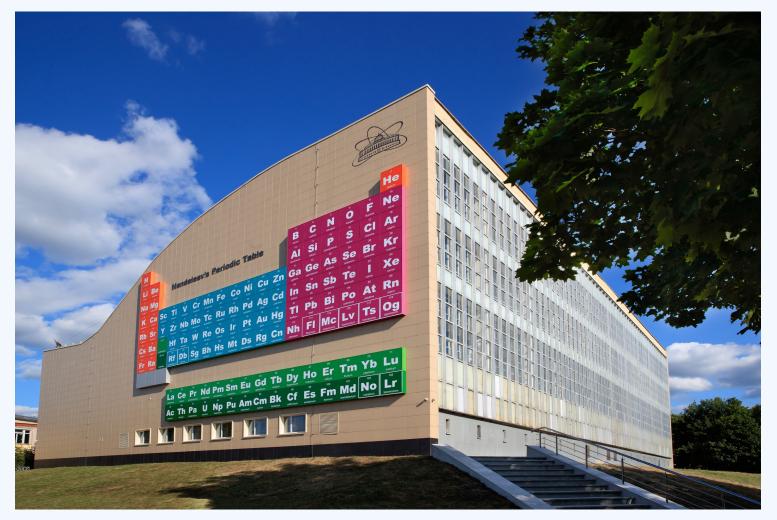


Low-energy spectra of nobelium isotopes: Skyrme randomphase-approximation analysis

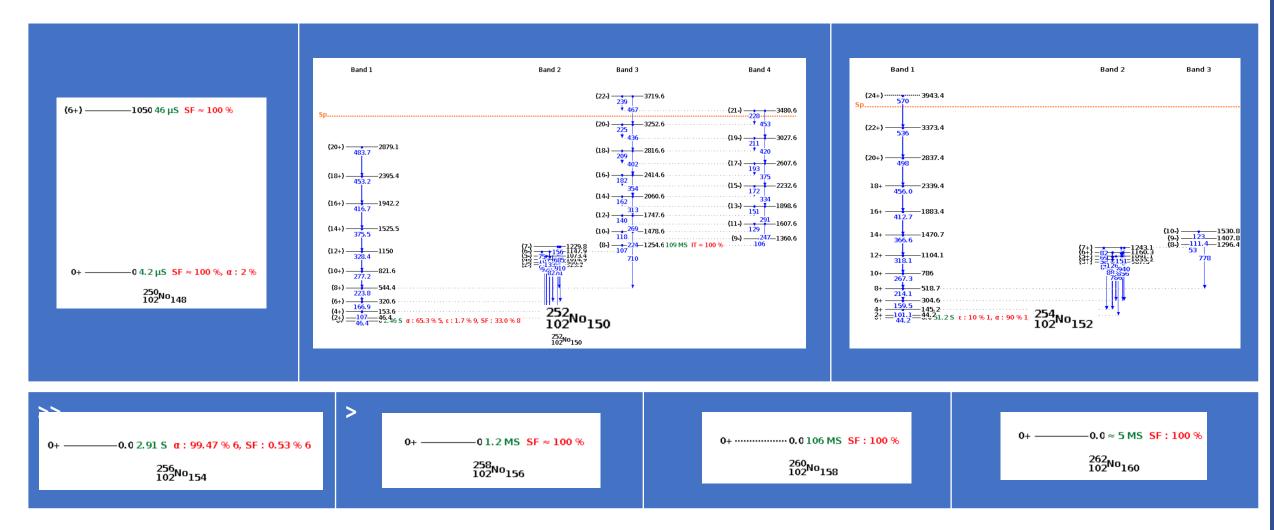
<u>M.A. Mardyban^{1,2}</u>, V. O. Nesterenko^{1,2}, R.V. Jolos^{1,2}, P.-G. Reinhard³, A. Repko⁴

¹Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia


² Dubna State University, Dubna, Moscow Region 141982, Russia

³ Institut für Theoretische Physik II, Universität Erlangen, D-91058, Erlangen, Germany

⁴Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia


2024

Spectroscopy of superheavy nuclei is now one of the most hot research areas

Perhaps, the most extensive experimental data are collected for transfermium region, in particular for nobelium isotopes

At the moment, there are experimental* spectroscopic data only for 3/7 nuclei: ^{250,252,254}No

* NNDC data base

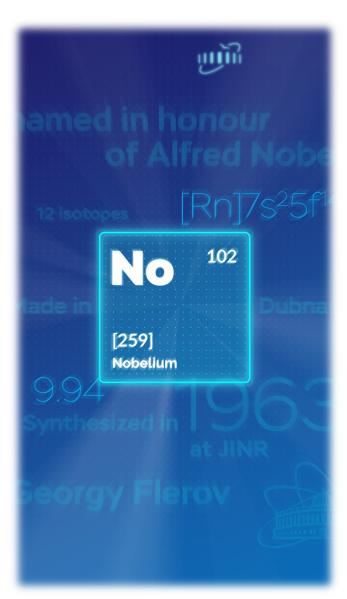
The chain of even-even Nobelium nuclei is one of the most studied superheavy nuclei:

- The low-lying spectrum of ^{250,252,254}No;
- Quadrupole moment of ^{252,254}No
- Dipole giant resonance in ^{252,254}No;
- The scissors mode of ^{250–256}No;

[A. D. Efimov, I. N. Izosimov, JINR-E6-2022-19 (2022)]
[G.G. Adamian, N.V. Antonenko and W. Scheid, Phys. Rev., 024320,C 81 (2010)]
[R.V. Jolos, L.A. Malov, N.Yu Shirikova and A.V.Sushkov, J.Phys. G: Nucl. Part. Phys, 115103 (2011)]

[R.V. Jolos et all, Phys. Part. Nucl. Lett. Vol. 19, No. 6 (2022)]

[W. Kleinig et all, Phys. Rev. C 78, 044313 (2008)]


[E.B. Balbutsev, I.V. Molodtsova, preprint arXiv: 2309.09340v2 (2023)]

- Single-particle properties and rotational bands in the ^{252,254}No; [Yue Shi et all, Phys. Rev. C 89, 034309 (2014)] [J. Dobaczewski et all, Nucl. Phys. A 944, 388 (2015)]
- Spontaneous fission for the nuclei ²⁵⁰⁻²⁶⁰No

[R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 98, 034308 (2018)]

But, despite the great interest in these nuclei, the characteristics of the ground state of these isotopes are still poorly studied...

