ilibri

Horizon areais ¢ — B nonequiiibrium :> n 1

related to entropy 4[}% 5Q =T85S + SW s A

2 Scenario: Membrane paradigm

Stretched horizon: ¢ Due to the slowdown of the time near the horizon, the matter
[Susskind, The Black Hole War, 20091  falling on it “stucks” at a certain distance from horizon

* “Spread” in the transverse direction.

p =10 true horizon
p =1, stretched horizon :> Membrane : 0 <p < le

[Thorne, Price, Macdonald, Black holes: the membrane paradigm (1986)]
* Membrane paradigm  [parikh, wilczek, PRD (1998), arXiv:gr-qc/9712077]

e Tt has hydrodynamic properties By integrating the action, we can obtain the Navier-
n 1 Stokes equation
* It has viscosit _ 1 1 —
y T S =— /d4$\/ —gR—l— P /dBCU Zl:hK+ Smatter
s Am 167 87



C O]."]."Elatﬂr With two EMTS [Birrell, Davies, Quantum Fields in Curved

Space, Cambridge University Press, 1982]

* Improved stress-energy tensor of a massless real scalar field:

1 N & o
Ty = (1 —2£)0,90,p + (26 — 5)77uv8a908 p —2£(0,0,p0)p + 577Wg08 O
* The correlator can be found in the Minkowski metric:
A A 4 240(¢ — 1/6)* ~
(0T 00 (2 Tas ()00 = 53 Twas (@ = ) + =Tl — 1)
\ J/ h e g
a piece universal for conformally deviation from conformal
symmetric theories symmetry

[Erdmenger, Osborn, Nucl.Phys.B (1997), arXiv:hep-th/9605009]

Tovas(b) = bububabs  Muabibs _ Mvabubs  1usbuba  Mwsbuba | Mualvs | Musllve _ TwNas
SO AP 410 4b10 4b10 4b10 808 808 165°

* The general structure follows from symmetry and dimensional considerations
_ bubvbabs  Muabybs  Tvabubs  NMupbiba  Mupbuba | Muedlvs | Muplive | 137uwnas

-:Z- ro b) = 7 T 7 7 T T T 7
pa (0) b12 10510 10510 10510 10510 80b° 80b° 80b°
_377uybab/3 _ 37}a/3b“by
10510 10p10 -

b* = b* — icby poles are shifted



I Fourier transform in Rindler space

The dependence on f goes away after integration in the horizon plane:

1
30m3(82 — (z — 2/)2 — iet)?

/ dx dy <O\Tuy(t, X,V, Z)TQB(O, 0,0,z")|0)n =

Local viscosity — at a certain distance from the horizon

4
p |t + 4922 — 51 — 42(2p> + 12) In £]
240(p? — 12)*72

DI (p) =

Viscosity per unit area of the horizon:

. / / _
n = [ dp 7710c<p) > U 14407T2lg

C

* Diverges in the limit Typical for Rindler space

l N O [Solodukhin, Living Rev. Rel. (2011), arXiv:1104.3712]
C



Ent]_"() [Page, PRD 25, 1499 (1982)]
py [Dowker, Class. Quant. Grav. (1994), arXiv:hep-th/9401159]

The energy-momentum tensor of accelerated scalar fields is well known

. 274 la]* A For the case
Tscalar _ <7T . ) ( L — Mu)
L™ 30  480x2/\“" T T3 {=1/6
ANy = Guy — Uy,

Corresponding pressure:

scalar _ 1 T . ‘a’4
prTia) = 3( 30 4807T2>
Local entropy
a 3 T =a/2m 1
— _p scalar _ 27T Sscalar —

Entropy per unit area of the horizon:




[Birrell, Davies, Quantum Fields in Curved

I Correlator with two EMTs
Space, Cambridge University Press, 1982]

Let's consider electromagnetic fields in Rg gauge:

T = Tul\,i[ + TM(,}/ + Tugjl °5® " EMT contains three contributions
1
M « . 5 .
Ty = —Fualy™ + 7w F? Maxwell's contribution
1 N 1 5 Contribution from the
E{A,ﬁ,,(@A) + A,0,(04) = 1, [0\ (04) + 5 (04)?] | gauge-fixing term

TMthOSt = 0,0, ¢+ 0,¢0,,¢c — 1,,0,c0°¢c Faddeev-Popov ghosts

G _
1, =

Propagators (Wightman function) in coordinate representation:

(01 A,y () Ay (0)|0) nr = — <(1+§)mw N 2(1—5)%%)

82 \ x? — iexg (x? — dexq)?
1 1

(Ole(2)e(0)|0)ar =

472 12 — jexg




I Correlator with two EMTs

The logic of calculations is similar to the case with the Dirac field.
* The contributions of the ghosts and gauge-fixing terms cancel each other:
(OIT;£ (@) T 23 ()]0 s = = (0T, (2)T.5 (1) [0) ua

The entire contribution is determined by the Maxwell term: the universal function

(010 () Tas () 002 = O M@V TH W)t = 3 Ty — )

Since the correlator differs only by the factor, the subsequent calculations are similar
to the case of scalar and Dirac fields.

