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Motivation

1 We want to explore the spectrum of the Laplace-Beltrami operator H := �4g on a
compact manifold (M; g) acting on L2(M):

H	(x ) = �4g	(x ) = Ek	(x ); k = 0; 1; : : : (1)

Quantization of a point particle (1D sigma model):

S[x ] =
1
2

Z
R

dt
�
gij _x i _x j

�
(2)

with phase space T�M.
2 Main difficulty: Solving PDEs is hard.
3 Reasonable simplification: Find first few Ek . Can we find a suitable finite-dimensional

truncation
H (p)	(p) = Ek	

(p); k = 0; 1; : : : ; p; (3)

where H (p) is a finite matrix?
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Strategy

Idea: embed everything into a product of “smallest quantizable objects”.
“Smallest quantum object”: an irreducible representation �� of a symmetry group G .
Classical analog of ��?

Answer: (co)adjoint orbit O� � g� [Kirillov’61]

Key property: O� is naturally symplectic (“phase space quanta”).
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Geometric idea

[Bykov’12], [Bykov,Kuzovchikov’24]
Suppose T�M is almost symplectomorphic to O� �O�0 � � � � (maybe in some limit in
�; �0; : : :). Then, after geometric quantization, the harmonics of the Laplace operator
factorize as �� 
 ��0 
 � � � (in this limit):

T�M' lim
�;�0;:::

O� � O�0 � � � � () L2(M) ' lim
�;�0;:::

�� 
 ��0 
 � � � (4)

Finite �’s provide a natural “spin chain” truncation.
H (p) is typically an all-to-all spin chain Hamiltonian.
How to find such “almost symplectomorphism”? Recipe: find a Lagrangian embedding

M ,! lim
�;�0;:::

O� � O�0 � � � � (5)

with a sufficiently large/dense Weinstein tubular neighborhood which is almost T�M
(maybe in a limit in �’s).
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Geometric quantization

Consider a compact semisimple classical group G witn an irrep ��. Geometric
quantization of its orbits is described by the Borel-Weil-Bott theorem : there exists a
correspondence

(O�; !) ↭ L� �! O�; (6)

where
c1
�
L�
�
= [!] 2 H 2(O�;Z) and �hol�L�� := H 0�O�;L�

�
' ��: (7)

Example: G = SU(2), � 2 Z+ (spin), O� ' SU(2)=U(1) ' S2, ! = � dz^d�z
(1+jz j2)2 , L� ' O(�),

�hol�O(�)� ' Sym�
�
C2� ' Fock space of two oscillators with ay � a = �: (8)

Viacheslav Krivorol (ITMP) 6 / 11



Simplest example

1 Particle mechanics on the sphere
�
T�CP1� is almost symplectomorphic to a

CP1 � CP1 spin chain with ! = �
�
!FS

1 + !FS
2
�

in the large spin limit �!1.
Intuitively, CP1 � CP1 is a one-point fiber compactification of T�CP1.

2 Corresponding Lagrangian embedding: CP1 ,! CP1 � CP1

�z1 � z2 = 0  
�
z1; z2

�
(9)

where K12 := �z1 � z2 is a “momentum” in T�CP1.
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Quantization of CP1
� CP1

Quantization yields the Hilbert space:

H ' Sym�

�
C2�
 Sym�

�
C2� ' �M

k=0

Sym2k
�
C2�: (10)

Oscillators z�
i 7! ��

1
2 a�

i satisfy:
h
a�
i ;
�
ay
j
��i

= ����ij ; ay
i � ai = �; i ; j = 1; 2; �; � = 1; 2: (11)

States have the form:

	�1:::��j�1:::��

�
ay

1
��1 � � �

�
ay

1
����ay

2
��1 � � �

�
ay

2
��� j0i: (12)

Hamiltonian is quadratic in momenta:

H =
�
ay

1 � a2
��

ay
2 � a1

�
=) Ek = k(k + 1); k = 0; 1; : : : ; �: (13)

Observation: limit �!1 recovers the spherical harmonics spectrum.
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Spin chain limit

Classical spin chain action:

S[z1; z2] =

Z
R

dt
�
i�z1 � _z1 + i�z2 � _z2 � (�z1 � z2)(�z2 � z1)

�
; �zi � zi = �: (14)

Statement: As �!1, this action becomes equivalent to the sphere sigma model:

S[u ] =
Z
R

dt

 
_u _�u�

1 + ju j2
�2
!
: (15)

Proof idea: “Integrate out” the momenta K12 := �z1 � z2 and K21 := �z2 � z1 using polar
decomposition. Define Z = (z1 z2) as

Z = UH ; H 2 := K = ZyZ =

 
� K12

K21 �

!
(16)

where U is unitary. The momenta K12 and K21 are unrestricted when �!1 and can
be integrated out. The matrix U can be parametrized by the sphere coordinate u .
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Further results

1 Method applies to flag manifolds [Bykov, Kuzovchikov ’24]:

Fn1;:::;nm '
U(n)

U(n1)� � � � � U(nm)
,! Gr(n1;n)� � � � �Gr(nm ;n): (17)

Spectrum for various metrics can be computed.
2 Magnetic monopole (Bochner) Laplacian describable via “twisting” of symplectic

forms.
3 Generalization to N = 2 and N = 4 SUSY cases (Dolbeault/de Rham Laplacians,

Dirac operator) [Bykov, Krivorol, Kuzovchikov ’25].
4 First steps for SO and Sp cases [Bykov, Kuzovchikov ’24].
5 Current project: Particle on Lobachevsky plane as two-site SL(2;R) spin chain.
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Discussion

Results:
1 We present finite-dimensional spin chain truncations for the sigma model on the

sphere, providing exact solutions for a finite number of harmonics.
2 The spin chain – sigma model connection is established via “polar decomposition

variables”.
3 The framework generalizes to flag manifolds with SUSY and monopole field.

Open questions:
1 Extension to other groups: SO, Sp, exceptional, non-compact, infinite-dimensional

cases
2 Can we construct “long spin chains” using this method? Are they integrable?
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