Sigma Models as Spin Chains Limit For "Advances in Quantum Field Theory" 2025, Dubna

Viacheslav Krivorol

Based on work with Dmitri Bykov and Andrew Kuzovchikov

Institute for Theoretical and Mathematical Physics
The work was supported by RSF grant № 22-72-10122

Outline

- Motivation: Truncation of quantum 1D sigma models (Laplace spectral problem)
- @ Geometric idea: Symplectic geometry and geometric quantization of (co)adjoint orbits
- **3** Example: Particle on the sphere as a large $\mathbb{CP}^1 \times \mathbb{CP}^1$ spin chain
- Further developments and directions

Motivation

• We want to explore the spectrum of the Laplace-Beltrami operator $H := -\triangle_g$ on a compact manifold (\mathcal{M}, g) acting on $L^2(\mathcal{M})$:

$$H\Psi(x) = -\triangle_g \Psi(x) = E_k \Psi(x), \quad k = 0, 1, \dots$$
 (1)

Quantization of a point particle (1D sigma model):

$$\mathcal{S}[x] = rac{1}{2}\int\limits_{\mathbb{R}} \mathrm{d}t \left(g_{ij}\dot{x}^i\dot{x}^j
ight)$$

with phase space T^*M .

- Main difficulty: Solving PDEs is hard.
- 3 Reasonable simplification: Find first few E_k . Can we find a suitable finite-dimensional truncation

$$H^{(p)}\Psi^{(p)} = E_k \Psi^{(p)}, \quad k = 0, 1, \dots, p,$$
 (3)

where $H^{(p)}$ is a finite matrix?

Strategy

- Idea: embed everything into a product of "smallest quantizable objects".
- "Smallest quantum object": an irreducible representation ρ_{λ} of a symmetry group G.
- Classical analog of ρ_{λ} ?

Answer: (co)adjoint orbit $\mathcal{O}_{\lambda} \subset \mathfrak{g}^*$ [Kirillov'61]

Key property: \mathcal{O}_{λ} is naturally symplectic ("phase space quanta").

Geometric idea

[Bykov'12], [Bykov,Kuzovchikov'24]

• Suppose $T^*\mathcal{M}$ is almost symplectomorphic to $\mathscr{O}_{\lambda} \times \mathscr{O}_{\lambda'} \times \cdots$ (maybe in some limit in $\lambda, \lambda', \ldots$). Then, after geometric quantization, the harmonics of the Laplace operator factorize as $\rho_{\lambda} \otimes \rho_{\lambda'} \otimes \cdots$ (in this limit):

$$\mathrm{T}^*\mathcal{M}\simeq\lim_{\lambda,\lambda',\dots}\mathscr{O}_\lambda imes\mathscr{O}_{\lambda'} imes\dots \iff L^2(\mathcal{M})\simeq\lim_{\lambda,\lambda',\dots}
ho_\lambda\otimes
ho_{\lambda'}\otimes\dots$$
 (4)

- Finite λ 's provide a natural "spin chain" truncation.
- \bullet $H^{(p)}$ is typically an all-to-all spin chain Hamiltonian.
- How to find such "almost symplectomorphism"? Recipe: find a Lagrangian embedding

$$\mathcal{M} \hookrightarrow \lim_{\lambda,\lambda',\dots} \mathscr{O}_{\lambda} \times \mathscr{O}_{\lambda'} \times \cdots \tag{5}$$

with a sufficiently large/dense Weinstein tubular neighborhood which is almost $T^*\mathcal{M}$ (maybe in a limit in λ 's).

Geometric quantization

Consider a compact semisimple classical group G with an irrep ρ_{λ} . Geometric quantization of its orbits is described by the Borel-Weil-Bott theorem: there exists a correspondence

$$(\mathscr{O}_{\lambda},\omega) \quad \Longleftrightarrow \quad \mathscr{L}_{\lambda} \longrightarrow \mathscr{O}_{\lambda}, \tag{6}$$

where

$$c_1(\mathcal{L}_{\lambda}) = [\omega] \in H^2(\mathscr{O}_{\lambda}, \mathbb{Z}) \quad \text{and} \quad \Gamma^{\text{hol}}(\mathcal{L}_{\lambda}) := H^0(\mathscr{O}_{\lambda}, \mathcal{L}_{\lambda}) \simeq \rho_{\lambda}.$$
 (7)

$$\underline{\text{Example:}} \,\, G = \mathrm{SU}(2), \, \lambda \in \mathbb{Z}_+ \,\, (\mathrm{spin}), \,\, \mathscr{O}_\lambda \simeq \mathrm{SU}(2)/\mathrm{U}(1) \simeq \mathbb{S}^2, \, \omega = \lambda \tfrac{\mathrm{d} z \wedge \mathrm{d} \bar{z}}{(1+|z|^2)^2}, \, \mathcal{L}_\lambda \simeq \mathcal{O}(\lambda),$$

$$\Gamma^{\mathrm{hol}}(\mathcal{O}(\lambda)) \simeq \mathrm{Sym}^{\lambda}(\mathbb{C}^2) \simeq \mathrm{Fock} \ \mathrm{space} \ \mathrm{of} \ \mathrm{two} \ \mathrm{oscillators} \ \mathrm{with} \ a^{\dagger} \circ a = \lambda.$$
 (8)

Simplest example

- Particle mechanics on the sphere $(T^*\mathbb{CP}^1)$ is almost symplectomorphic to a $\mathbb{CP}^1 \times \mathbb{CP}^1$ spin chain with $\omega = \lambda(\omega_1^{FS} + \omega_2^{FS})$ in the large spin limit $\lambda \to \infty$. Intuitively, $\mathbb{CP}^1 \times \mathbb{CP}^1$ is a one-point fiber compactification of $T^*\mathbb{CP}^1$.

$$\bar{z}_1 \circ z_2 = 0 \quad \leftarrow \quad (z_1, z_2) \tag{9}$$

where $K_{12} := \bar{z}_1 \circ z_2$ is a "momentum" in $T^*\mathbb{CP}^1$.