Despite an impressive theoretical effort:

- Even modern self-consistent models still give rather different results and exhibit troubles in description of shell structures and other features seen in experiment
- This work was partly done within QPM, IBM, double nuclear system, and cluster models (however, the above models are not self-consistent)
- It is worth to enlarge the scope of calculated characteristics of superheavy nuclei and inspect, within the same self-consistent theory, a full set of low-energy vibrational states of main multipolarities: $K^{n} = 0^{+}, 2^{+}, 3^{+}, 0^{-}, 1^{-}, 2^{-}, 8^{-}$

250No	251No	252No	253No	254No	255No	256No	257No	258No	259No	260No
4.6 μs	0.8 s	2.45 s	1.61 min	51.2 s	3.52 min	2.93 s	24.5 s	1.23 ms	58 min	107 ms
SF=100%	α=90% SF=1.4e-3% ε+β+>0%	α=65.3% SF=33% ε+β+=1.7%	α=55% ε+β+=45%	a=90% c=10% SF=0.17%	ε+β+=70% α=30%	a=99.47% SF=0.53%	a=85% e=15% SF<1.5%	SF=100%	a=75% e=25% SF<10%	SF=100%

The main attention is paid to ^{252,254}No where calculated:

- Kⁿ = 8⁻ isomers (at 1.361 MeV in ²⁵²No and 1.747 MeV in ²⁵⁴No)
- Pairing vibrations Kⁿ = 0⁺ (at 0.77 MeV in ²⁵²No and 0.22 MeV in ²⁵⁴No)
- States Kⁿ=2+ (1.58 MeV in ²⁵²No and 1.31 MeV in ²⁵⁴No)
- Hexadecapole states with $K^n = 3^+$ and 4^+
- Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

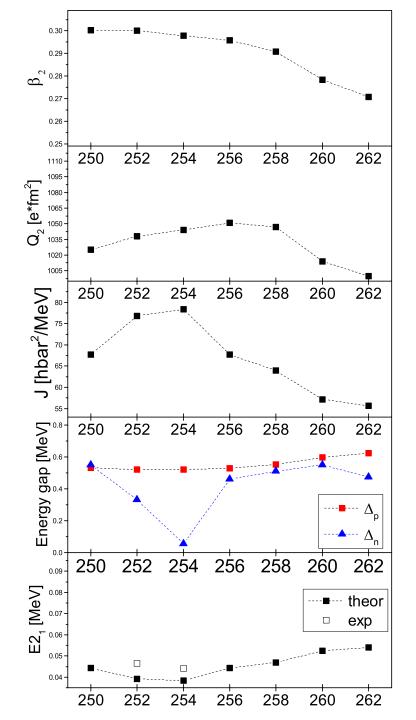
250No	251No	252No	253No	254No	255No	256No	257No	258No	259No	260No
4.6 μs	0.8 s	2.45 s	1.61 min	51.2 s	3.52 min	2.93 s	24.5 s	1.23 ms	58 min	107 ms
SF=100%	α=90% SF=1.4e-3% ε+β+>0%	α=65.3% SF=33% ++β+=1.7%	α=55% ε+β+=45%	a=90% c=10% SF=0.175	ε+β+=70% α=30%	a=99.47% SF=0.53%	a=85% e=15% SF<1.5%	SF=100%	a=75% e=25% SF<10%	SF=100%

The main attention is paid to ^{252,254}No where calculated:

- Kⁿ = 8⁻ isomers (at 1.361 MeV in ²⁵²No and 1.747 MeV in ²⁵⁴No)
- Pairing vibrations Kⁿ = 0⁺ (at 0.77 MeV in ²⁵²No and 0.22 MeV in ²⁵⁴No)
- States Kⁿ=2+ (1.58 MeV in ²⁵²No and 1.31 MeV in ²⁵⁴No)
- Hexadecapole states with $K^n = 3^+$ and 4^+
- Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

Skyrme forces

 $V_{\rm pa}^q$


force	m/m*	kind of pairing	
SVbas	0.90	surface	[P. Klupfel et al, PRC 79 034310 (2009)]
SkM*	0.79	volume	[J. Bartel et al, NPA 386, 79 (1982)]
SLy6	0.69	volume	[E. Chabanat et al, NPA, 635 231 (1998)]

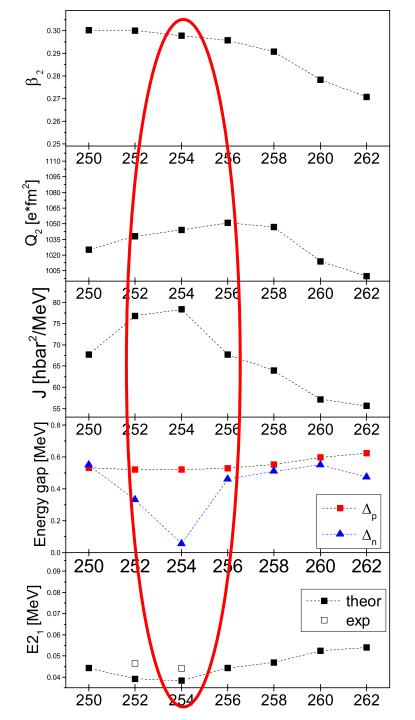
$$_{\rm ir}(\mathbf{r},\mathbf{r}') = G_q \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\rm pair}}\right)\right] \delta(\mathbf{r}-\mathbf{r}')$$

Where Gq are pairing strength constants (q = p, n). We get so-called density-dependent surface pairing for $\eta = 1$ and volume pairing for $\eta = 0$

Calculation details:

- Codes SkyAx [P.-G. Reinhard et al, Comp. Phys. Communic. 258, 107603 (2021)] QRPA [A. Repko et al, arXiv:1510.01248 (nucl-th), 2015]
- Accurate extraction of spurious admixtures [V. O. Nesterenko et al, Eur. Phys. J. A 55, 213 (2019)]
- 2D grid in cylindric coordinates
- All proton and neutron s-p levels up to +40 MeV

The characteristics of the ground states of ²⁵⁰⁻²⁶²No with increasing number neutrons


$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
, $R = R_0 A^{1/3}$, $R_0 = 1.2$ fm

