The JUNO experiment

Maxim Gonchar

Dzhelepov Laboratory for Nuclear Problems, JINR

1 INTRODUCTION

² Setup

3 STATUS

4 Physics

5 CONCLUSIONS

Mixing Masses Why? 🏠

MANDATORY SLIDE I: NEUTRINO MIXING

Weak and mass eigenstates differ:

 $|
u_{lpha}
angle = \sum U^*_{lpha i} |
u_i
angle$

lpha~- flavor states

i - mass statesMixing parametrized by:

- three mixing angles:
- $heta_{12}, heta_{23}, heta_{13}$,
- CP-violating phase:

 $\delta_{\rm CP}.$

Mixing Masses Why? 🐴

MANDATORY SLIDE I: NEUTRINO MIXING

Weak and mass eigenstates differ: $|\nu_{\alpha}\rangle = \sum U^*_{\alpha i} |\nu_i\rangle$ α – flavor states i - mass statesMixing parametrized by: $\theta_{12}, \theta_{23}, \theta_{13},$ three mixing angles: $\delta_{\rm CD}$. CP-violating phase: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

 $\checkmark \theta_{23} \approx 45^\circ$ established through atmospheric and accelerator experiments: possibly maximal. ✓ $\theta_{12} \approx 34^{\circ}$ established through solar experiments and KamLAND: large, but not maximal. ✓ $\theta_{13} \approx 8^{\circ}$ established by reactor: Dava Bay, RENO, Double Chooz, NOvA and T2K • δ_{CP} unknown:

Mixing Masses Why? *

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Mass splitting: oscillations PDG2020

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m^2_{32}\right|_{\rm NO} = (2.453\pm 0.033) \times 10^{-3}\,{\rm eV}^2$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$

Mixing Masses Why? *

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Mass splitting: oscillations PDG2020

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, {\rm eV}^2$
- $\left|\Delta m^2_{32}\right|_{\rm NO} = (2.453\pm 0.033) \times 10^{-3}\,{\rm eV}^2$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$
- Mass ordering: is u_1 lighter than u_3 ?

Mixing Masses Why? *

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Mass splitting: oscillations PDG2020

•
$$\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, {\rm eV}^2$$

•
$$\left|\Delta m^2_{32}\right|_{\rm NO} = (2.453 \pm 0.033) \times 10^{-3} \, {\rm eV}^2$$

- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$
- Mass ordering: is ν_1 lighter than ν_3 ?

Neutrino mass

• Mass limits, meV: $m_2, m_3 > 0$ $\sum m_i \gtrsim 60$ $m_i \lesssim 120$ $m_\beta < 900$ $\langle m_{\beta\beta} \rangle < 156$ $m_{\text{light}} \lesssim 500$

oscillations

cosmology

direct $0\nuetaeta$

Kamland-ZEN

[2203.02139]

Planck[™]

KATRIN [2105.08533]

Mixing Masses Why? *

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Mass splitting: oscillations PDG2020

•
$$\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, {\rm eV}^2$$

•
$$\left|\Delta m^2_{32}\right|_{\rm NO} = (2.453 \pm 0.033) \times 10^{-3} \, {\rm eV}^2$$

• $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$

NEUTRINO MASS ORDERING (NMO): WHY BOTHER?

- Absolute neutrino mass scale neutrino masses m_1 , m_2 and m_3 may be measured only via effective masses and Δm_{21}^2 , Δm_{31}^2 (including NMO).
- Neutrinoless double decay effective masses $\langle m_{\beta\beta}\rangle$ depend on NMO.

NEUTRINO MASS ORDERING (NMO): WHY BOTHER?

- Absolute neutrino mass scale
- Neutrinoless double decay
- Core collapse Supernovae:
 - Neutrinos contribute to the collapse process: collective neutrino oscillations
 - ▶ NMO especially important at pre-collapse stage ~day before
 - Nucleosynthesis

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$

$$\begin{split} 1 & -P_{\overline{\nu}_e \to \overline{\nu}_e} = \sin^2 2\theta_{13} \left(\sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} + \cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} \right) \\ + \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} \\ E_{\rm vis} \approx E_\nu - 0.78 \, {\rm MeV} \end{split}$$

Mixing Masses Why? *

Mixing Masses Why? *

Mixing Masses Why? *

Mixing Masses Why? 🛠

Challenges

- Unreliable antineutrino spectrum model:
- Energy resolution of the detector $\sigma < 3\%$ at 1 MeV:
- Energy scale of the detector (uncertainty < 1%):

 $E_{\rm vis}\approx E_\nu-0.78\,{\rm MeV}$

 $\stackrel{\hookrightarrow}{\hookrightarrow} \text{resolve the peaks}\\ \stackrel{\hookrightarrow}{\to} \text{ensure the peak positions}$

 \hookrightarrow measure reference spectrum

 $\mathsf{SBL}/\mathsf{MBL}$ — short/medium baseline

Mixing Masses Why? 🛠

Challenges

- Unreliable antineutrino spectrum model:
- Energy resolution of the detector $\sigma < 3\%$ at 1 MeV:
- Energy scale of the detector (uncertainty < 1%):

