Объединенный институт ядерных исследований Лаборатория информационных технологий имени М.Г. Мещерякова

Моделирования процессов взаимодействия нанокластеров и ускоренных частиц с металлами, на основе развития континуально-атомистического подхода

Тухлиев Зафар Камаридинович

Дубна 2024

• Введение

- 1. Моделирования термических процессов в металлах, облучаемых частицами, на основе уравнений модели термического пика. Реализация параллельных алгоритмов и комплексов программ.
- 2. Моделирования термических процессов и структурных изменений в металлической мишени, облучаемой ускоренными ионами и нанокластерами на основе комбинации метода молекулярной динамики с моделью термического пика.
- 3. Развитие континуально-атомистической модели для исследовании процессов в металлической мишени, облучаемой тяжелыми ионами.
- Заключение
- Публикации

Развитие и программное реализация комбинированных методов на основе модели термического пика и методов молекулярной динамики для моделирования воздействия ускоренных частиц высоких энергий на металлические мишени.

Актуальность исследований

- Развитие моделей взаимодействия быстрых тяжелых ионов и нанокластеров с конденсированными средами
- Вычислительные аспекты
- Прикладные задачи: радиационная стойкость материалов

Моделирования процессов в металлической мишени, облучаемой ускоренными ионами на основе комбинации метода молекулярной динамики с моделью термического пика

Лифщиц И.М. и др.// Докл. АН СССР, 1956, т.109, № 6. с.1109-1111. Лифщиц И.М. и др.// Атомная энергия, 1959, т.6, с.391-402. Моделирование фазовых переходов

$$\begin{split} T_{i}(t,\xi(t)) &= T_{nn} = const > 0, \ t > 0 \\ \Phi(T_{i}(\vec{r},t)) &= \Phi(\vec{r},t). \\ ((\lambda_{i1}grad \ T_{i1} - \lambda_{i2}grad \ T_{i2}), \ grad \ \Phi) + \rho L \frac{\partial \Phi}{\partial t} = 0, \\ H(T_{i}) &= \int_{T_{i}}^{T_{i}} [C_{i}(x) + \rho L\delta(x - T_{melt})] dx \\ C_{i}(T_{i}) &= \begin{cases} C_{i,1}(T_{i}) & npu \ T_{0} < T_{i} < T_{melt} \\ C_{i,2}(T_{i}) & npu \ T_{melt} < T \end{cases} \\ \\ \frac{\partial H}{\partial t} &= \lambda_{i} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T_{0,i}}{\partial r} \right) + \frac{\partial^{2} T_{0,i}}{\partial z^{2}} \right) + g \left(T_{0,e} - T_{0,i} \right) + A_{0,i}(r,z,t). \end{split}$$

Галанин М.П., Ерхов И.С., Локтионов Е.Ю., Протасов Ю.Ю.//Численное моделирование динамики температурных полей на плоских мишенях при нестационарном интенсивном лазерном воздействии//Препринт ИПМ № 61, Москва, 2008 г.

Численные результаты задачи: облучение никеля тяжелыми ионами урана с энергией 700 МэВ

Расчеты в рамках модели ТП проводились с постоянными физическими параметрами в расчетной области с размерами R_{max} =0,05 мкм, Z_{max} =20 мкм.

Горизонтальная штрихованная линия показывает температуру плавления Ni, T_{nn}=1725K

Рис. 1.1. Радиальные профили температур кристаллической решетки на разных глубинах z=0,4,8,10 мкм в момент времени t=6 фс ($t=6*10^{-15}$ с) с учетом (а) и без учета (б) фазового перехода.

A. Barbu, A. Dunlop, A. Hardouin et all. Microstructural modifications induced by swift ions in the NiTi intermetallic compound // Nucl. Instrum. Meth. B 145 354 (1998).

Вестник РУДН. Серия: Математика, Информатика, Физика. 2013. №4, С.80–94.

Моделирование образования треков в аморфных сплавах железа при облучении тяжёлыми ионами высоких энергий

[1] I.V. Amirkhanov, 1A.Yu. Didyk, I.V. Puzynin, et. al. Modeling the track formation in amorphous iron alloys exposed to high-energy heavy ions// Books of abstracts of the international conference MMCP2013 (2013) 35.

