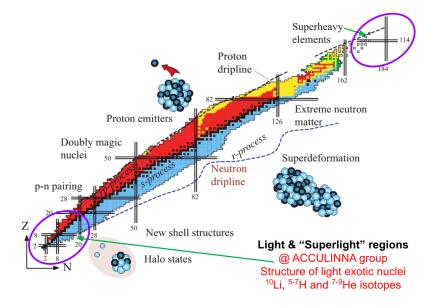
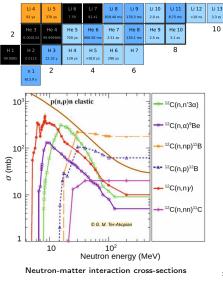
Stilbene-based neutron TOF-spectrometer

Anh Mai


ACCULINNA group, Flerov Laboratory of Nuclear Reactions

$60^{\rm th}$ meeting of the PAC for Nuclear Physics 23 January 2025, JINR

Main areas of interest at FLNR at nuclide chart



Motivation

	Li 4 91 ys	Li 5 370 ys	Li 6 7.59	Li 7 92.41	Li 8 839.40 ms	Li 9 178.3 ms	Li 10 2.0 zs	Li 11 8.75 ms	Li 12 <10 ns	Li 13 3.3 zs
2	He 3 0.000134	He 4 99.999866	He 5 700 ys	He 6 806.92 ms	He 7 2.51 zs	He 8 119.1 ms	He 9 2.5 zs	He 10 3.1 zs		10
H 1 99.9885	H 2 0.0115	H 3 12.32 y	H 4 139 ys	H 5 >910 ys	H 6 290 ys	H 7		8		
	n 1 613.9 s	2		4		6				

 $\begin{array}{l} \mbox{Measurement of correlations,} \\ \Rightarrow \mbox{ detection of } neutrons \ \mbox{in coincidences with} \\ \mbox{charged reaction products is needed.} \end{array}$

Motivation

in accordance with different neutron energies

 $\begin{array}{l} \mbox{Measurement of correlations,} \\ \Rightarrow \mbox{ detection of } neutrons \ \mbox{in coincidences with} \\ \mbox{charged reaction products is needed.} \end{array}$

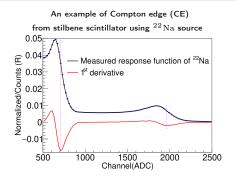
Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability, non-flammable
- greatly sensitive to neutrons
 → well-suited in our range
- excellent $n \gamma$ discrimination
- \Rightarrow Stilbene was implemented @ ACCULINNA-2.

2/9

Stilbene based neutron spectrometer

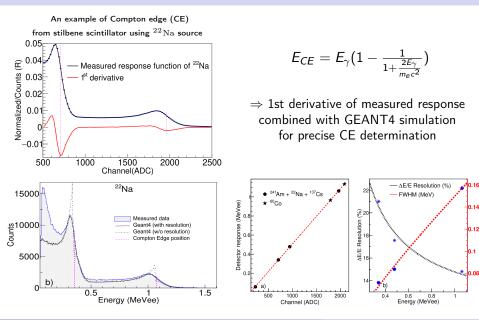
- unsettled incident neutron energy


 scintillator response correlation
 → TOF method is applied,
- undesirable $\gamma\text{-background}$ $\rightarrow n-\gamma$ separation performance,
- light output is non-linear and different for diverse particles,
- neutron registration efficiency

The neutron spectrometer assembly @ ACCULINNA-2

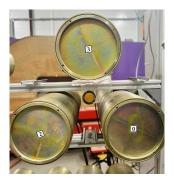
 \Rightarrow The characterization of neutron TOF spectrometer, where amplitude and time resolution, $n - \gamma$ discrimination, light output response and detection efficiency were investigated.

1. Gamma measurements


Amplitude calibration

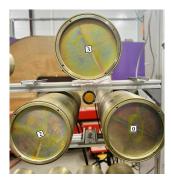
$$E_{CE} = E_{\gamma} \left(1 - \frac{1}{1 + \frac{2E_{\gamma}}{m_e c^2}}\right)$$

 \Rightarrow 1st derivative of measured response combined with GEANT4 simulation for precise CE determination

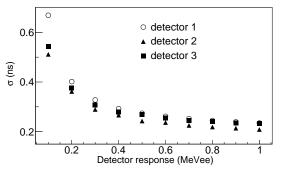

Amplitude calibration

A. Mai

Time resolution

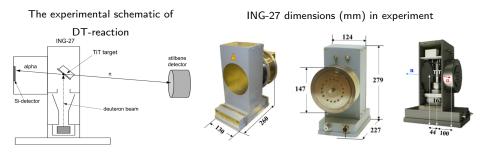

 $\gamma-\gamma$ coincidence measurement

$$\begin{split} \sigma_1^2 &= \frac{1}{2} (\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2) \\ \sigma_2^2 &= \frac{1}{2} (\sigma_{12}^2 - \sigma_{13}^2 + \sigma_{23}^2) \\ \sigma_3^2 &= \frac{1}{2} (-\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2) \end{split}$$