 $E_{\rm vis}\approx E_\nu-0.78\,{\rm MeV}$

 $\stackrel{\hookrightarrow}{\hookrightarrow} \text{resolve the peaks}$ $\stackrel{\hookrightarrow}{\hookrightarrow} \text{ensure the peak positions}$

 \hookrightarrow measure reference spectrum

 $\mathsf{SBL}/\mathsf{MBL}$ — short/medium baseline

- Change of oscillation period with ordering \ll energy resolution
- Cumulative effect across most of the energy range

 $E_{\rm vis}\approx E_\nu-0.78~{\rm MeV}$

- Change of oscillation period with ordering « energy resolution
- Cumulative effect across most of the energy range

 $E_{\rm vis}\approx E_\nu-0.78~{\rm MeV}$

Change of oscillation period with ordering
 « energy resolution

Introduction Setup Status Physics Conclusions

- Cumulative effect across most of the energy range
- Possible impact: fine structure in reactor $\overline{\nu}_e$ spectrum
 - need a reference measurement!

Mixing Masses Why? *

 $E_{\rm vis} \approx E_{\nu} - 0.78 \, {\rm MeV}$

Experimental setup

JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

• TAO — Taishan Antineutrino Observatory

 $\begin{array}{c} \mbox{Yangjian (YJ)} & \mbox{Taishan (TS)} \\ \mbox{Thermal power, GW} & 2.9 \times 6 & 4.6 \times 2 \\ \mbox{Total, GW} & 26.6 \\ & \mbox{signal} \end{array}$

JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

• TAO — Taishan Antineutrino Observatory

Yangjian (YJ)Taishan (TS)Thermal power, GW 2.9×6 4.6×2 Total, GW26.6signal

JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

• TAO — Taishan Antineutrino Observatory

Yangjian (YJ)Taishan (TS)Daya Bay/Ling AoWorldThermal power, GW 2.9×6 4.6×2 2.9×6 2.9×6 Total, GW26.617.4...signalbackground

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

LS — Liquid Scintillator LY — Light Yield

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

Support

• Stainless steel structure

LS — Liquid Scintillator LY — Light Yield

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

Support

• Stainless steel structure

- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron

Light collection

- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

۲

Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

Coils

• Compensation of the Earth Magnetic Field

Support

Stainless steel structure

- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron

Light collection

- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs

JUNO DETECTOR

More light \rightarrow better resolution! More statistics!

Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

Coils

• Compensation of the Earth Magnetic Field

Support

• Stainless steel structure

- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron
- PS Plastic Scintillator

Muon veto

- Top Tracker: 3 layers PS
- Water pool

Light collection

- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs

Map Detectors

JUNO AND TAO DETECTORS

	JUNO
Attention	Energy resolution $\sigma \searrow$
Method	Light collection $\mathring{/}$
Scintillator	LS
	18k 20"
FIVE 15	+26k 3"
Coverage, %	78
Light col. p.e./MeV	1665
σ_E at 1 MeV, %	2.9
Thermal power, GW	26.6
Baseline	52.5 km
IBD/day	47

JUNO AND TAO DETECTORS

.....

	TAU	JUNO
Attention	Energy resolution $\sigma \downarrow$	
Method	Light collection $\mathring{/}$ Dark noise \searrow	
Scintillator	GdLS @ -50°C	LS
PMTs	SiPM	18k 20"
	1.5M 5 mm	+26k 3"
Coverage, %	94	78
Light col. p.e./MeV	4500	1665
σ_E at 1 MeV, %	2	2.9
Thermal power, GW	4.6	26.6
Baseline	44 m	52.5 km
IBD/day	1000	47

CENTRAL DETECTOR ASSEMBLY

CD Water PMT Veto TAO

CENTRAL DETECTOR ASSEMBLY

CD Water PMT Veto TAO

CENTRAL DETECTOR ASSEMBLY

CD Water PMT Veto TAO

CD Water PMT Veto TAO

CD Water PMT Veto TAO

CD Water **PMT** Veto TAO

Photomultipliers and electronics

CD Water PMT Veto TAO

PHOTOMULTIPLIERS AND ELECTRONICS

January 24, 2025 12 / 28

CD Water PMT Veto TAO

Photomultipliers and electronics

CD Water PMT Veto TAO

CD Water PMT Veto TAO

TOP TRACKER MUON VETO INSTALLATION

Maxim Gonchar (DLNP)

January 24, 2025 13 / 28

CD Water PMT Veto TAO

TOP TRACKER MUON VETO INSTALLATION

Maxim Gonchar (DLNP)

January 24, 2025 13 / 28

CD Water PMT Veto TAO

TAO CONSTRUCTION

Maxim Gonchar (DLNP)

January 24, 2025 14 / 28

TAO CONSTRUCTION

Maxim Gonchar (DLNP)

TAO CONSTRUCTION

Maxim Gonchar (DLNP)