[2] M.D. Rodriguez, B. Afra, C. Trautmann, et. al. Morphology of swift heavy ion tracks in metallic glasses// Journal of Non-Crystalline Solids 358 (2012) 571-576.

[3] Амирханов И.В., Дидык А.Ю., Пузынин И.В. и др. Моделирование образования треков в аморфных сплавах железа при облучении тяжёлыми ионами высоких энергий // Вестник РУДН. Серия Математика. Информатика. Физика. 2014. №2. с. 316-319.

<u>Тестирование эффективности параллельной МРІ/С++ программы</u>

Время работы MPI-программы в минутах. Расчет проведен на кластере К100 (ИПМРАН, Москва).

	$N_p = 1$	$N_p = 5$	$N_p = 10$	$N_p = 20$	$N_p = 30$	$N_p = 40$
10000	72.6	19.2	10.0	7.2	5.6	5.1
15000	109.3	26.1	16.1	9.3	8.3	7.2
20000	161.3	38.0	21.3	13.0	11.0	9.5

Таблица 1. Время расчета в зависимости от числа процессов N_p и числа узлов *L* по глубине *z* (числе узлов по радиусу мишени *N*=500).

N	$N_p = 1$	$N_p = 5$	$N_p = 10$	$N_p = 20$
500	37.22	9.47	4.2	3.32
1000	82.31	15.71	11.31	8.37
2000	162.23	34.03	22.57	14.26
4000	247.12	96.12	74.28	44.58

Таблица 2. Время расчета в зависимости от числа MPI-процессов Np и числа узлов N по радиусу r (при глубине мишени L=5000).

Вестник РУДН. Серия: Математика, Информатика, Физика. 2013. №4, С.80–94. (2014. №2, С.206–210).

Вывод

По результатам расчета облучения никеля тяжелыми ионами урана с энергией 700МэВ можно сделать следующие выводы:

размеры области, где происходит плавление следующие: радиус r_{max} ~ 75 Å, глубина z_{max} ~ 1.337×10⁵ Å. Аналогичная область для модели, где не учитывается фазовый переход: r_{max} ~ 115 Å, глубина z_{max} ~ 1.4×10⁵ Å. В этих областях могут происходить структурные изменения (треки, дефекты, разломы) в облучаемых материалах и может привести к изменению физических свойств. Полученные результаты согласуются с экспериментальными данными, причём согласие с ними улучшается при учёте фазовых переходов.

Тестирование эффективности параллельной MPI/C++ программы

В целом расчёты подтверждают эффективность разработанной С++/МРІ-программы. Для приведённых здесь примеров ускорение составляет 4-17 раз, что соответствует характерным оценкам эффективности распараллеливания сеточных методов решения уравнений в частных производных.

Метод молекулярной динамики

$$m_i \frac{\mathrm{d}^2 r_i}{\mathrm{d}t^2} = \vec{f_i} \qquad (1 \leqslant i \leqslant N)$$
$$\vec{f_i} = -\frac{\partial U(\vec{r_1}, \dots, \vec{r_N})}{\partial r_i} + \vec{f_i}^{ex}$$

+ программные пакеты (LAMMPS, DL_POLY и т.д.) + структура, температура, давление, и т.д.

Гулд Х., Тобочник Я. Компьютерное моделирование в физике. Часть 1. М.: Мир. 1990.

Метод Верле

$$\vec{f}_i = -\vec{\nabla}_i \sum_j U(r_{ij})$$
$$\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t)\Delta t + \frac{a_i(t)}{2}\Delta t^2 \qquad a(t + \Delta t) = \frac{f(t + \Delta t)}{m}$$
$$v(t + \Delta t) = v(t) + \frac{a(t + \Delta t) + a(t)}{2}\Delta t$$

Численные методы для МД

Метод связанных ячеек (Cell Linked-Lists algorithm): O(N)

Verlet L. Computer experiments on classical fluids. I. Thermody-namical properties of Lennard-Jones molecules. // Phys. Rev.-1967.- v.159 N.I- p.98-103.