Time resolution

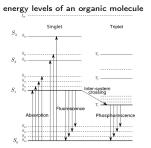
 $\gamma-\gamma$ coincidence measurement

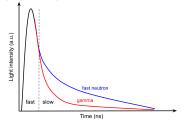
$$\begin{split} \sigma_1^2 &= \frac{1}{2} (\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2) \\ \sigma_2^2 &= \frac{1}{2} (\sigma_{12}^2 - \sigma_{13}^2 + \sigma_{23}^2) \\ \sigma_3^2 &= \frac{1}{2} (-\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2) \end{split}$$


Time resolution relies upon the amplitude signal

- $\rightarrow\,$ different range of data derives from disparate signal sizes,
- $\rightarrow\,$ low-energy events are associated with the registration of rescattered $\gamma\text{-quanta}.$

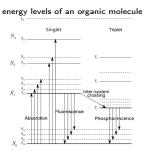
2. Neutron measurement


ING-27 DT neutron generator

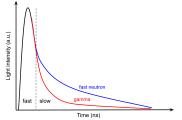

- a deuteron-beam @ 100 keV bombards a thin titanium-tritium TiT target by means of $d + t \rightarrow \alpha + n$ fusion reaction to produce 14-MeV neutrons,
- the neutron generator has an intensity up to 10^8 n/s in 4π ,
- α -particles were registered by a 64-pixel (8 \times 8 strip) DSSD @ 100 mm from the target,
- stilbene was placed at a distance of 15 cm for neutron detection.

Neutron-gamma discrimination

The scintillation process by means of π -electronic

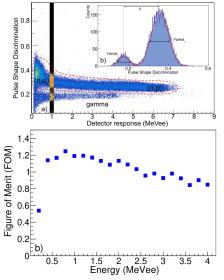


Timing signals for gamma and neutron in the scintillator



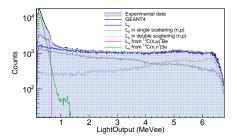
Neutron-gamma discrimination

The scintillation process by means of π -electronic



Timing signals for gamma and neutron in the scintillator

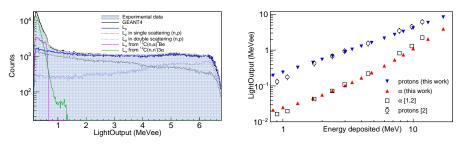
Illustration of neutron-gamma separation by


Pulse Shape Analysis from the 14-MeV neutron generator.

A. Mai

Light output response in organic scintillator

Neutron interaction with stilbene scintillator leads to a large number of different processes



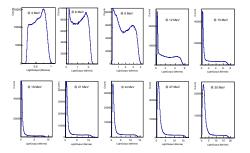
Light output response in organic scintillator

Neutron interaction with stilbene scintillator Light leads to a large number of different processes

Light output response of stilbene scintillator

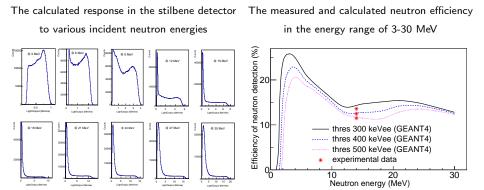
to protons and alpha particles

 \rightarrow Chiefly, protons and α -particles produce the main light in the stilbene detector, \rightarrow The response of proton + α -particles was simulated and reconstructed with measured


data, and compared with other works,

 \rightarrow Knowing the proton-response is the key to determine the incoming neutron energy.

```
    V. Verbinski et al., Nucl. Instrum. Methods 65 (1), 8–25 (1968).
    R.L. Craun and D.L. Smith, Nucl. Instrum. Methods 80, 239–244 (1970).
```


Neutron registration efficiency

The calculated response in the stilbene detector

to various incident neutron energies

Neutron registration efficiency

 \rightarrow Measured data at 14 MeV was compared with GEANT4, thus neutron registration can be estimated in other energy ranges from 3-30 MeV.

- The performance of stilbene based modular neutron spectrometer @ ACCULINNA-2 was characterized in this work, in terms of amplitude and time resolution, neutron/gamma separation performance and detection efficiency in the detector,
- I also engage in the preparation and conduct of experiments,
- My wishes are not only to analyze the data but also to master the physical foundations of the models underlying the nuclear reactions description, then a path way for PhD @ JINR, excel at Nuclear Physics

 a real physicist.

Much appreciated for your attention.!