Physics of neutrino

🖌 🗶 🔹 🔅 🏓 δ p n Ονββ

SENSITIVITY TO NEUTRINO MASS ORDERING

Signal and background

- Inverse beta decay:
 - $\overline{\nu}_e + p \rightarrow e^+ + n$

 \hookrightarrow double coincidence

• Signal: 47 $\overline{
u}_e/{
m day}$, bkg 9%

JUNO NMO, CPC (2025) [2405.18008] JUNO+accelerator [2008.11280] JUNO+IceCube [1911.06745]

🛠 \star • 😳 🐆 δ p n Ονββ

SENSITIVITY TO NEUTRINO MASS ORDERING

0 1 $b n n 0 \nu \beta \beta$

SENSITIVITY TO NEUTRINO MASS ORDERING

Impact of systematics:

10

 Combination of reactor and atmospheric channels within JUNO is investigated.

> January 24, 2025 15 / 28

* * • ۞ 券 δ p n Ονββ

JUNO AND NEUTRINO OSCILLATION PARAMETERS

[2204.13249]

- Percent precision for $\Delta m^2_{21}/\Delta m^2_{31}$: 100 days
- Few permille level for $\Delta m^2_{21}/\Delta m^2_{31}/\sin^2 2 heta_{12}$: 6 years

 Order of magnitude improvement over existing constraints.
* * • ۞ 券 δ p n Ονββ

JUNO AND NEUTRINO OSCILLATION PARAMETERS

[2204.13249]

- Percent precision for $\Delta m^2_{21}/\Delta m^2_{31}$: 100 days
- Few permille level for $\Delta m^2_{21}/\Delta m^2_{31}/\sin^2 2\theta_{12}$: 6 years

 Order of magnitude improvement over existing constraints.

* * • 🕲 📂 δ p n Ονββ

JUNO AND NEUTRINO OSCILLATION PARAMETERS

[2204.13249]

- Percent precision for $\Delta m^2_{21}/\Delta m^2_{31}$: 100 days
- Few permille level for $\Delta m^2_{21}/\Delta m^2_{31}/\sin^2 2\theta_{12}$: 6 years

 Order of magnitude improvement over existing constraints.

* * • ۞ 券 δ p n Ονββ

JUNO AND NEUTRINO OSCILLATION PARAMETERS

[2204.13249]

- Percent precision for $\Delta m^2_{21}/\Delta m^2_{31}$: 100 days
- Few permille level for $\Delta m^2_{21}/\Delta m^2_{31}/{\sin^2 2 \theta_{12}}$: 6 years

Order of magnitude improvement over existing constraints.

Negligible correlation between measured parameters.

Maxim Gonchar (DLNP)

January 24, 2025 16 / 28

* * • ۞ 券 δ p n Ονββ

JUNO AND NEUTRINO OSCILLATION PARAMETERS

[2204.13249]

- Percent precision for $\Delta m^2_{21}/\Delta m^2_{31}$: 100 days
- Few permille level for $\Delta m^2_{21}/\Delta m^2_{31}/{\sin^2 2 \theta_{12}}$: 6 years

Order of magnitude improvement over existing constraints.

Negligible correlation between measured parameters.

Maxim Gonchar (DLNP)

* * • ۞ 券 δ p n Ονββ

STERILE NEUTRINO SEARCH WITH TAO

Primary goal

JUNO

• Reference reactor $\overline{\nu}_e$ spectrum with $\sigma=2\%$ at 1 MeV.

* * • ۞ % δ p n Ονββ

STERILE NEUTRINO SEARCH WITH TAO

Primary goal

• Reference reactor $\overline{\nu}_e$ spectrum with $\sigma=2\%$ at 1 MeV.

Oscillations: reactor at 44 m

- Relevant range: $0.03 \, {\rm eV}^2 \lesssim \Delta m_{41}^2 \lesssim 3 \, {\rm eV}^2$
- $\bullet\ \sim$ large L counterbalanced with high energy resolution

TAO CDR [2005.08745]

🗯 🗭 δ p n Ονββ

STERILE NEUTRINO SEARCH WITH TAO

• Reference reactor $\overline{\nu}_e$ spectrum with $\sigma = 2\%$ at 1 MeV.

Oscillations: reactor at 44 m

- Relevant range: $0.03 \text{ eV}^2 \lesssim \Delta m_{41}^2 \lesssim 3 \text{ eV}^2$
- \sim large L counterbalanced with high energy resolution

Detection

- Inverse beta decay with nGd tag
- Expected rate: $\sim 1000 \ \overline{\nu}_e/day$

TAO CDR [2005.08745]

* * • ۞ 券 δ p n Ονββ

STERILE NEUTRINO SEARCH WITH TAO

Primary goal

• Reference reactor $\overline{\nu}_e$ spectrum with $\sigma=2\%$ at 1 MeV.