Облучение материалов тяжелыми ионами высоких энергий Ni + Ur (700 MэB)

Рис. 2.1. Зависимость удельных ионизационных потерь энергии $S_{inel}(z)$ и потери энергии на возбуждение фононных колебаний $S_{phonons}(z)$ ионов урана с энергией 700 МэВ от глубины в никеле(SRIM-2012).

Ион МэВ

Облучение материалов нанокластерами

Используемые программы LAMMPS and OVITO

Параметры моделируемой системы:

Кластер: Энергия кластера: Мишень: Количество частиц Размер мишени: Потенциал: Граничные условия:

Cu(141) 10-300 эВ/атом Cu 54000-440000 (3.6-20)×(3.6-20)×(5-100нм) EAM (модель погружённого атома) p p s (периодическими граничными условиями по оси х и у)

Рис. 2.2. Схема облучения мишени нанокластером.

Батгэрэл Б., Никонов Э.Г., Пузынин И.В. // Вестник РУДН. Серия "Мат. Инф. Физ.". 2013. № 4. С. 65-79. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comp. Phys. 1995. 117. 1-19. Stukowski A. "Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool", Modeling Simul. Mater. Sci. Eng. 18 (2010), 015012.)

Рис. 2.3. Динамика образования кратера в мишени при облучении нанокластером с энергией 50 эВ/атом в моменты времени: а) 0.5 пс; б) 1 пс; в) 2 пс; г) 5 пс; д) 10 пс; е) 20 пс.

Известия РАН, серия физическая, 2017, 81, №11, С.1546-1550. (Russian)

Результаты

Рис. 2.4. Характер структурных изменений в центре сечения мишени в момент времени 20 пс при облучении нанокластерами с энергией, а) 10, б) 20, в) 30, г) 40 эВ/атом.

Результаты

E_{cl}=100 eV/atom, 3.6 x 3.6 x 32 nm

Рис. 2.5. Динамика распространения ударной волны внутри мишени при облучении одним нанокластером с энергией 100эВ/атом в моменты времени а) 1пс, б) 5пс, в) 7пс, г) 15пс. Расчетной областью являлся параллелепипед со сторонами 3.6×3.6×32 нм, количество частиц в мишени ~40338. Справа представлена цветовая шкала кинетической энергии частиц.

Тетельбаум Д.И., Баянкин В.Я. Эффект дальнодействия // Природа, 2005, № 4, с. 9-17.

Bulletin of the Russian Academy of Sciences: Physics. Vol. 83, № 10, P.1306-1310, 2019. (Russian) 1

Вывод

По проведенным исследованиям можно сделать следующие выводы:

1. При облучении мишени нанокластерами с энергией 10-50 эВ/атом в модели МД вычислены размеры образованного кратера: ширина от 2 до 4,5 нм, глубина от 2 до 3,5 нм.

2. В рамках метода молекулярной динамики получены волновые эффекты переноса тепла (ударные волны), которые не наблюдаются при применении уравнений модели термического пика с рассмотренными источниками.

3. Уменьшение поперечных размеров мишени (ребра по х и у) приводит к увеличению амплитуды ударной волны и его распространения в глубь мишени.

Структурные изменения в металлах при облучении тяжелыми ионами высоких энергий (ТИВЭ)

Моделирование процессов, возникающих в никелевой мишени, облучаемой ионами урана с энергией в диапазоне 100-700 МэВ.

Модель термического пика (ТП) используется для получения начальных условий, которые имитируют воздействие ТИВЭ на молекулярнодинамическую систему никеля. Дальнейшая эволюция системы исследуется методом молекулярной динамики. В рамках данного подхода можно более детально исследовать процессы структурных изменений на поверхности облучаемой мишени по сравнению с моделью ТП.

Параметры моделируемой системы:

Ион:	U
Энергия кластера:	100-700 МэВ
Мишень:	Ni
Размер мишени:	35×35×35 нм
Количество частиц	4x10 ⁶
Потенциал:	ЕАМ (Модель погружённого атома)
Кристаллическая решетка	fcc 3.5 Å
Граничные условия:	р р s (периодическими гр. ус. по оси х и у

Рис. 2.6. (а) Качественное распределение температуры T(r) на облучаемой поверхности мишени в момент времени $t = t^*$ в модели ТП и кусочно-линейная в виде ступенек аппроксимация. (б) Температурное распределение для МД - модели, полученное путем разделения мишени на подобласти в виде трубчатых конфигураций с заданием для каждой конфигурации начальной постоянной температуры, соответствующей аппроксимации.

