Detector systems for studying the structure of exotic nuclei at ACCULINNA-2 fragment separator

Anh Mai

ACCULINNA group, Flerov Laboratory of Nuclear Reactions

Association of Young Scientists and Specialists 17 December 2024, JINR

Main areas of interest at FLNR at nuclide chart

Why exotic nuclei?

Stable nuclei:

- N/Z = 1-1.5
- The average binding energy per nucleon is about 6-8 MeV

• $R \sim 1.2 A^{1/3}$

Why exotic nuclei?

- extended size of nucleus
- tunneling to the forbidden regions

B. Jonson P.G. Hansen, Europhys. Lett., 4(4):409–414, 1987.

Stable nuclei:

- N/Z = 1-1.5
- The average binding energy per nucleon is about 6-8 MeV

• $R \sim 1.2 A^{1/3}$

- $R \neq 1.2 A^{1/3}$
- $p_n/p_p \neq N/Z$

Example of exotic nuclei

¹¹Li = 9 Li + n + n ¹¹Li-n \Rightarrow ¹⁰Li does not exist ⁶He = ⁴He + n + n ⁶He-n **⇒** ⁵He does not exist

Production of Radioactive Ion Beams

The Isotope Separation-On-Line (ISOL) method ISOL

- thick production target, slow release
- reaction products to be extracted, ionized and re-accelerated
- high-quality secondary beam, I < 10^8 pps

Riccardo Raabe - KU Leuven, 30 years of RIB Physics, 2015.

The in-flight method

Projectile Fragmentation

- thin production target
- fast and does not depend on chemistry
- ions available at high energy
- secondary beam, $I < 10^6$ pps

Beam production @ ACCULINNA-2

 $^{11}{\rm B^{5+}}$ @ 32 AMeV + 1 mm $^{9}{\rm Be} \rightarrow$ ACCULINNA-2 $\rightarrow \sim$ 90% and 10^5 pps $^{8}{\rm He}$ @ 26 AMeV

Reaction chamber @ final focal plane F5

Reaction chamber in the experiment

Beam diagnostics

Monte Carlo simulation

A. Mai

Charged-particle detectors

Charged-particle detectors (cont.)

Silicon Strip Detectors

Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability,
 non-flammable
- greatly sensitive to neutrons \rightarrow well-suited in our range
- excellent $n \gamma$ discrimination

Neutron spectrometer

Stilbene crystals:

- high luminescence efficiency
- fast response time
- crystalline and solid
 → high durability,
 non-flammable
- greatly sensitive to neutrons \rightarrow well-suited in our range
- excellent $n \gamma$ discrimination

 \rightarrow Stilbene fit all qualifications and were implemented into MONES @ ACCULINNA-2.

Neutron spectrometer (cont.)

An example of Compton edge

Neutron spectrometer (cont.)

An example of Compton edge

Timing signals for gamma and neutron in the scintillator.

Pulse Shape Analysis from the 14-MeV neutron generator.

Conclusions

- the detector systems development for registering charged particles and neutrons along with MC simulation to estimate their properties,
- engage in the preparation and conduct of experiments,
- not only to analyze the data but also to master the physical foundations of the models underlying the description of nuclear reactions,
- a path way for PhD @ JINR, excel at Nuclear Physics a real physicist.

Publications

- G. Kaminski et al. (A. M. Quynh), "Status of the new fragment separator Acculinna-2 and first experiments", Nuclear Instruments and Methods in Physics Research B, 463, 2019.
- 2 A. A. Bezbakh et al. (A. M. Quynh), "Evidence for the first excited state of ⁷H", Physical Review Letters, 124, 022502, 2020.
- I. A. Muzalevskii et al. (A. M. Quynh), "Resonant states in ⁷H: Experimental studies of the ²H(⁸He,³ He) reaction", Physical Review C, 103, 044313, 2021.
- E. Yu. Nikolskii et al. (A. M. Quynh), "⁶H states studied in the d(⁸He, α) reaction and evidence of an extremely correlated character of the ⁵H ground state", Physical Review C, 105, 064605, 2022.
- E. Yu. Nikolskii et al. (A. M. Quynh), "Study of proton and deuteron pickup reactions (d,³ He), (d,⁴ He) with ⁸He and ¹⁰Be radioactive beams at ACCULINNA-2 fragment separator", Nuclear Instruments and Methods in Physics Research B, 541, 2023.
- A. A. Bezbakh et al. (A. M. Quynh), "Properties of the ⁷He ground state studied by the ⁶He(d, p)⁷He reaction", International Journal of Modern Physics E, 33, 2450002, 2024.
- M. S. Golovkov et al. (A. M. Quynh), "Observation of a positive-parity wave in the low-energy spectrum of ⁷He", Physical Review C, 109, L061602, 2024.
- N. Sokolowska et al. (A. M. Quynh), "Decay study of ¹¹Be with an optical time-projection chamber", Physical Review C, 110, 034328, 2024.

My contributions: Participating in the experiments, calibration and data analysis routines.