Oscillations: reactor at 44 m

- Relevant range: $0.03 \, {\rm eV}^2 \lesssim \Delta m_{41}^2 \lesssim 3 \, {\rm eV}^2$
- $\bullet\ \sim$ large L counterbalanced with high energy resolution

Detection

- Inverse beta decay with nGd tag
- Expected rate: ${\sim}1000~{\overline{
 u}_e}/{
 m day}$

Data and analysis

- Events, finely binned vs energy
- Simultaneous fit: TAO's 4 virtual subdetectors

TAO CDR [2005.08745]

Physics with neutrino

* * • ۞ 第 δ p η Ονββ

Core collapse SuperNova explosion

- Expect a few SuperNova explosions per century
- $\sim 10^4$ events in 10 s

[2104.02565] [2309.07109]

Core collapse SuperNova explosion

- Expect a few SuperNova explosions per century
- $\sim 10^4$ events in 10 s

Detection

- Dedicated trigger: 100 keV threshold
- Expected statistics at 10 kpc:
 - ▶ 2000 5000 IBD
 - 2000 ES off proton
 - 300 ES off electron
 - ▶ 300 ν¹²C NC
 - ▶ 200 ν¹²C CC
- Expected pre-SuperNova statistics at 0.2 kpc:
 - ▶ 200 1200 IBD
- Negligible background

Core collapse SuperNova explosion

- Expect a few SuperNova explosions per century
- $\sim 10^4$ events in 10 s

Detection

• Dedicated trigger: 100 keV threshold

Goals

- Measure: flavor content, time evolution, flux, energy spectrum
- Study: stellar parameters, SN physics,

late stage stellar evolution

- Constrain: [1412.7418] $m_{\nu} < (0.83 \pm 0.24) \, {\rm eV} \, \, {\rm @90\%} \, \, {\rm CL} \, \, {\rm @10} \, \, {\rm kpc}$
- Multi-messenger trigger

* * • ۞ 第 δ p η Ονββ

DIFFUSE SUPERNOVA NEUTRINO BACKGROUND

* * • ۞ 第 δ ρ η Ονββ

DIFFUSE SUPERNOVA NEUTRINO BACKGROUND

DSNB

• Integrated signal of all the SuperNova explosions

in the universe

Not yet observed

Detection

- Signal: inverse beta decay
- Expected rate: 2–4 $\overline{\nu}_e/\text{year}$
- Energies: E>12 MeV, above reactor IBD

[2205.08830]

😭 苯 💩 🦻 👌 ρ η Ονββ

DIFFUSE SUPERNOVA NEUTRINO BACKGROUND

DSNB

• Integrated signal of all the SuperNova explosions

in the universe

Not yet observed

Detection

- Signal: inverse beta decay
- Expected rate: 2–4 $\overline{\nu}_e/\mathrm{year}$
- Energies: E>12 MeV, above reactor IBD

Discovery potential

- 5σ in 10 years
- 3σ in 3 years

JUNO

[2205 08830

19 / 28

* * • ۞ № δ p n 0νββ

MEV SCALE DARK MATTER

Source

- Dark matter annihilation to $\nu_e + \overline{\nu}_e$ in Milky Way.
- Masses: 15 MeV to 100 MeV.

* * • ۞ № δ p n 0νββ

MEV SCALE DARK MATTER

Source

- Dark matter annihilation to $\nu_e + \overline{\nu}_e$ in Milky Way.
- Masses: 15 MeV to 100 MeV.

Data

- Inverse beta decay with E> that of $\overline{\nu}_e$.
- Major backgrounds: atmospheric $\overline{\nu}_e$ and atmospheric ν via NC, DSNB, fast neutrons.
- Use PSD to suppress backgrounds.

* * • 😳 🎓 δ ρ η Ονββ

MEV SCALE DARK MATTER

Source

- Dark matter annihilation to $\nu_e + \overline{\nu}_e$ in Milky Way.
- Masses: 15 MeV to 100 MeV.

Data

- Inverse beta decay with E> that of $\overline{\nu}_e$.
- Major backgrounds: atmospheric $\overline{\nu}_e$ and atmospheric ν via NC, DSNB, fast neutrons.
- Use PSD to suppress backgrounds.

Sensitivity

• Competitive limits in 10 years.

 $\delta n n 0 \nu \beta \beta$

[2303.03910]

Detection

- Signal: ν_e elastic scattering off e^-
- Expected rate:

INTERMEDIATE ENERGY SOLAR NEUTRINOS: ⁷Be, PEP, CNO

- ▶ ⁷Be $\sim 130 \; \mathrm{ES/day}$
- $\sim 17~{
 m ES/day}$ pep $\sim 16~{\rm ES/day}$
- CNO
- Limiting factors: LS purity, cosmic ray related background
- Baseline ²³⁸U/²³²Th contamination:

 $10^{-16}\,{
m g/g}$

 $n n 0 u \beta \beta$

 $10^{-16}\,\mathrm{g/g}$

Detection

- Signal: ν_e elastic scattering off e^-
- Expected rate:

INTERMEDIATE ENERGY SOLAR NEUTRINOS: ⁷Be, PEP, CNO

- ▶ ⁷Be $\sim 130 \; \mathrm{ES/day}$
- $\sim 17~{
 m ES/day}$ pep $\sim 16~{\rm ES/day}$
- CNO
- Limiting factors: LS purity, cosmic ray related background
- Baseline ²³⁸U/²³²Th contamination:

[2303.03910]

 $n n 0 \nu \beta \beta$

[2303.03910]

- Signal: ν_e elastic scattering off e^-
- Expected rate:

INTERMEDIATE ENERGY SOLAR NEUTRINOS: ⁷Be, PEP, CNO

- $\sim 17~{\sf ES/day}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline ²³⁸U/²³²Th contamination:

Maxim Gonchar (DLNP)

$\sim 130 \; \mathrm{ES/day}$

- $\sim 16~{\rm ES/day}$
 - $10^{-16}\,\mathrm{g/g}$

January 24, 2025 21 / 28

 $n n 0 u \beta \beta$

[2303.03910]

20 100 tainty [%] Be-v rate relative Time [y]

- Signal: ν_e elastic scattering off e^-
 - $\sim 130 \; \mathrm{ES/day}$
 - $\sim 17~{\sf ES/day}$
 - $\sim 16~{\sf ES/day}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline ²³⁸U/²³²Th contamination:

 $10^{-16}\,\mathrm{g/g}$

Maxim Gonchar (DLNP)

* * • Ο h δ p n Ονββ

Oscillation physics with solar $^8\mathrm{B}$ ν_e

Oscillations

+ $^8\mathrm{B}~\nu_e$ are sensitive to the matter effect: Day/Night asymmetry

Oscillation physics with solar ${}^8\mathrm{B}$ ν_e

Oscillations

+ $^8\mathrm{B}~\nu_e$ are sensitive to the matter effect: Day/Night asymmetry

Detection

- Elastic scattering off $e^ $\sim 16~\nu_e/{\rm day}$$
- Neutral current on $^{13}{
 m C}$ \sim 73.8 $u_e/{
 m year}$
- Charged current on $^{13}{
 m C}$ \sim 64.7 $u_e/{
 m year}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline ${}^{238}\mathrm{U}/{}^{232}\mathrm{Th}$ contamination: $10^{-16}\,\mathrm{g/g}$

Oscillation physics with solar $^8\mathrm{B}$ ν_e

Oscillations

+ $^8\mathrm{B}~\nu_e$ are sensitive to the matter effect: Day/Night asymmetry

Detection

- Elastic scattering off $e^ $\sim 16~\nu_e/{\rm day}$$
- Neutral current on $^{13}{
 m C}$ \sim 73.8 $u_e/{
 m year}$
- Charged current on $^{13}{
 m C}$ \sim 64.7 $u_e/{
 m year}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline ${}^{238}\mathrm{U}/{}^{232}\mathrm{Th}$ contamination: $10^{-16}\,\mathrm{g/g}$

Data and analysis

- Events binned vs zenith angle $\cos\theta_z$ and ν_e energy
- 5%, $\sim 8\%$ and $\sim 20\%$ sensitivity to 8B flux, $\sin^2 2\theta_{12}$ and $\Delta m^2_{21}.$

Maxim Gonchar (DLNP)

* * • 🕲 📅 δ ρ η Ονββ

Oscillation physics with atmospheric $\nu_{\mu}/\overline{\nu}_{\mu}$

[2103.09908][2104.02565]

Oscillations

• Matter effect: θ_z dependence

* * • ۞ 📅 δ p n Ονββ

Oscillation physics with atmospheric $\nu_{\mu}/\overline{\nu}_{\mu}$

• Matter effect: θ_z dependence

Detection

- Primary channel: $u_{\mu}/\overline{
 u}_{\mu}$ CC
- Expected statistics, 200 kton-years: 1233/1035 events
- Limiting factors: angular resolution / PID purity

[2103.09908][2104.02565]

* * • 😳 穿 δ ρ η Ονββ

Oscillation physics with atmospheric $\nu_{\mu}/\overline{\nu}_{\mu}$

Oscillations

• Matter effect: θ_z dependence

Detection

- Primary channel: $u_{\mu}/\overline{
 u}_{\mu}$ CC
- Expected statistics, 200 kton-years: 1233/1035 events
- Limiting factors: angular resolution / PID purity

Data and analysis

- Events binned vs zenith angle $\cos \theta_z$ (fine) and ν energy (coarse)
- $\sim 1\sigma$ sensitivity to ordering in 10 years
- Potential: combination with reactor analysis

[2103.09908][2104.02565]

Geo-neutrinos

Source: $^{238}\mathrm{U}/^{232}\mathrm{Th}$ from Earth's crust and mantle

- $^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8\alpha + 6e^- + 6\overline{\nu}_e$
- 232 Th $\rightarrow ^{208}$ Pb + $6\alpha + 4e^- + 4\overline{\nu}_e$
- ${}^{\bullet}\,$ there is also ${}^{40}{\rm K},$ which is below IBD threshold of 1.8 MeV
- 500 km of crust around JUNO contributes > 50% of signal
- Local geological studies: [1901.01945] [1903.11871]