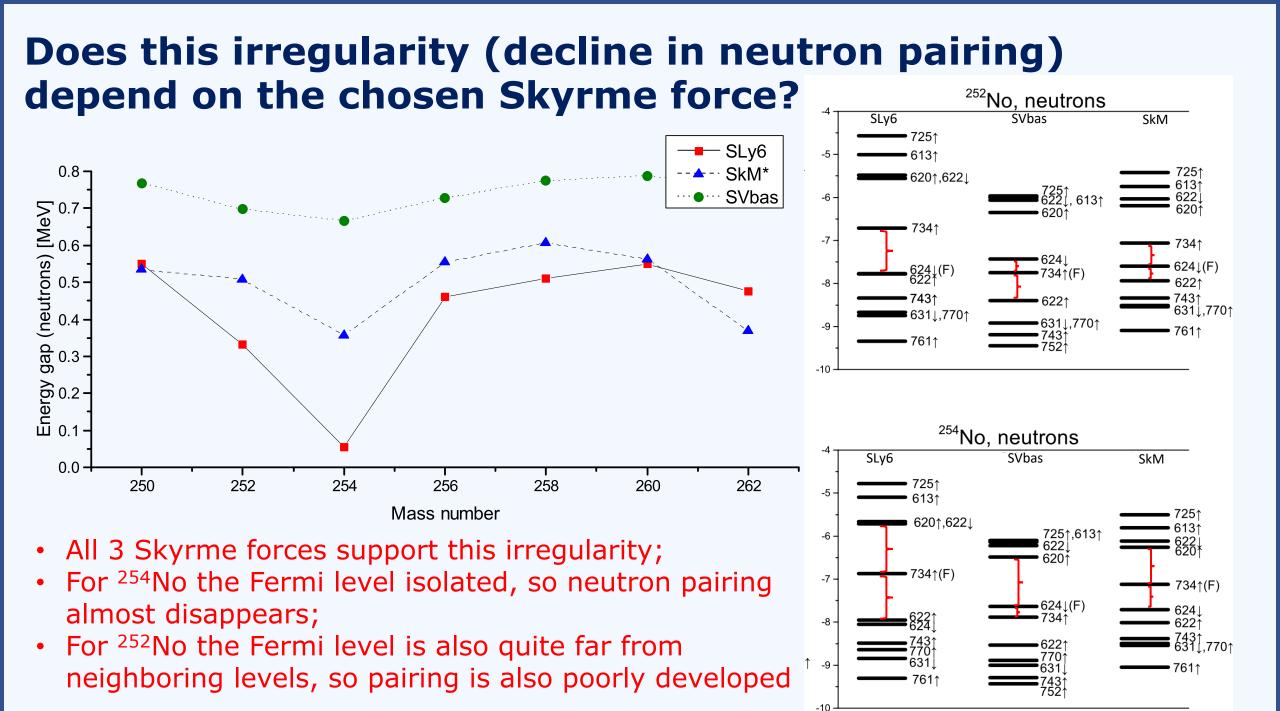
$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_{\nu} - E_0}$$

$$V_{\text{pair}}^{q}(\mathbf{r},\mathbf{r}') = G_{q} \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r}-\mathbf{r}')$$

$$E_I = \frac{\hbar^2}{2\mathcal{J}}I(I+1)$$

Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at ^{252, 254}No

The characteristics of the ground states of ²⁵⁰⁻²⁶²No with increasing number neutrons


$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
, $R = R_0 A^{1/3}$, $R_0 = 1.2$ fm

$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_\nu - E_0}$$

$$V_{\text{pair}}^{q}(\mathbf{r},\mathbf{r}') = G_{q} \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r}-\mathbf{r}')$$

$$E_I = \frac{\hbar^2}{2\mathcal{J}}I(I+1)$$

Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at ^{252, 254}No

Kⁿ= 8⁻ isomers

²⁵²No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

²⁵⁴No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991) R.M. Clark et al, Phys. Lett. B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu.
 Shirikova and A.V. Sushkov, J. Phys.
 G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J A43, 55 (2010)

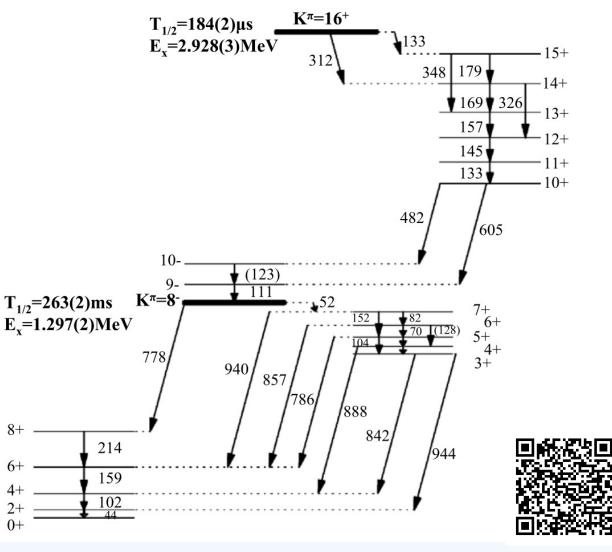
Force	$E_{\nu=1}$	B(E98)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-scheme						
	[MeV]	[W.u.]		[MeV]								
	252 No, E_x =1.254 MeV											
SLy6	1.361	0.038	$nn[624\downarrow,734\uparrow]$	1.317	0.996	F,F+1						
SkM*	1.330	0.025	$nn[734\uparrow,624\downarrow]$	1.198	0.992	F,F+1						
SVbas	1.913	0.119	$nn[624\downarrow,734\uparrow]$	1.751	0.912	F,F+1						
		$^{254}]$	No, $E_{exp} = 1.295$ N	ЛеV								
SLy6	1.747	0.014	$nn[734\uparrow,613\uparrow]$	1.780	0.994	F,F+3						
SkM*	1.554	0.333	$pp[514\downarrow, 624\uparrow,]$	1.482	0.990	F+1,F+2						
SVbas	1.994	0.370	$pp[514\downarrow, 624\uparrow,]$	1.751	0.791	F+1,F+2						
			$nn[734\uparrow,613\uparrow]$	2.026	0.169	F,F+3						

Features of calculated 8⁻ states in ^{252,254}No: QRPA excitation energies $E_v = 1$, reduced transition probabilities B(E98), the main 2qp component qq', its energy $\varepsilon_{qq'}$, contribution to the state norm $N_{qq'}$ and F-scheme of 2qp excitation.

$K^n = 8^-$ isomers

61

4-


²⁵²No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

²⁵⁴No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991) R.M. Clark et al, Phys. Lett. • B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu. • Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J ٠ A43, 55 (2010)

R.M. Clark et al, Phys. Lett. B690, 19 (2010)