Quantization of $\mathbb{CP}^1 \times \mathbb{CP}^1$

• Quantization yields the Hilbert space:

$$\mathscr{H} \simeq \operatorname{Sym}_{\lambda}(\mathbb{C}^{2}) \otimes \operatorname{Sym}_{\lambda}(\mathbb{C}^{2}) \simeq \bigoplus_{k=0}^{\lambda} \operatorname{Sym}_{2k}(\mathbb{C}^{2}).$$
 (10)

Oscillators $z_i^{\alpha} \mapsto \lambda^{-\frac{1}{2}} a_i^{\alpha}$ satisfy:

$$\left[a_i^{lpha},\left(a_j^{\dagger}
ight)^{eta}
ight]=\delta^{lphaeta}\delta_{ij},\quad a_i^{\dagger}\circ a_i=\lambda,\quad i,j=1,2,\quad lpha,eta=1,2.$$

States have the form:

$$\Psi_{\alpha_1...\alpha_{\lambda}|\beta_1...\beta_{\lambda}}(a_1^{\dagger})^{\alpha_1}\cdots(a_1^{\dagger})^{\alpha_{\lambda}}(a_2^{\dagger})^{\beta_1}\cdots(a_2^{\dagger})^{\beta_{\lambda}}|0\rangle.$$
 (12)

Hamiltonian is quadratic in momenta:

$$H=(a_1^\dagger\circ a_2)(a_2^\dagger\circ a_1) \quad \Longrightarrow \quad E_k=k(k+1), \quad k=0,1,\ldots,\lambda.$$

ullet Observation: limit $\lambda \to \infty$ recovers the spherical harmonics spectrum.

Spin chain limit

• Classical spin chain action:

$$\mathcal{S}[z_1,z_2] = \int\limits_{\mathbb{R}} \mathrm{d}t \Big(i ar{z}_1 \circ \dot{z}_1 + i ar{z}_2 \circ \dot{z}_2 - (ar{z}_1 \circ z_2) (ar{z}_2 \circ z_1) \Big), \quad ar{z}_i \circ z_i = \lambda.$$

• Statement: As $\lambda \to \infty$, this action becomes equivalent to the sphere sigma model:

$$S[u] = \int_{\mathbb{R}} dt \left(\frac{\dot{u}\dot{u}}{\left(1 + |u|^2\right)^2} \right). \tag{15}$$

• Proof idea: "Integrate out" the momenta $K_{12}:=\bar{z}_1\circ z_2$ and $K_{21}:=\bar{z}_2\circ z_1$ using polar decomposition. Define $\mathcal{Z}=\begin{pmatrix} z_1 & z_2 \end{pmatrix}$ as

$$\mathcal{Z} = UH, \quad H^2 := K = \mathcal{Z}^{\dagger} \mathcal{Z} = \begin{pmatrix} \lambda & K_{12} \\ K_{21} & \lambda \end{pmatrix}$$
 (16)

where U is unitary. The momenta K_{12} and K_{21} are unrestricted when $\lambda \to \infty$ and can be integrated out. The matrix U can be parametrized by the sphere coordinate u.

Further results

Method applies to flag manifolds [Bykov, Kuzovchikov '24]:

$$\mathscr{F}_{n_1,\ldots,n_m}\simeq rac{\mathrm{U}(n)}{\mathrm{U}(n_1) imes\cdots imes\mathrm{U}(n_m)}\hookrightarrow \mathrm{Gr}(n_1,n) imes\cdots imes\mathrm{Gr}(n_m,n). \hspace{1cm} (17)$$

Spectrum for various metrics can be computed.

- Magnetic monopole (Bochner) Laplacian describable via "twisting" of symplectic forms.
- **3** Generalization to $\mathcal{N}=2$ and $\mathcal{N}=4$ SUSY cases (Dolbeault/de Rham Laplacians, Dirac operator) [Bykov, Krivorol, Kuzovchikov '25].
- First steps for SO and Sp cases [Bykov, Kuzovchikov '24].
- **5** Current project: Particle on Lobachevsky plane as two-site $SL(2, \mathbb{R})$ spin chain.

Discussion

Results:

- We present finite-dimensional spin chain truncations for the sigma model on the sphere, providing <u>exact solutions</u> for a finite number of harmonics.
- The spin chain sigma model connection is established via "polar decomposition variables".
- The framework generalizes to flag manifolds with SUSY and monopole field.

Open questions:

- Extension to other groups: SO, Sp, exceptional, non-compact, infinite-dimensional cases
- Oan we construct "long spin chains" using this method? Are they integrable?