Geo-neutrinos

Source: $^{238}\mathrm{U}/^{232}\mathrm{Th}$ from Earth's crust and mantle

- 500 km of crust around JUNO contributes >50% of signal
- Local geological studies: [1901.01945] [1903.11871]

Data

- KamLAND: 175 $\overline{
 u}_e$ in 8 years
- Borexino: 53 $\overline{\nu}_e$ in 9 years
- JUNO: 400 $\overline{\nu}_e/\text{year}$

- [2205.14934]
- [1909.02257]
- (40 TNU/year)

Geo-neutrinos

Source: $^{238}\mathrm{U}/^{232}\mathrm{Th}$ from Earth's crust and mantle

- + 500 km of crust around JUNO contributes > 50% of signal
- Local geological studies: [1901.01945] [1903.11871]

Data

- KamLAND: 175 $\overline{
 u}_e$ in 8 years
- Borexino: 53 $\overline{\nu}_{e}$ in 9 years
- JUNO: 400 $\overline{
 u}_e/ ext{year}$

Goals

- 5% geo- $\overline{
 u}_e$ measurement in 10 years
- Measure: Th/U mass ratio
- Study: radiogenic heat production

[2104.02565

[2205.14934]

[1909.02257]

(40 TNU/vear)

Physics with no neutrino

PROTON DECAY

Signature

 $\bullet \ p \rightarrow \nu + K^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$

$$\bullet \ p \rightarrow \nu + \pi^+ \ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$$

GUT SUSY

PROTON DECAY

Signature

- $p \rightarrow \nu + K^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$ GU
- $\bullet \ p \rightarrow \nu + \pi^+ \ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$

• $p \rightarrow \mu^+ \mu^+ \mu^-$ under investigation

Data

- Signal: three-fold coincidence
- Backgrounds: atmospheric neutrinos, cosmic muons

PROTON DECAY

Signature

- $p \rightarrow \nu + K^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$ GU
- $\bullet \ p \rightarrow \nu + \pi^+ \ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$

GUT SUSY

• $p \rightarrow \mu^+ \mu^+ \mu^-$ under investigation

Data

- Signal: three-fold coincidence
- Backgrounds: atmospheric neutrinos, cosmic muons

Sensitivity

• 8.34×10^{33} years 90% CL in 10 years

* * • ۞ 券 δ p n Ονββ

INVISIBLE MODE OF NEUTRON DECAY

Signature

Decay of 1 or 2 bound neutrons in ^{12}C :

- ${}^{11}C^* \to n + {}^{10}C$ B=3.0%
- ${}^{11}C^* \to n + \gamma + {}^{10}C$ B=2.8%
- ${}^{10}C^* \to n + {}^{9}C$ B=6.2%
- ${}^{10}C^* \to n + p + {}^8B$ B=6.0%
- Triple signal: *np* scattering, *n*H capture, daughter decay.

INVISIBLE MODE OF NEUTRON DECAY

Signature

Decay of 1 or 2 bound neutrons in ^{12}C .

Data

- Triple signal: *np* scattering, *n*H capture, daughter decay.
- Backgrounds: IBD+single, atmospheric ν .
- Difficulties: long coincidence window, <100 s for *n* and <3 s for *nn*. Require PSD to suppress background.

Introduction Setup Status Physics Conclusions

* * • ۞ 🗭 δ p n Ονββ

INVISIBLE MODE OF NEUTRON DECAY

Signature

Decay of 1 or 2 bound neutrons in ^{12}C .

Data

- Triple signal: *np* scattering, *n*H capture, daughter decay.
- Backgrounds: IBD+single, atmospheric ν .
- Difficulties: long coincidence window, <100 s for *n* and <3 s for *nn*. Require PSD to suppress background.

Sensitivity @90%C.L.

- $\tau/B(n \to inv) > 5.0 \times 10^{31}$ years.
- $\tau/B(nn \to inv) > 1.4 \times 10^{32}$ years.

Introduction Setup Status Physics Conclusions

* * • ۞ 券 δ p n Ονββ

NEUTRINOLESS DOUBLE BETA DECAY

Conclusions

JUNO HIGHLIGHTS

JUNO and physics

- Largest liquid scintillator detector.
- 3σ on neutrino mass ordering in 7.1 years.
- Complementary with reactor and atmospheric measurements.
- Permille level precision on neutrino oscillation parameters: Δm_{31}^2 , Δm_{21}^2 , $\sin^2 2\theta_{12}$.
- Rich physics programme including solar, geo-, atmospheric, supernovae neutrinos.

JUNO HIGHLIGHTS

()

JUNO and physics

- Largest liquid scintillator detector.
- 3σ on neutrino mass ordering in 7.1 years.
- Complementary with reactor and atmospheric measurements.
- Permille level precision on neutrino oscillation parameters: Δm_{31}^2 , Δm_{21}^2 , $\sin^2 2\theta_{12}$.
- Rich physics programme including solar, geo-, atmospheric, supernovae neutrinos.

Status and prospects

- JUNO filling goes full speed and will finish by Autumn.
- Part of the detector already in operation.
- First physics results in early 2026.