$K^n = 8^-$ isomers

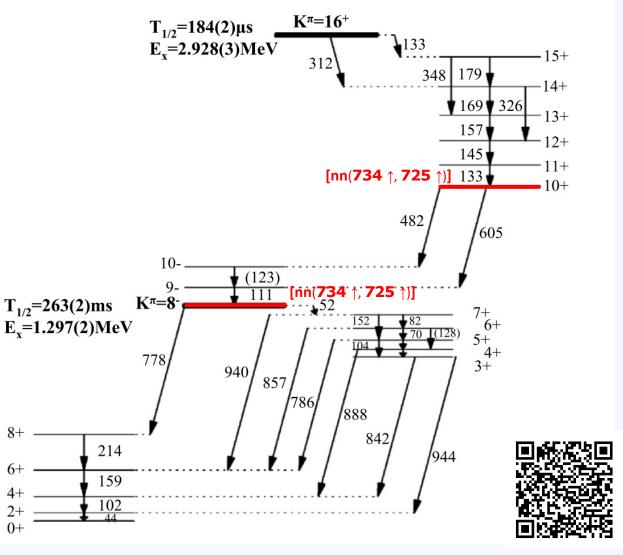
8 +

61

4-

2 +

0 +


²⁵²No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

²⁵⁴No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

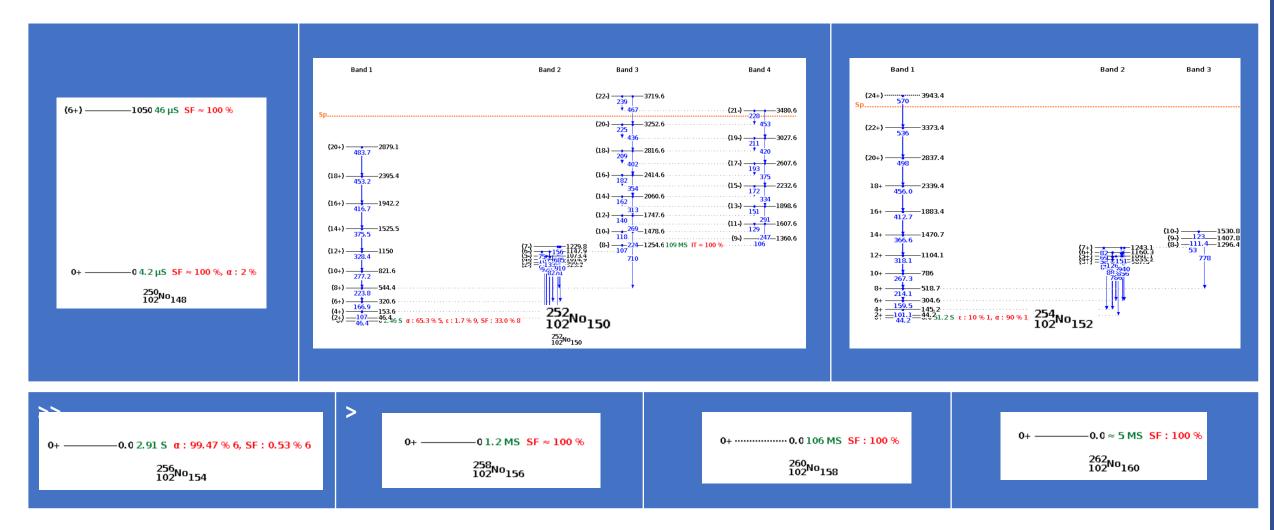
V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991) R.M. Clark et al, Phys. Lett. • B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu. • Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J ٠ A43, 55 (2010)

R.M. Clark et al, Phys. Lett. B690, 19 (2010)

Pairing vibrations Kⁿ = 0⁺

Force	$\mathrm{K}^{\pi}_{ u}$	$E \; [MeV]$	B(E20) [W.u.]		qq'	$\epsilon_{qq'}$ [MeV]	$N_{qq'}$	F-struct
				252	No	1		
SLy6	0^+_1	0.77	0.03	0.08	$nn[734\downarrow,734\downarrow]$	1.07	0.58	F+1,F+1
					$nn[624\downarrow, 624\downarrow]$	1.56	0.17	F,F
					$nn[622\uparrow,622\uparrow]$	1.53	0.16	F-1,F-1
	0^+_2	1.13	1.36	0.59	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
					$pp[521\downarrow,521\downarrow]$	1.16	0.38	F,F
SkM^*	0^+_1	0.84	1.12	0.32	$pp[521\downarrow,521\downarrow]$	1.01	0.46	F,F
					$pp[514\downarrow,514\downarrow]$	1.09	0.42	F+1,F+1
	0^+_2	1.20	0.02	0.18	$nn[624\downarrow, 624\downarrow]$	1.19	0.52	F,F
					$nn[734\uparrow,734\uparrow]$	1.21	0.44	F+1,F+1
SVbas	0^+_1	1.25	5.83	0.66	$pp[514\downarrow, 514\downarrow]$	1.23	0.56	F+1,F+1
					$pp[521\downarrow,521\downarrow]$	1.20	0.36	F,F
	0_{2}^{+}	1.49	0.65	0.63	$pp[633\uparrow,633\uparrow]$	1.60	0.70	F-1,F-1
				-	$pp[521\downarrow,521\downarrow]$	1.20	0.28	F,F
				254	No			
SLy6	0^+_1	0.22	0.002	0.002	$nn[734\uparrow,734\uparrow]$	1.05	0.41	F,F
					$nn[620\uparrow,620\uparrow]$	1.27	0.27	F+1,F+1
					$nn[622\downarrow,622\downarrow]$	1.38	0.20	F+2,F+2
	0^+_2	1.13	1.31	0.53	$pp[514\downarrow, 514\downarrow]$	1.16	0.56	F+1, F+1
					$pp[521\downarrow,521\downarrow]$	1.15	0.40	F,F
SkM^*	0^+_1	0.77	0.17	0.02	$nn[624\downarrow, 624\downarrow]$	1.41	0.33	F,F
					$nn[620\uparrow,620\uparrow]$	1.36	0.23	F+1, F+1
					$nn[734\uparrow,734\uparrow]$	1.81	0.12	F-1,F-1
	0^+_2	0.88	4.37	0.36	$pp[521\downarrow,521\downarrow]$	1.02	0.45	F,F
					$pp[514\downarrow,514\downarrow]$	1.08	0.43	F+1,F+1
SV bas	0^+_1	1.24	6.34	0.67	$pp[514\downarrow, 514\downarrow]$	1.22	0.57	F+1,F+1
					$pp[521\downarrow,521\downarrow]$	1.19	0.34	F,F
	0^+_2	1.45	0.52	0.36	$pp[633\uparrow,633\uparrow]$	1.59	0.45	F-1,F-1
					$pp[521\downarrow,521\downarrow]$	1.19	0.25	F,F


- Calculations predict for the lowest
 Kⁿ = 0⁺ state in ²⁵⁴No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts Kⁿ = 0⁺ state with E=0.86 MeV as the lowest non-rotational state of ²⁵⁴No

(D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))

 [M. Forge et al 2023 J. Phys.: Conf. Ser. 2586 012083] also predicts
 Kⁿ = 0⁺ state with E=0.89 MeV (shape coexistence)

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible

At the moment, there are experimental* spectroscopic data only for 3/7 nuclei: ^{250,252,254}No