Since <TT>

then 77photon — % 7,]Diranc

We finally obtain:

Does not depend on the gauge-parameter &

The result is gauge invariant.




I Entropy

Entropy can be found similarly to the case of spins 0 and 1/2

The energy-momentum tensor is known:  [Page, PRD 25, 1499 (1982)]

. 2T4 T2 2 11 4 A 5
<Tupyhoton> _ (ﬂ- 4+ ‘CL‘ o |a‘2) (Uuuu . )
15 6 2407 3
dp
oT

Also, the quadratic acceleration term contributes to the entropy

Sloc —

a

Local entropy (for Minkowski vacuum):

1

hoton

loc

Entropy per unit area of the horizon:




I Fourier transform in Rindler space

Let us perform integration in the Rindler horizon plane:

let's move on to polar coordinates

X =7rCcos¢, y=rsing

Integration can be done explicitly (poles are shifted from the real axis).

We obtain:

o0 2m
A~ A 1
/0 rdr/o do (0|Txy Ty |0)Mm = = 5.3

where o = —t?+ (2 — 2')? +ict




I Problem: higher dimensions, d=6,8...

* Let's try to generalize to conformal field theory in an arbitrary number of dimensions:

Shear viscosity:

'\
) ) CrT'Y (z—y) d
01T, ()T ()]0 1y = vt _ 9n(d)
O @ es WO = 1 = e =gl L 1= Or s %
‘7/,516/1)045 - Q(Iualuﬁ + INﬁIVoz) - %ﬂmﬂ?aﬂ

[J. Erdmenger and H. Osborn, Nucl. Phys. B 483,
431-474 (1997)]

Entropy density:
. Cpr?PT(2)6y
— lim 2(T ) = rr (5)%%
vr—1 81/ F(d -+ Q)pd

[M. Smolkin and S. N. Solodukhin, Phys. Rev. D 91,
no.4, 044008 (2015)]




I Bound for bulk viscosity

* Let us also find the correction to the speed of sound:

2 _ Op

Ot

* The energy and pressure of an accelerated fermion gas in the first nonzero order in
MdSS. |G. Y. Prokhorov, O. V. Teryaev and V. I. Zakharov, JHEP 03, 137 (2020)]

C

_ 72T N T?al*  17|al* 2 T N la|?
60 24 96072 12 4872
1 (77'('2T4 N T?|al? 17|a|4) 2 T2 N la|?
- - J— m —_
P=3\"%60 24 96072 12 " 4872

* In the Minkowski vacuum limit the mass correction to the speed of sound:

T T, 62_1_5m

S 3 9lal]?




I Bound for bulk viscosity

* By investigating the dispersion relation for sound waves using a holographic
approach, a limit on the bulk viscosity is supposed:

[A. Buchel, Phys. Lett. B 663, 286 (2008)]

* We will consider only the local viscosity in the limit of zero membrane thickness
and massive Dirac fields:

le—0 S=1/2

* We use the next Kubo formula for bulk viscesity:

N

Cloc = g lin hm pp dp’/ dx dy dTein<O\T5(T,:B,y,p)T,,”(O,O,O,p’)\O)M
0 — 00

The result is (in the order m2):




Anomalous transport phenomena

New (non-dissipative) effects are predicted at the intersection of quantum field theory

and gravity (only some of them):

*  Chiral Magnetic Effect (CME):

[K. Fukushima, D. E. Kharzeev, H. J. Warringa, PRD 78,
074033 (2008), 0808.3382]

(3*) = Ce*puaB*

* Axial Vortical Effect (AVE):

[D. T. Son, P. Surowka, PRL 103, 191601 (2009), 0906.5044]

(9h) = C(u® + p)w"
* Thermal part of AVE:

[K. Landsteiner, E. Megias, F. Pena-Benitez,
PRL 107, 021601 (2011), 1103.5006]

(34) ~ N T2

* Kinematic Vortical Effect (KVE)

[G. Y. Prokhorov, O. V. Teryaev, V. I. Zakharov, PRL 129,
151601 (2022), 2207.04449]

Gy = (Mw® + Aea’)w),

Associated with axial anomaly in the
electromagnetic field

C'e?

> (D, gK) = ————e" PR, Fos

8

Associated with an axial anomaly
in the gravitational field

<vuj5{b> = NGMV&BRMVPURCIBPU

Connection with anomaly:

A = =32V




I KVE, acceleration

* The relationship of KVE to anomaly can be obtained directly from the

conservative equations. [D.T. Son, P. Surowka, PRL, 103 (2009) 191601]
) ) A [Shi-Zheng Yang, Jian-Hua Gao, Zuo-Tang Liang, Symmetry 14 (2022) 5, 948]
The derivation is similar to: [M. Buzzegoli, Lect. Notes Phys. 987, 53-93 (2021)]
* Relation ‘ Al — Ay = 32N I verified by comparing KVE with anomaly:
F in Vs: 2 2 2 2 ™)
or spin Vz: A T m W a
= — — — | w
[GP, Teryaev, Zakharov, T 6 t 272 Q472 K712 K 1 1 1
JHEP, 02:146, 2019], | >\ T ou2 + Q772 32 = 38472
[V. E. Ambrus, JHEP, L uvaf Ap
08:016, 2020}, Viuda = 3847T2\/—_g8 Rywpliag
[A. Palermo, et al. JHEP 10 —~
(2021) 077] -
. A@B) _ (93 2 D o 53 5 19
For spin 3/2 in Ju " = a2 T g2 | Wk (_ -+ 2) /32 _ .
the RSA model.: 0 >\ 2d7° 8w 384m
Y g— . praf Ap [G. Y. Prokhorov, O. V. Teryaev, V. 1. Zakharov,
Vida 38472, /— gs Rywxpliag Phys. Lett. B 840, 137839 (2023), 2211.03865]
_

* The effect depends on acceleration - less studied than vorticity.

* New effects related to acceleration?



Motivation:

[Blasone, (2018), e-Print: 1911.06002]

From the point of view of the
quantum-statistical approach:

[Becattini, PRD (2018), arXiv:1712.08031]

Thus, the mean values of the thermodynamic
quantities normalized to Minkowski vacuum
should be equal to zero when the proper
temperature, measured by comoving observer,
equals to the Unruh temperature.

| am-0 @-T) |

Unruh effect

Formulation

The Minkowski vacuum is perceived by an
accelerated observer as a medium with a
finite (Unruh) temperature

Example:

[Prokhorov, Teryaev, Zakharov, PRD (2019), arXiv:1903.09697]

T4

. T?al*  17|al*
THY o _ ( o ) W,V
T e 60 24 960m2) " "
94 2012 4
_(77TT +T la|*  17]a] )A“”
180 72 288072

Well-known in Rindler space. But can be
obtained by a statistical method without
switching to Rindler coordinates

* Supports the “objective” interpretation of the
effect of the Unruh (in contrast to the fact that it
is just the effect of the detector).



I Minimal viscosity bound

Hydrodynamics in linear gradients - corrections to EMT with dissipation:

T/ﬂ/ _ T/jgeal + Tudyiss Tlui]cjieal — (5 —+ p)uuuy — PYuv
; 2
Tudz/lss - —U(Vuuu + vl/u,u — u,uuavauy — uyuavau,u) — (C — gn) Vaua(glw — ’U,M’U,V) + O(V2U)

Bound inspired by string theory:
KSS-bound

i)

[Kovtun, Son, Starinets, PRL (2005), arXiv:hep-th/0405231]

* There are no completely ideal fluids!
* Jtis believed that QGP near this limit
* does not cover case of Rindler space!

* Some “feeling”: according to the holographic principle, the viscosity is associated with the
scattering of gravitons on black brane, and entropy with the horizon area — their ratio will
be finite.

* Plenty of work about KSS Bound

* The simplest illustration: the uncertainty
principle for energy

T ~ ET free n £
:> — ~ —Tfree — ETfree z h
S~ S n

[Dobado, Llanes-Estrada, Rincon, AIP Conf.Proc. (2008), e-Print: 0804.2601]



I Rindler coordinates and stretched horizon

Rindler's metric describes the accelerated reference system:

ds* = p?dr® — dx* — dy* — dp”

* The relationship between Rindler t = psinht
coordinates and Minkowski coordinates: z = pcosht
Horizon :  ggo(p =0) =0

1
a = — Acceleration - the inverse distance to the horizon.
0

- 14
a, = u’'Vyu,

* As was said, the fields are stuck at a certain distance from the horizon:

p € [l 00)




Kubo formula: Rindler space

Due to the fluctuation-dissipation theorem, dissipation coefficients can be found from
fluctuations in equilibrium:

Kubo's formula for Viscosity [Zubarev, Nonequilibrium statistical
thermodynamics, Studies in soviet science, 1974]
1 : . .
. 4 1wt
n=lim — [ d*ze""0(t)([Txy (), Txy(0)])
w—0 W

* Can be obtained from the interaction vertex with gravitons 0g,,,T""

 Contains a double limitw, g — 0
First ¢ — O . Reflects the dissipative nature.

In the Rindler space: [Chirco, Eling, Liberati, PRD (2010), arXiv:1005.0475]

n = lim 0 dp// pdp/ dx dy dT@in<O’TXy(T, X, Y, p)TXy(O, 0,0, p")]0)Mm
l. —00

w—0 lc

* Inthelimit w — O, one can pass from the retarded Green's function to the
Wightman function.

per unit horizon area

":/z dp’ Nioc(p’)

C

*  We consider free _ Ty Tyy
fields: =05 /




Entropy derivation

[Becattini, Daher, Sheng, PLB

Thermodynamic relations are modified in a (2024), arXiv:2309.05789]
medium with spin: [Obukhov, Piskareva, Class.
Quantum Grav.(1989)]

1
dp = sdT + ndup + 55’“’de

In a state of global equilibrium, it contains the vorticity tensor.
For an accelerated medium:

— AyUy,
* Unlike viscosity case, it is necessary to
:> move away from the Minkowski vacuum
T =1Ty+dI’
p = —5({Tw)A"
Minkowsky vacuum: so.(T = Ty, ]a|) = S1oc(p)
la p

oo
Entropy per unit area of the horizon: ¢ — / dp S10c(p)
l

C




I Fourier transform in Rindler space

Finding residues at the poles and passing to the limit of zero frequency, we obtain:

lim I = P

w—0 57T2(,02 _ ,0/2)5

Taking the last integral over the distance to the horizon in the Fourier transform, we
obtain the local viscosity:

pine ) P+ 4972 — 51 — 42207 +12)In £
Mloc P) — 40(,02 _ lg)4ﬂ_2

By directly integrating over the distance to the horizon, we obtain the viscosity per
unit area of the horizon:




Generalization: universality for conformal
field theories

* For conformal field theory, the correlator of two EMTs has a universal form up to a
common coefficient: 1y i enoer and H. Osborn, Nucl. Phys. B 483, 431-474 (1997)]

—
CTjW,aB(x — )

(@ —y)? —ie(z — y)o]*

1 1
T = §(IW Lg+ Luglye) — 1 las Conformal central charge

(v — y),u(x — Yy
x—y)? —ic(x —y)o

IW:nW—Q(

* All calculations using Kubo formula are exactly the same for different fields -
universality of function describing local shear viscosity:

Con? P [p4 4p202 — 514 — A12(2p2 4 12) ln(ﬁ)}
77100(/0) ~ R0 : (p2 _ lg)4w2




I Species problem

< A
* Bekenstein-Hawking: BH —  ~&
; AGH
° Entanglement entropy: ¢ entangl ~ A BUT depends on the number
and type of fields
In particular, in accordance with that, we obtain:
Sscalar _ lsDirac _ isphoton — 1
6 12 360712

But the same for “entanglement” viscosity:

1 : 1 1
scalar __ — Dirac __ _— , photon _
" 6 12" 14407212
Their relation will be universal:
7 1
S 47

The “species problem” exists at the level of entropy and viscosity separately,
but disappears for their ratio.



I Correlator with two EMTs

Expand the two-point correlator, selecting various contributions to the EMT operator

(O|T 3 () Tap (1)10) ar = {01730 () T3 (1) 0) ar + (01T 00 ()T (1)]0) ar + (01T 5 (2) T35 () |0) s
+(01T, 5 (2) T35 (9)[0) ar + (O1T, 5 ()T 53 (1)|0) ar

e T
— 1 Xy Xy
| = I / +
M TS TS o
_I_ y y _|_ y y _|_
I ﬂ I
0 0
/\
G e host host
T T T ghost T ghos

Xy Xy
+ + TTT Y REERS




I Discussion

Objective interpretation of the Unruh effect

* Thus, the view of the Unruh effect as an objective effect associated with the
emergence of the media is strengthened:

-- In an accelerated frame, the Minkowski vacuum behaves like a fluid

Temperature of “vacuum fluid> 1" = 1y

Viscosity of the “vacuum fluid”> 7/s = 1/4x

Comparison with string theory

[Buchel, Liu and Starinets, Nucl.Phys.B (2005) arXiv:hep-th/0406264]

n 1 i 135(3) From string theory: KSS-bound is saturated
I E[ 8(2 gz Nc)3 /2 + ] for strong coupling (big ’t Hooft coupling)

* In our case, the opposite situation — KSS-bound is saturated for free fields.

Free fields - what is the source of viscosity?

Naively: 1) ~~ [ free :> N — 00
lfree — OO




I Entropy derivation

* Various approaches to find entropy in the space with horizon

[Solodukhin, Living Rev. Rel. (2011), arXiv:1104.3712]

Thermodynamic relations are modified in a
medium with spin

omy= Lt )

Entropy per unit area of the horizon:
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