JUNO HIGHLIGHTS

()

JUNO and physics

- Largest liquid scintillator detector.
- 3σ on neutrino mass ordering in 7.1 years.
- Complementary with reactor and atmospheric measurements.
- Permille level precision on neutrino oscillation parameters: Δm_{31}^2 , Δm_{21}^2 , $\sin^2 2\theta_{12}$.
- Rich physics programme including solar, geo-, atmospheric, supernovae neutrinos.

Status and prospects

- JUNO filling goes full speed and will finish by Autumn.
- Part of the detector already in operation.
- First physics results in early 2026.
- Exciting times, stay tuned.

Thank you for your attention! Спасибо за внимание!

Spare slides:

- Neutrino flux
- Reactor antineutrino
- Calibration

- Energy resolution
- LS
- OSIRIS
- IBD selection

Physics with JUNO: Neutrinos and more...

DSNB — Diffuse SuperNova Background

Physics with JUNO: NEUTRINOS AND MORE...

Osc. [2204.13249], TAO [2005.08745]

IBD — Inverse Beta Decay

Physics with JUNO: Neutrinos and more...

$^8{\rm B}$ [2006.11760], OSIRIS-Serappis [2109.10782], JUNO [2104.02565]

Neutrino physics	
 Reactor 	\sim 47 IBD/day
 Solar 	
► ⁷ Be	${\sim}130~{\sf ES/day}$
► pep	${\sim}17~ES/day$
CNO	${\sim}16~ES/day$
► ⁸ B (high E)	${\sim}16~ES/day$
pp @OSIRIS	$\sim 16~{\sf ES/day}$
► ⁷ Be @OSIRIS	$\sim 4.5~{\sf ES/day}$

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

Physics with JUNO: Neutrinos and more...

JUNO [2104.02565]

 \sim 47 IBD/day

 \sim 400 IBD/vear

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

PHYSICS WITH JUNO: NEUTRINOS AND MORE...

DSNB [2205.08830]

Neutrino physics

- Reactor
- Geo-neutrino
- DSNB

- \sim 47 IBD/day
- \sim 400 IBD/year
- 2-4 IBD/year

- DSNB Diffuse SuperNova Background
- IBD Inverse Beta Decav
- ES Elastic Scattering
- * Rates after selection

Physics with JUNO: NEUTRINOS AND MORE...

JUNO [2104.02565]

Neutrino physics• Reactor \sim 47 IBD/day• Solar \sim 400 IBD/year• DSNB2-4 IBD/year

• SuperNova 5000 IBD/2300 ES@10 kpc

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

PHYSICS WITH JUNO: NEUTRINOS AND MORE ...

Atmospheric [2103.09908], JUNO [2104.02565]

Neutrino physics

- Reactor \sim 47 IBD/day
 - Solar
 - Geo-neutrino ~400 IBD/year
 - DSNB 2-4 IBD/year
 - SuperNova 5000 IBD/2300 ES@10 kpc
 - Atmospheric $\mathcal{O}(100)$ CC/year

- ES Elastic Scattering
- CC Charged Current
- * Rates after selection

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

PHYSICS WITH JUNO: NEUTRINOS AND MORE ...

DM JCAP 09 [2306.09567], JUNO [2104.02565]

Neutrino physics

- Reactor \sim 47 IBD/day
 - Solar
 - Geo-neutrino ~400 IBD/year
 - DSNB 2-4 IBD/year
 - SuperNova 5000 IBD/2300 ES@10 kpc
 - Atmospheric $\mathcal{O}(100)$ CC/year
 - MeV Dark matter

DSNB — Diffuse SuperNova Background

- IBD Inverse Beta Decay
- ES Elastic Scattering
- CC Charged Current
- * Rates after selection

Physics with JUNO: NEUTRINOS AND MORE...

JUNO [2104.02565]

DSNB — Diffuse SuperNova Background

- IBD Inverse Beta Decay
- ES Elastic Scattering
- CC Charged Current
- * Rates after selection

Maxim Gonchar (DLNP)

JUNO

Neutrino physics

- Reactor
 - Solar

\sim 47 IBD/day

- Geo-neutrino ~400 IBD/year
- DSNB 2-4 IBD/year
- SuperNova 5000 IBD/2300 ES@10 kpc
- Atmospheric $\mathcal{O}(100)$ CC/year
- MeV Dark matter

Non-neutrino physics

- Proton decay
- Invisible bound neutron decay
- Future: $0\nu\beta\beta$ decay

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}_e$ production

in beta decays of fission products of

• 235 U, 239 Pu and 241 Pu (slow n)

• ²³⁸U

(fast n)

- 235 U, 239 Pu and 241 Pu (slow n)
- ²³⁸U (fast *n*)
- $\sim 6 \ \overline{
 u}_e/{
 m fission}$ (+ 200 MeV of heat)
- 1 ${\rm GW_{th}}$ reactor produces $\sim 10^{20}~\overline{\nu}_e/{\rm s}$
- $E_{\nu} \lesssim 10 \text{ MeV}$
- $\overline{\nu}_e$ detection

CALIBRATION

[2011.06405]

CALIBRATION

[2011.06405]