* NNDC data base

Pairing vibrations Kⁿ = 0⁺

Force	$\mathrm{K}^{\pi}_{ u}$	$E \; [MeV]$	B(E20) [W.u.]		qq'	$\epsilon_{qq'}$ [MeV]	$N_{qq'}$	F-struct
				252	No	1		
SLy6	0^+_1	0.77	0.03	0.08	$nn[734\downarrow,734\downarrow]$	1.07	0.58	F+1,F+1
					$nn[624\downarrow, 624\downarrow]$	1.56	0.17	F,F
					$nn[622\uparrow,622\uparrow]$	1.53	0.16	F-1,F-1
	0^+_2	1.13	1.36	0.59	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
					$pp[521\downarrow,521\downarrow]$	1.16	0.38	F,F
SkM^*	0^+_1	0.84	1.12	0.32	$pp[521\downarrow,521\downarrow]$	1.01	0.46	F,F
					$pp[514\downarrow,514\downarrow]$	1.09	0.42	F+1,F+1
	0^+_2	1.20	0.02	0.18	$nn[624\downarrow, 624\downarrow]$	1.19	0.52	F,F
					$nn[734\uparrow,734\uparrow]$	1.21	0.44	F+1,F+1
SVbas	0^+_1	1.25	5.83	0.66	$pp[514\downarrow, 514\downarrow]$	1.23	0.56	F+1,F+1
					$pp[521\downarrow,521\downarrow]$	1.20	0.36	F,F
	0_{2}^{+}	1.49	0.65	0.63	$pp[633\uparrow,633\uparrow]$	1.60	0.70	F-1,F-1
				-	$pp[521\downarrow,521\downarrow]$	1.20	0.28	F,F
				254	No			
SLy6	0^+_1	0.22	0.002	0.002	$nn[734\uparrow,734\uparrow]$	1.05	0.41	F,F
					$nn[620\uparrow,620\uparrow]$	1.27	0.27	F+1,F+1
					$nn[622\downarrow,622\downarrow]$	1.38	0.20	F+2,F+2
	0^+_2	1.13	1.31	0.53	$pp[514\downarrow, 514\downarrow]$	1.16	0.56	F+1, F+1
					$pp[521\downarrow,521\downarrow]$	1.15	0.40	F,F
SkM^*	0^+_1	0.77	0.17	0.02	$nn[624\downarrow, 624\downarrow]$	1.41	0.33	F,F
					$nn[620\uparrow,620\uparrow]$	1.36	0.23	F+1, F+1
					$nn[734\uparrow,734\uparrow]$	1.81	0.12	F-1,F-1
	0^+_2	0.88	4.37	0.36	$pp[521\downarrow,521\downarrow]$	1.02	0.45	F,F
					$pp[514\downarrow,514\downarrow]$	1.08	0.43	F+1,F+1
SV bas	0^+_1	1.24	6.34	0.67	$pp[514\downarrow, 514\downarrow]$	1.22	0.57	F+1,F+1
					$pp[521\downarrow,521\downarrow]$	1.19	0.34	F,F
	0^+_2	1.45	0.52	0.36	$pp[633\uparrow,633\uparrow]$	1.59	0.45	F-1,F-1
					$pp[521\downarrow,521\downarrow]$	1.19	0.25	F,F

- Calculations predict for the lowest
 Kⁿ = 0⁺ state in ²⁵⁴No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts Kⁿ = 0⁺ state with E=0.86 MeV as the lowest non-rotational state of ²⁵⁴No

(D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))

 [M. Forge et al 2023 J. Phys.: Conf. Ser. 2586 012083] also predicts
 Kⁿ = 0⁺ state with E=0.89 MeV (shape coexistence)

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible

Hexadecapole states with Kⁿ = 3⁺ and 4⁺

Force	E	B(E44)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			252 No			
SLy6	1.16	$5.5 \ 10^{-4}$	$pp[521\downarrow,514\uparrow]$	1.16	1.00	F,F+1
	2.11	1.78	$nn[624\downarrow,620\uparrow]$	2.34	0.50	F,F+2
			$nn[622\uparrow,622\downarrow]$	2.41	0.42	F-1,F+3
SkM*	1.00	3.61	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow]$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, E_x =0.987	7 MeV	V	
SLy6	1.16	0.07	$pp[521\downarrow,514\downarrow]$	1.15	1.00	F,F+1
	1.89	$1 \ 10^{-4}$	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

Force	E	B(E43)	$\mathbf{q}\mathbf{q}'$	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			252 No			
SLy6	1.10	3.04	$pp[521\downarrow,514\downarrow]$	1.16	0.99	F,F+1
	2.13	2.91	$pp[521\downarrow,512\uparrow]$	2.11	0.95	F,F+3
SkM*	1.00	3.61	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow]$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, E_x =0.987	7 Me	V	
SLy6	1.11	2.41	$pp[521\uparrow,514\downarrow]$	1.15	0.99	F,F+1
	1.89	1.78	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

The first 3+ state is purely 2qp

• All the forces predict for this state **the proton 2qp configuration** $pp[521 \downarrow, 514 \downarrow]$

So, we see that effect of the hexadecapole residual interaction for 3⁺ states in ^{252,254}No is negligible

The calculated 4+ states in ^{252,254}No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration pp[521 ↓, 514 ↓] with |K1 - K2|=3 and K1 + K2=4.

Hexadecapole states with Kⁿ = 3⁺ and 4⁺

Force	E	B(E43)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			²⁵² No			
SLy6	1.10	3.04	$pp[521\downarrow,514\downarrow)$	1.16	0.99	F,F+1
	2.13	2.91	$pp[521\downarrow,512\uparrow]$	2.11	0.95	F,F+3
SkM*	1.00	3.61	$pp[521\downarrow, 514\downarrow)$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow, 514\downarrow)$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, E_x =0.987	7 Me	V	
SLy6	1.11	2.41	$pp[521\uparrow,514\downarrow)$	1.15	0.99	F,F+1
	1.89	1.78	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

Force	E	B(E44)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			252 No			
SLy6	1.16	$5.5 \ 10^{-4}$	$pp[521\downarrow,514\uparrow)$	1.16	1.00	F,F+1
	2.11	1.78	$nn[624\downarrow,620\uparrow]$	2.34	0.50	F,F+2
			$nn[622\uparrow,622\downarrow]$	2.41	0.42	F-1,F+3
SkM*	1.00	3.61	$pp[521\downarrow, 514\downarrow)$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow)$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, $E_{\rm x}$ =0.987	′ MeV	V	
SLy6	1.16	0.07	$pp[521\downarrow, 514\downarrow)$	1.15	1.00	F,F+1
	1.89	$1 \ 10^{-4}$	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow, 514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow, 514\downarrow)$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

The first 3+ state is purely 2qp

• All the forces predict for this state **the proton 2qp configuration** $pp[521 \downarrow, 514 \downarrow]$

So, we see that effect of the hexadecapole residual interaction for 3⁺ states in ^{252,254}No is negligible

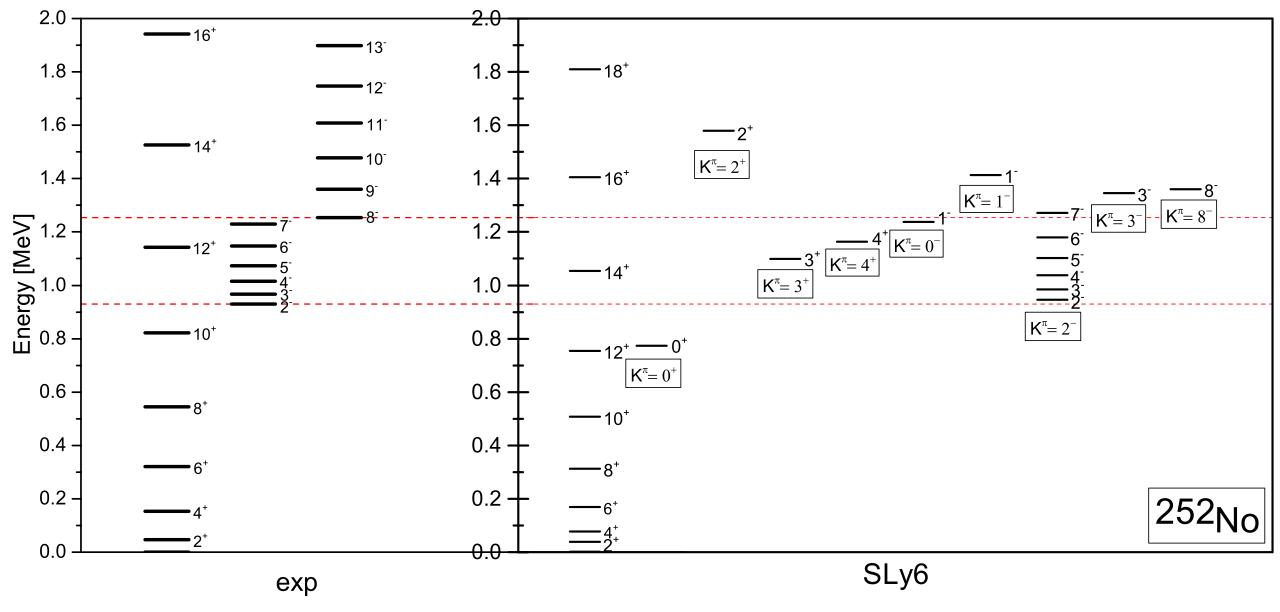
The calculated 4+ states in ^{252,254}No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration pp[521 ↓, 514 ↓] with |K1 - K2|=3 and K1 + K2=4.

Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

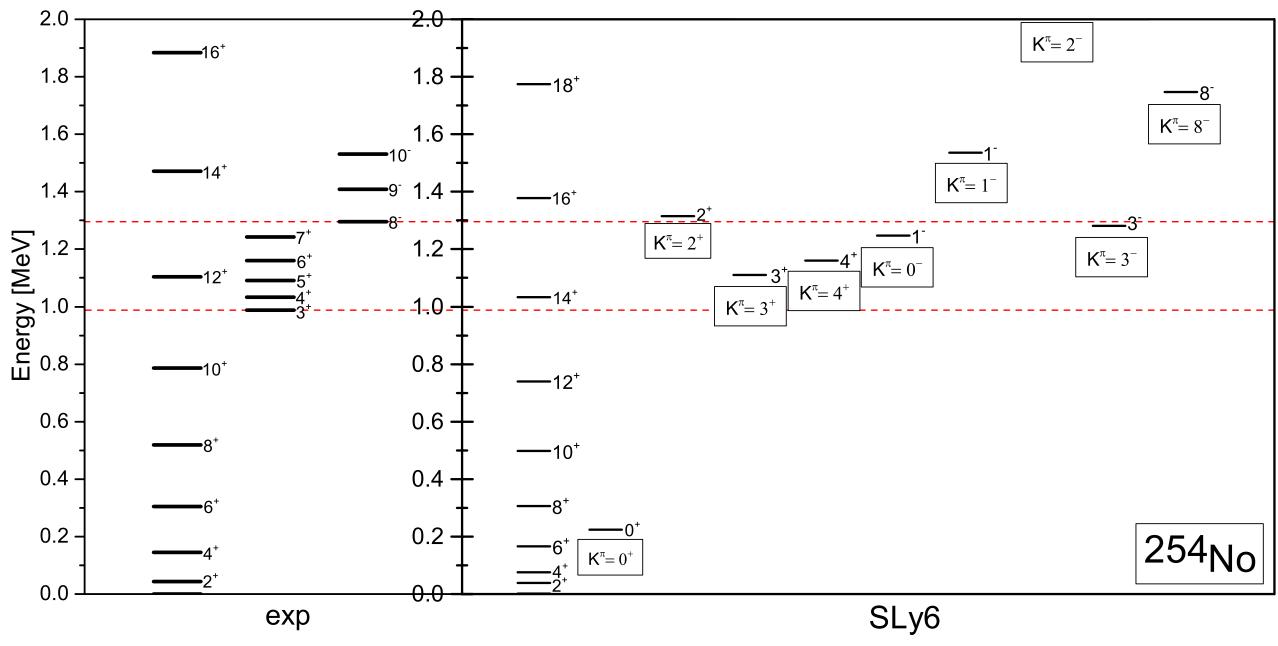
- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2⁻ state in ²⁵²No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Force	\mathbf{K}^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	\mathbf{K}^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
				252 No							254 No			
SLy6	0-	1.24	9.1	$pp[514\downarrow, 633\uparrow]$	1.35	0.93	F+1,F-1	0-	1.25	11.2	$pp[514\downarrow, 633\uparrow]$	1.38	0.87	F+1,F-1
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3
	2^{-}	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	2^{-}	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1
	3-	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3-	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2
SkM*	0-	1.35	20.7	$pp[514\downarrow, 633\uparrow]$	1.52	0.79	F+1, F-1	0-	1.37	16.3	$pp[514\downarrow, 633\uparrow]$	1.51	0.84	F+1,F-1
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1
	2^{-}	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	2^{-}	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F
	3^{-}	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3^{-}	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F
SVbas	0-	1.32	7.7	$pp[514\downarrow, 633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow, 633\uparrow]$	1.40	0.92	F+1,F-1
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1
	2^{-}	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	2^{-}	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2
	3^{-}	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3^{-}	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F

Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-


- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2⁻ state in ²⁵²No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Force	\mathbf{K}^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	\mathbf{K}^{π}	E	B(E3K)	$\mathbf{q}\mathbf{q}'$	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
				252 No							254 No			
SLy6	0-	1.24	9.1	$pp[514\downarrow, 633\uparrow]$	1.35	0.93	F+1,F-1	0^{-}	1.25	11.2	$pp[514\downarrow,633\uparrow]$	1.38	0.87	F+1,F-1
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3
	(2^{-})	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	2^{-}	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1
	3^{-}	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3^{-}	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2
SkM*	0-	1.35	20.7	$pp[514\downarrow, 633\uparrow]$	1.52	0.79	F+1, F-1	0^{-}	1.37	16.3	$pp[514\downarrow,633\uparrow]$	1.51	0.84	F+1,F-1
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1
	(2^{-})	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	2^{-}	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F
	3^{-}	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3^{-}	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F
SVbas	0-	1.32	7.7	$pp[514\downarrow, 633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow,633\uparrow]$	1.40	0.92	F+1,F-1
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1
	(2^{-})	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	2^{-}	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2
	3^{-}	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3^{-}	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F


Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2⁻ state in ²⁵²No the 2qp configuration nn[734 ↑, 622 ↑]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Force	\mathbf{K}^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	\mathbf{K}^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
		²⁵² No					²⁵⁴ No							
SLy6	0-	1.24	9.1	$pp[514\downarrow, 633\uparrow]$	1.35	0.93	F+1,F-1	0-	1.25	11.2	$pp[514\downarrow, 633\uparrow]$	1.38	0.87	F+1,F-1
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3
	2^{-}	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	(2^{-})	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1
	3-	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3^{-}	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2
SkM*	0-	1.35	20.7	$pp[514\downarrow, 633\uparrow]$	1.52	0.79	F+1, F-1	0-	1.37	16.3	$pp[514\downarrow, 633\uparrow]$	1.51	0.84	F+1,F-1
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1
	2^{-}	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	(2^{-})	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F
	3^{-}	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3-	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F
SVbas	0-	1.32	7.7	$pp[514\downarrow, 633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow, 633\uparrow]$	1.40	0.92	F+1,F-1
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1
	2^{-}	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	(2^{-})	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2
	3^{-}	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3^{-}	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F

- The band of the ground state is slightly compressed
- The band, which built on state 2⁻ is described well and the two others bands are also described satisfactorily

We also describing the 3 experimental bands quite well and working to carry out the more detailed analyzes about the band starting with 8⁻

Planned collaborations:

• <u>FLNR, JINR</u>

Low-lying spectrum analysis for ²⁵⁴No

• France + FNR

Investigation $K^{\pi} = 0^+$ in ²⁵⁰No (energy, structure)

• China

Study of ²⁵⁰⁻²⁶²No low-lying spectrum structure + pairing effects

• South Africa

Analysis of ^{252,254}No characteristics

Conclusion

- The low-energy spectra of the Nobelium chain were studied within the framework of three Skyrme forces (SLy6, SkM*, SVbas) with different types of pairing
- It was shown that for the ground state bands of ²⁵⁰⁻²⁶⁰No the irregularity occurs in the region ²⁵²⁻²⁵⁴No
- For ^{252,254}No isotopes this irregularity associated with pairing effect and evolution of the single-particle spectrum
- All three Skyrme forces maintain this irregularity, despite different types of neutron pairing (volume/surface)
- The theoretically obtained bands for the lower spectrum for ^{252, 254}No are in good agreement with experiment
- We also make the predictions about low-energy bands of different multipolarity $(K^{\Pi} = 0^+, 2^+, 3^+, 0^-, 1^-, 2^-, 8^-)$, some of then can be found experimentally for ^{252,254}No

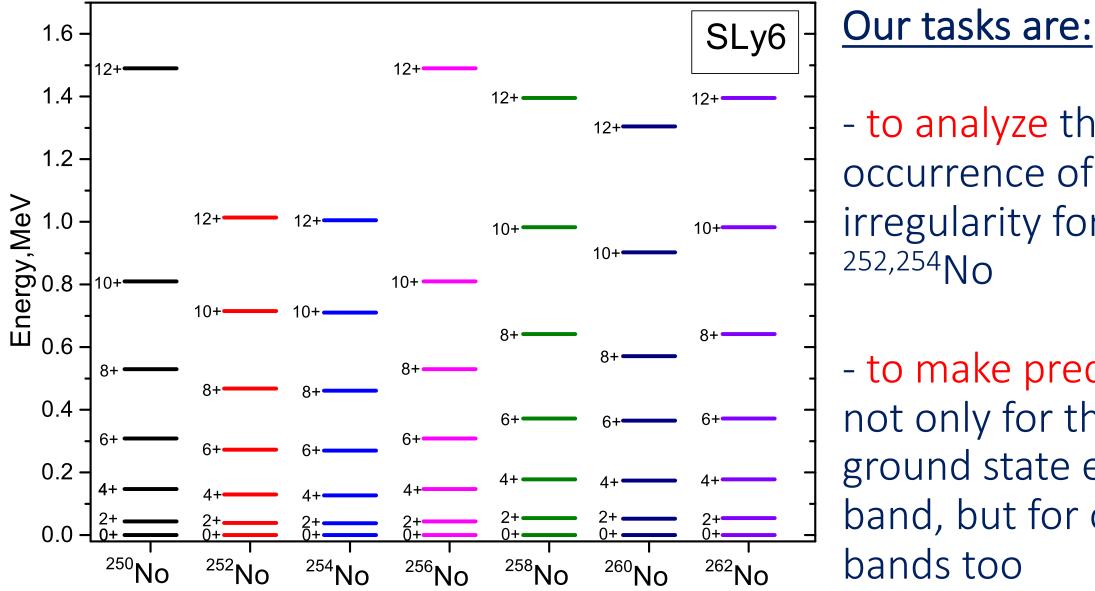
Thank you for your attention!

Мардыбан Мария Александровна

- Закончила магистратуру в 2021г. (магистерская диссертация на тему «Исследование тяжелых ядер на основе коллективного гамильтониана» под руководством Е.А. Колгановой)
- С 2021г. и по н.в. работаю под руководством В.О. Нестеренко, занимаясь исследование характеристик ядер в рамках самосогласованной микроскопической модели ядра

Основные публикации (2023-2024):

- V. O. Nesterenko, <u>M. A. Mardyban</u>, P.-G. Reinhard, A. Repko, and J. Kvasil, International Journal of Modern Physics E, Vol. 33, No. 05, 2450021, 2024 (*«Moments of inertia in light deformed nuclei: Pairing and mean-field impacts»*)
- Balt Batgerel, ..., <u>Mariia A. Mardyban</u>, ...,


Computer Algebra in Scientific Computing, ISSN:0302-9743, eISSN:1611-3349, Изд:Springer, 2024 («Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei»)

 V.O. Nesterenko, M.A. Mardyban, P.-G. Reinhard, A. Repko and J. Kvasil, arXiv.org e-Print archive, 2023 («Anomalous deformation dependence of moments of inertia in light deformed nuclei»)

Backup slides

The irregularity in ²⁵²No and ²⁵⁴No at low-energy spectrum

- to analyze the occurrence of the irregularity for

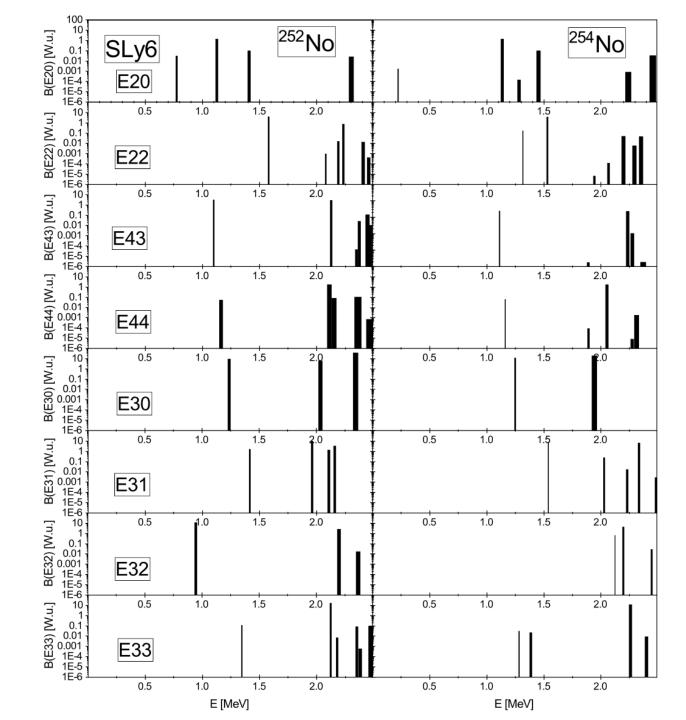
- to make predictions not only for the ground state energy band, but for other bands too

						1	
Force	E	B(E22)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	
	²⁵² No						
SLy6	1.58	3.87	$nn[622\uparrow,620\uparrow]$	2.33	0.39	F-1,F+2	
			$pp[521\downarrow,521\uparrow]$	2.06	0.32	F,F-2	
			$nn[624\downarrow, 622\downarrow]$	2.42	0.21	F,F+3	
	2.08	-	$pp[514\downarrow], 521\uparrow]$	2.06	1.00	F+1,F-2	
SkM*	1.70	0.06	$pp[512\uparrow,521\downarrow]$	1.61	0.99	F+3,F	
	1.78	-	$nn[622\uparrow],620\uparrow]$	2.28	0.35	F-1,F+2	
			$nn[624\downarrow], 622\downarrow]$	2.14	0.29	F+1,F+3	
			$pp[514\downarrow], 521\uparrow]$	2.06	1.00	F+1,F-2	
SVbas	1.62	2.72	$pp[521\uparrow],521\downarrow]$	1.95	0.38	F-2,F	
			$nn[622\uparrow,620\uparrow]$	2.48	0.29	F-1,F+2	
			$nn[624\downarrow],622\downarrow]$	2.24	0.19	F,F+3	
	1.89	-	$pp[512\uparrow,521\downarrow]$	1.86	0.99	F+3,F	
	²⁵⁴ No						
SLy6	1.31	0.17	$nn[622\uparrow,620\uparrow]$	1.32	0.97	F-1,F+1	
	1.53	-	$nn[622\uparrow,620\uparrow]$	2.24	0.42	F-1,F+1	
			$pp[521\uparrow],521\downarrow]$	2.05	0.27	F-2,F	
			$nn[624\downarrow],622\downarrow]$	2.39	0.20	F-2,F+2	
SkM*	1.32	2.62	$nn[624\downarrow,622\downarrow]$	1.63	0.60	F,F+2	
			$nn[622\downarrow],620\uparrow]$	1.60	0.18	F+2,F+1	
			$nn[622\uparrow],620\uparrow]$	2.20	0.11	F-2,F+1	
	1.62	-	$nn[622\downarrow],620\uparrow]$	1.60	0.80	F-2,F+1	
			$nn[624\downarrow,622\downarrow]$	1.63	019	F,F+2	
SVbas	1.45	4.46	$nn[622\downarrow,620\uparrow]$	1.77	0.40	F+2,F+1	
			$pp[521\uparrow],521\downarrow]$	1.95	0.20	F-2,F	
			$nn[624\downarrow],622\downarrow]$	2.15	0.17	F-1,F+2	
	1.87	-	$nn[622\downarrow],620\uparrow]$	1.77	0.56	F-1,F+2	
			$pp[521\uparrow],521\downarrow]$	1.95	0.21	F-2,F	
			$nn[622\uparrow,620\uparrow]$	2.28	0.14	F+2,F+1	

• In most of the cases, if the first state is collective, then the next one is 2qp and vice versa, but:

- The first Kⁿ = 2⁺ states are <u>γ-vibrational collective</u> in ²⁵²No (SLy6, SV-bas) and in ²⁵⁴No (SkM*, SV-bas)
- Instead, the first 2⁺ states are <u>purely 2qp</u> in ²⁵²No (SkM*) and in ²⁵⁴No (SLy6)

Anyway, all the calculated 2+ lie above the observed 2-(²⁵²No) and 3+ (²⁵²No) K-isomers


- We know only IBM calculations [A. D. Efimov and I. N. Izosimov, Phys. Atom. Nucl. 84, 660 (2021)]; [A. D. Efimov and I. N. Izosimov, JINR-E6-2022-19 (2022)]
- In contrast to our results, calculations predict Kⁿ = 2⁺ states at 1.09 MeV (²⁵²No) and 0.94 MeV (²⁵⁴No).

To estimate the true relevance of various theoretical results for No isotopes, the experimental data are necessary.

States Kⁿ = 2

TABLE X. The lowest SLy6 neutron and proton 2qp configurations $K = K_1 + K_2$ and $K = |K_1 + K_2|$ in ^{252,254}No.

$\epsilon_{qq'}$	qq'		K_1+K_2	K_1 - K_2			
²⁵² No							
1.16	$pp[521\downarrow,514\downarrow]$	F,F+1	$\underline{4^+}$	$\underline{3^+}$			
1.35	$pp[633\uparrow,514\downarrow]$	F-1,F+1	7^{-}	<u>0</u> -			
1.35	$pp[633\uparrow,521\downarrow]$	F-1,F+1	4^{-}	$\underline{3^{-}}$			
2.06	$pp[521\uparrow,521\downarrow]$	F-2,F	$\underline{2^+}$	1+			
2.25	$pp[521\uparrow,633\uparrow]$	F-2, F-1	5^{-}	$\underline{2^{-}}$			
2.30	$pp[633\uparrow,512\uparrow]$	F-1,F+3	6^{-}	<u>1</u> ⁻			
1.30	$nn[734\uparrow,622\uparrow]$	F,F-2	7-	2_			
1.32	$nn[624\downarrow,734\uparrow]$	F,F+1	<u>8</u> -	<u>1</u> -			
2.08	$nn[624\downarrow,743\uparrow]$	F,F-2	7-	<u>0</u> _			
2.33	$nn[622\uparrow,620\uparrow]$	F-1,F+2	$\underline{3^+}$	$\underline{2^+}$			
2.34	$nn[624\downarrow,620\uparrow]$	F,F+2	$\underline{4^+}$	3^{+}			
²⁵⁴ No							
1.15	$pp[521\downarrow,514\downarrow]$	F,F+1	$\underline{4^+}$	$\underline{3^+}$			
1.38	$pp[633\uparrow,514\downarrow]$	F-1,F+1	7^{-}	<u>0</u> _			
1.38	$pp[633\uparrow,521\downarrow]$	F-1,F	4^{-}	$\underline{3^{-}}$			
2.05	$pp[521\uparrow,521\downarrow]$	F-2,F	$\underline{2^+}$	1+			
2.27	$pp[521\uparrow,633\uparrow]$	F-2,F-1	5^{-}	$\underline{2^{-}}$			
2.43	$pp[633\uparrow,512\uparrow]$	F-1,F+3	6^{-}	<u>1</u> ⁻			
1.21	$nn[734\uparrow,622\downarrow]$	F,F+2	6-	3_			
1.32	$nn[622\uparrow,620\uparrow]$	F-1,F+1	$\underline{2^+}$	1+			
	$nn[734\uparrow,613\uparrow]$	F,F+3	8-	<u>1</u> ⁻			
<u> </u>	$nn[620\uparrow,613\uparrow]$	F+1,F+3	$\underline{4^+}$	$\underline{3^+}$			
2.13	$nn[622\uparrow,734\uparrow]$	F-1,F	7-	$\underline{2^{-}}$			
	$nn[734\uparrow,615\downarrow]$	F,F+5	9-	<u>0</u> _			