Рис. 2.7-2.8. расположены в порядке увеличения энергии облучающего иона, а внутри каждого рисунка позиции 1-3 соответствуют моментам времени 1) $t=2\times10^{-14}$ c, 2) $t=4\times10^{-14}$ c, 3) $t=6\times10^{-14}$ c.

Поверхность. Рентгеновские, синхротронные и нейтронные исследования: №-6/16-21, 2017. (Russian) 20

Результаты

Эффективность параллельной версии программы

CEUR Workshop Proceedings : Vol-1787/184-188, 2017. (Russian)

По результатам расчета облучения никеля тяжелыми ионами урана с энергией 100-700МэВ можно сделать следующие выводы:

Проведены исследования структурных изменений в металле при облучении ТИВЭ. Можно сделать следующие выводы:

1. Подход, предложенная в работе, подходит для описания структурных изменений в поверхностных слоях облучаемого материала.

2. Для получения более точных предсказаний о структурных изменениях рекомендуется использовать экспериментальные данные, а также более полно использовать нелинейную зависимость от температуры параметров модели термического пика.

Тестирование эффективности параллельной версии программы В рамках параллельной реализации ускорение составляет до 20 раз. Развитие континуально-атомистической модели для исследовании процессов в металлической мишени, облучаемой тяжелыми ионами

D.S.Ivanov, L.V.Zhigiley. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys.Rev.B.68.064114(2003).

Результаты

Рис. 3.1. Зависимость от времени температуры кристаллической решетки в моменты времени t=2, 4, 8, 12, 16, 18, 20 пс на поверхности никелевой мишени при облучении ионами урана с энергией 700 МэВ для ТП+МД (а) и в рамках модели ТП (б).

Развитие континуально-атомистического подхода для моделирования процессов в металлах, облучаемых тяжелыми ионами высоких энергий

Параметры моделируемой системы:

Ион:	U
Энергия кластера:	700 МэВ
Мишень:	Ni
Размер мишени:	35×35×1.1 нм
Количество частиц	140700
Потенциал:	ЕАМ (Модель погружённого атома)
Кристаллическая решетка	fcc 3.5 Å
Граничные условия:	р р s (периодический гран. усл. по оси х и у)

Батгэрэл Б., Пузынин И.В., Пузынина Т.П., Христов И.Г., Христова Р.Д., Тухлиев З.К., Шарипов З.А. Развитие непрерывно-атомистического подхода для моделирования процессов взаимодействия тяжелых ионов высоких энергий с металлами // Поверхность. 2018. №7. С.103-107.

Результаты

Рис. 3.4. Разрушения кристаллической решетки в моменты времени $t_1 = 100 \phi c$ (а) и $t_2 = 300 \phi c$ (б). Верхний рисунок-вид сверху и нижний рисунок-вид под углом 45 градусов для параметра $r_0 = 0.5$ нм (1) и $r_0 = 1$ нм (2).

Рис. 3.4. Разрушения кристаллической решетки в моменты времени $t_1 = 100 \phi c$ (а) и $t_2 = 300 \phi c$ (б). Верхний рисунок-вид сверху и нижний рисунок-вид под углом 45 градусов для параметра $g = 0.5 g_{Ni}$ (1) и $g = 2 g_{Ni}$ (2).

Вывод

В рамках континуально-атомистической модели проведено моделирования взаимодействия тяжелых ионов высоких энергий с металлическими мишенями. По результатам моделирования можно сделать выводы:

1. Изменение параметра r0 в функции источника сильно влияет на результаты, поэтому он должен меняться в зависимости от энергии налетающего иона и типа иона.

2. Выбор коэффициента электрон-фононного взаимодействия определяется сравнением с экспериментальными данными, так как соответствует количеству переданной энергии от электронов к решетке.

3. В рамках параллельной реализации OpenMP ускорение на одном узле кластера HybriLIT достигло почти 20. Это показывает, что возможно улучшение результатов при использовании нескольких узлов в рамках параллельной реализации OpenMP+MPI.

4. Реализованный программный комплекс контунуальноатомистический подход позволяет исследовать более детальную картину процесса взаимодействия тяжелых ионов высоких энергии с металлическими мишенями.

Список публикации

Материалы по диссертации опубликованы в 25 печатных работах, из них 10 статей в рецензируемых и определенных ВАК РФ журналах и 15 работ в сборниках трудов конференций.

1. B. Batgerel, S. Dimova, T. Kupenova, I. Puzynin, T. Puzynina, I. Hristov, R. Hristova, Z. Tukhliev, Z. Sharipov. Modeling Thermal Effects in Metals Irradiated by Copper Nanoclusters // EPJ Web Conf., 173 (2018) 06001.

2. B. Batgerel, I.V. Puzynin, T.P. Puzynina, Z.K. Tukhliev, I.G. Hristov, R.D. Hristova, Z.A. Sharipov. Molecular Dynamic Modeling of Long-Range Effect in Metals Exposed to Nanoclusters // Springer Nature Switzerland AG, LNCS 11189, P.318-325, 2019.

3. З.А. Шарипов, Б. Батгэрэл, И.В. Пузынин, Т.П. Пузынина, З.К. Тухлиев, И.Г. Христов, Р.Д. Христова. Молекулярно-динамическое моделирование эффекта дальнодействия в металлах при облучении нанокластерами меди (Cu141) // Известия РАН, серия физическая, Изд: Наука, 2019, Том.83, №10, С.1306-1310.

4. С.Н. Димова, И.В. Пузынин, Т.П. Пузынина, З.К. Тухлиев, И.Г. Христов, Р.Д. Христова, Т.П. Черногорова, З.А. Шарипов. Непрерывно-атомистическое моделирование с использованием высокопроизводительных вычислительных систем процессов взаимодействия тяжелых ионов с металлами // CEUR-WS.org, 2017, Том 1787, С.184-188.

5. Батгэрэл Б., Пузынин И.В., Пузынина Т.П., Христов И.Г., Христова Р.Д., Тухлиев З.К., Шарипов З.А. Развитие непрерывно-атомистического подхода для моделирования процессов взаимодействия тяжелых ионов высоких энергий с металлами // Поверхность. 2018. №7. С.103-107.

Список публикации

6. З.К. Тухлиев. Моделирование фазовых переходов в материалах при облучении тяжелыми ионами высоких энергий // Математическое моделирование. 2012. №.12. Том. 24. С. 60–64.

7. И.В. Амирханов, Е.В. Земляная, Н.Р. Саркар, И. Сархадов, З.К. Тухлиев, З.А. Шарипов. МРІ реализация алгоритмов для 2D и 3D моделирования фазовых переходов в материалах, облучаемых тяжелыми ионами, в рамках модели термического пика // Вестник РУДН. Серия: Математика, Информатика, Физика. 2013. №4, С.80–94.

8. И.В. Амирханов, А.Ю. Дидык, И.В. Пузынин, Т.П. Пузынина, Н.Р. Саркар, И. Сархадов, З.К. Тухлиев, З.А. Шарипов. Численное исследование фазовых переходов, возникающих в металлах под действием импульсных пучков ионов в рамках модели термического пика // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. № 5. С. 73–78.

9. А.Ю. Дидык, С.Н. Димова, Э.Г. Никонов, И.В. Пузынин, Т.П. Пузынина, З.К. Тухлиев, З.А. Шарипов. Молекулярно-динамическое моделирование структурных изменений в металлах при облучении тяжелыми ионами высоких энергий // Поверхность. Рентгеновские, синхротронные и нейтронные исследования, ISSN: 0207-3528, Изд: Академиздатцентр, 2017, №6, С. 16-21.

10. Б. Батгэрэл, И.В. Пузынин, Т.П. Пузынина, З.К. Тухлиев, И.Г. Христов, Р.Д. Христова, З.А. Шарипов. Моделирование структурных изменений в металлах при облучении нанокластерами методом молекулярной динамики в комбинации с моделью термического пика // Известия РАН, серия физическая, ISSN:0367-6765, eISSN:1062-8738, Изд: Наука, 2017, 81, №11, С.1546-1550.