Goals

- Energy scale uncertainty <1%
- Reaching desired $\sigma_E=3\%$ at 1 MeV

Methods

- Cable Loop System, CLS 2d
- Guide Tube, GT 1d
- Remotely Operated under-LS Vehicle, ROV 3d

CALIBRATION

[2011.06405]

Goals

- Energy scale uncertainty <1%
- Reaching desired $\sigma_E=3\%$ at 1 MeV

Methods

- Cable Loop System, CLS 2d
- Guide Tube, GT 1d
- Remotely Operated under-LS Vehicle, ROV 3d

Redundancy

- Multiple sources
- Multiple coatings:
 - \hookrightarrow shadowing effect ${<}0.15\%$
- Cross calibration with small PMTs

CALIBRATION

[2011.06405]

Goals

- Energy scale uncertainty <1%
- Reaching desired $\sigma_E=3\%$ at 1 MeV

Methods

- Cable Loop System, CLS
- Guide Tube, GT
- Remotely Operated under-LS Vehicle, ROV

Redundancy

- Multiple sources
- Multiple coatings:
 - \hookrightarrow shadowing effect <0.15%
- Cross calibration with small PMTs

ENERGY RESOLUTION

- Parameter a photon statistics
- Parameter b:
 - Scintillation quenching
 - Contribution of Cherenkov light
 - Non-uniformity and reconstruction
- Parameter c:
 - \blacktriangleright γ s related to annihilation
 - PMT Dark Noise

ENERGY RESOLUTION

Estimation

- JUNO resolution: 2.9% at 1 MeV
- TAO: 1.9% at 1 MeV
- Goal: combined analysis of JUNO+TAO data

LIQUID SCINTILLATOR

[2007.00314]

5000 m^3 LAB tank

LIQUID SCINTILLATOR

[2007.00314]

 $5000 \text{ m}^3 \text{ LAB tank}$

Al₂O₃: remove particles

LIQUID SCINTILLATOR

[2007.00314]

5000 m^3 LAB tank

 $\begin{array}{cc} {\sf Al}_2{\sf O}_3\text{: remove particles} & {\sf Distillation:} \\ {\sf remove radioactive impurities} \end{array}$

LIQUID SCINTILLATOR

[2007.00314]

Al₂O₃: remove particles Distillation: remove radioactive impurities

Add 2.5 g/L PPO and 3 mg/L bis-MSB
LIQUID SCINTILLATOR

Water extraction: remove radioactive impurities

LIQUID SCINTILLATOR

Water extraction: remove radioactive impurities

remove Rn and O_2

LIQUID SCINTILLATOR

OSIRIS: Online Scintillator Internal Radioactivity Investigation System

[2103.16900]

OSIRIS: Online Scintillator Internal Radioactivity Investigation System

[2103.16900]

3×3 m 18 t LS, flow-through

Monitor LS during the filling of JUNO

U/Th via tagging Bi-Po chains
Reactor baseline: 10⁻¹⁵ g/g

> Solar baseline: 10^{-17} g/g

Other isotopes measurement:

Goals

 \sim few days \sim 2-3 weeks ^{14}C , ^{210}Po , ^{85}Kr .

15% LS

OSIRIS: Online Scintillator Internal Radioactivity Investigation System

[2103.16900]

Goals

- Monitor LS during the filling of JUNO
- U/Th via tagging Bi-Po chains
 - Reactor baseline: 10^{-15} g/g
 - ▶ Solar baseline: 10^{-17} g/g
- Other isotopes measurement:

Detector

• 64 20-inch PMTs:

• $\sigma_E = 6\%$ at 1 MeV:

 \sim few days \sim 2-3 weeks ^{14}C , ^{210}Po , ^{85}Kr .

OSIRIS: Online Scintillator Internal Radioactivity Investigation System

[2103.16900]

3×3 m 18 t LS. flow-through

• U/Th via tagging Bi-Po chains

Monitor LS during the filling of JUNO

- Reactor baseline: 10^{-15} g/g
- Solar baseline: 10⁻¹⁷ g/g
- Other isotopes measurement:

Detector

Goals

- 64 20-inch PMTs:
- $\sigma_E=6\%$ at 1 MeV:

Status

- Expect to start commissioning in July.
- Possible upgrade to Serappis: measurement of solar pp neutrinos with 3.5% precision in 5 years Maxim Gonchar (DLNP)

$$\sim$$
 few days \sim 2-3 weeks ^{14}C , ^{210}Po , ^{85}Kr .

 ν * Calib Res LS OSIRIS Selection

INVERSE BETA DECAY AND SELECTION CRITERIA

INVERSE BETA DECAY AND SELECTION CRITERIA

INVERSE BETA DECAY AND SELECTION CRITERIA

Calib Res LS OSIRIS Selection 7/ 44

INVERSE BETA DECAY AND SELECTION CRITERIA

< 5%

Cherenkov:

Calib Res LS OSIRIS Selection

INVERSE BETA DECAY AND SELECTION CRITERIA

Bay

Daya

5%V

Cherenkov: