НИЗКОЧАСТОТНАЯ СТАБИЛИЗАЦИЯ МОЩНОСТИ ИЗЛУЧЕНИЯ ДЛЯ МАЛОГАБАРИТНОГО ПРЕЦИЗИОННОГО ЛАЗЕРНОГО ИНКЛИНОМЕТРА

Клемешов Ю.В.

семинар по материалам кандидатской диссертации

Научные руководители: к.ф.м.н. Ляблин М.В., к.т.н. Горбунов Н.В.

24.12.2024

Список использованных сокращений

- МПЛИ малогабаритный прецизионный лазерный инклинометр
- ПЧФУ позиционно-чувствительное фотоприемное устройство
- ССМИ система стабилизации мощности излучения
- ЛД лазерный диод
- ФД фотодиод
- APC automatic power control (стабилизация мощности излучения)
- ACC automatic current control (стабилизация тока ЛД)

<u>Актуальность</u>

Нестабильность мощности лазерного излучения, угловое движение луча и шум регистрирующей электроники - составляющие, ограничивающие точность малогабаритного прецизионного лазерного инклинометра при регистрации низкочастотных физических сигналов.

Для мониторинга низкочастотных (10⁻⁵...10⁻³Гц) сигналов углового движения земной поверхности, относительная долговременная стабильность мощности излучения должна быть в диапазоне 0,1...1%. Существует потребность в использовании системы стабилизации лазерной мощности для поддержания непрерывного излучения в случае нештатных ситуаций.

Цель работы - исследование зависимости малогабаритного прецизионного лазерного инклинометра от низкочастотной стабильности мощности лазерного излучения и разработка системы долговременной стабилизации мощности излучения лазерного источника.

Задачи:

1) определить теоретическую и экспериментальную зависимость функционирования малогабаритного инклинометра от стабильности мощности лазерного излучения;

2) провести анализ методов стабилизации мощности лазерного излучения и сформировать метод стабилизации лазерной мощности с учетом специфики МПЛИ;

3) исследовать долговременную стабильность мощности излучения лазерного источника и влияние факторов, определяющих точность измерений;

4) разработать модель лазерного источника для оптимизации параметров регулятора системы стабилизации;

5) разработать аппаратную и программную составляющие системы стабилизации мощности излучения и провести ее тестирование

Устройство малогабаритного прецизионного лазерного инклинометра

Принцип регистрации наклонов земной поверхности

Общая схема прибора

Позиционно-чувствительное фотоприемное устройство (ПЧФУ)

Схема интерференционной калибровки

Теоретический анализ влияния стабильности лазерной мощности

$$U_d(t) = U_{const} + U_{const}U_{stab}(t) = U_{const}(1 + U_{stab}(t))$$
 (1)
 $U_d(t) = (U_{d_const} + U_{d_signal}(t))(1 + U_{stab}(t))$
 $U_r(t) = (U_{r_const} + U_{r_signal}(t))(1 + U_{stab}(t))$ (2) сигналы на фотодиодах ПЧФУ

$$U_{rd}(t) = \frac{U_r(t) - U_d(t)}{U_r(t) + U_d(t)} = \frac{dU_{const} + dU_{signal}(t) + dU_{const}U_{stab}(t) + dU_{signal}(t)U_{stab}(t)}{sU_{const} + sU_{signal}(t) + sU_{const}U_{stab}(t) + sU_{signal}(t)U_{stab}(t)}$$
(3)

 $U_{rd}(t) = \left(dU_{const} + dU_{signal}(t)\right)\left(1 + U_{stab}(t)\right) (4)$

Сигнал с ПЧФУ в абсолютных величинах

Отношение «шум-сигнал» для референсного ПЧФУ:

$$q = \frac{U_{rd_nonstab_laser}(t) - U_{rd_stab_laser}(t)}{dU_{signal}(t)} = U_{rel_stab}(t) \left(\frac{dU_{rel_const}U_{bal}}{dU_{signal}(t)} + 1\right)$$
(5)

Отношение «шум-сигнал» для одного «ортогонального» канала МПЛИ:

$$q_{sig_reg} = \frac{\left(dU_{sig_const} - dU_{ref_const} + dU_{ph_signal}(t)\right)U_{rel_stab}(t)}{dU_{ph_signal}(t)}$$
(6)

 U_{const} - постоянная составляющая $U_{stab}(t)$ - шумовая составляющая от нестабильности лазерной мощности $U_{signal}(t)$ составляющая от углового смещения луча на ПЧФУ *U*_{bal} - балансный уровень сигналов на ФД $dU_{rel_const} = \frac{dU_{const}}{U_{rel_const}}$ относительная разбалансировка сигналов на ФД ПЧФУ $U_{rel \ stab}(t) = U_{stab}(t)/1$ - относительная величина шума мощности излучения

$$\frac{dU_{signal}(t)}{U_{bal}} = \frac{dU_{rel_const}}{\left(\frac{q}{U_{rel_stab}(t)} - 1\right)}$$

Зависимость относительной амплитуды сигнала с ПЧФУ от относительной стабильности мощности излучения при заданных показателях баланса сигналов на фотодиодах и отношении «шум-сигнал»

Схемы регистрации сигналов МПЛИ при одноканальном режиме ПЧФУ : дифференциально-детекторная (а) и однодетекторная (б, в) конфигурации

Методы стабилизации мощности излучения

полупроводниковых лазерных источников

Стабилизация мощности излучения с применением цифрового

прецизионного регулирования для МПЛИ

Измерение стабильности лазерной мощности

Расчет показателя относительной стабильности мощности

Характеристики используемой системы сбора данных

Разрядность и архитектура АЦП	24 бит, сигма-дельта
Кол-во каналов	4 аналоговых / 8 цифровых
Частота выборки	1,173 Гц4800 Гц
Диапазоны входных сигналов	±10 B; ±1,25 B; ±0,625 B; ±0,3125 B
Температурный дрейф нуля	50нВ/°С
Температурный дрейф усиления	10ppm/°C
Входной шум	~23,6мкВ (при Квн.усил=1), ~2,62мкВ (при Квн.усил=32)

Исследование температурной зависимости системы сбора данных

Схема экспериментальной установки для исследования шума и температурной зависимости DAQ-системы

Сравнение результатов измерений за 24 часа

Конфигурация подключения	Размах	СКО (σ)	Температурное	Температ. коэф-т	Температурная
	сигнала	сигнала	изменение	ΔU _{ycp} /ΔΤ	корреляция
Без подключений	451,7мкВ	120,4мкВ	0,8°C	482мкВ/°С	0,972
Сопротивление (ЗкОм)	2,83мкВ	0,305мкВ	0,8°C	-435нВ/°С	-0,366
Закрытый ФД с сопротивлением	2,943мкВ	0,3046мкВ	0,75°C	-439нВ/°С	-0,323
Закрытый ФД с усилителем	51,8мкВ	5,835мкВ	0,69°C	34,5мкВ/°С	0,252
ФД, регистрирующий лазерное					
излучение	21мВ	6,96мВ	0,8°C	34,5мВ/°С	-0,835

Исследование линейности световых характеристик фотодиодов

Схема экспериментальной установки по измерению световых характеристик ФД

СВХ фотодиода для нагрузочного сопротивления R=979Ом в вентильном режиме

Относительный показатель линейности СВХ

Сравнение показателей линейности световых характеристик фотодиодов

Сопротивлени	U _{max} (мВ) (± σU _{lin}) в линейной области			
е нагрузки		/Р (мВт) (±	тветствующее U _{max}	-
R	S12915-1010R	S12915-66R	FDS-100	S3204-08
		Вентильный режи	M	
979Ом	350(±0,05) мВ	352±(0,007) мВ	241,2(±0,004) мВ	226(±0,008) мВ
	/0,852(±1·10 ⁻³) мВт	/0,834±(0,8·10 ⁻⁴) мВт	/0,805(±0,32·10 ⁻³) мВт	/0,462(±0,27·10 ⁻³) мВт
2.17кОм	352,2(±0,038) мВ	359±(0,052)мВ	182,3(±0,01) мВ	134,63(±0,008)мВ
	/0,4(±0,57·10 ⁻³) мВт	/0,375±(0,34·10 ⁻³) мВт	/0,27(±0,27·10 ⁻³) мВт	/0,124(±0,24·10 ⁻³) мВт
5.07кОм	301,7(±0,13)мВ	292,6(±0,026) мВ	209,1(±0,013) мВ	138(±0,001) мВ
	/0,1454(±0,43·10 ⁻³) мВт	/0,132(±0,26·10 ⁻³) мВт	/0,132(±0,25·10 ⁻³) мВт	/0,054(±0,16·10⁻⁴) мВт
9.95кОм	333,1(±0,205) мВ	309(±0,046) мВ	217(±0,017) мВ	157,4(±0,003) мВ
	/0,0845(±0,365·10 ⁻³) мВт	/0,07(±0,17·10 ⁻³) мВт	/0,069(±0,4·10 ⁻⁴) мВт	/0,031(±0,2·10 ⁻⁴) мВт
14.9кОм	344,1(±0,25) мВ	301,6(±0,076) мВ	220,3(±0,017) мВ	72,4(±0,005) мВ
	/0,05(±0,286·10 ⁻³) мВт	0,046(±0,07·10 ⁻⁵) мВт	/0,047(±0,4·10 ⁻⁴) мВт	/0,01(±0,2·10 ⁻⁴) мВт

Сравнение показателей линейности световых характеристик фотодиодов

Сопротивление	U _{max} (B) ± σU _{lin} в линейной области				
нагрузки		/Р (мВт) ± σР _{lin} , соотв	етствующее U _{max}		
R	S12915-1010R	S12915-66R	FDS-100	S3204-08	
Фотодиодный режим					
9.95кОм	3,4(±0,024·10 ⁻³) B	3,44(±0,064·10⁻³) B	3,327(±0,057·10⁻³) B	3,23(±0,08·10⁻³) B	
	/0,717(±0,83·10 ⁻³) мВт	/0,795(±0,07·10 ⁻³) мВт 1,06(±0,4·10 ⁻³) мВт		/0,646(±0,4·10 ⁻³) мВт	
14.9кОм	3,36(±0,276·10⁻³) B	3,42(±0,086·10⁻³) B	3,283(±0,175·10⁻³) B	3,157(±0,15·10⁻³) B	
	/0,55(±0,8·10 ⁻³) мВт	/0,526(±0,35·10 ⁻³) мВт	/0,707(±0,44·10 ⁻³) мВт	/0,42(±0,3·10 ⁻³ мВт	
237кОм	3,167(±0,85·10⁻³) B	3,25(±0,68·10⁻³) B	3,223(±0,65·10⁻³) B	3,12(±0,41·10⁻³) B	
	/0,0326(±0,3·10 ⁻³) мВт	/0,0312(±0,46·10 ⁻⁴) мВт	/0,043(±0,7·10 ⁻⁴) мВт	/0,026(±0,4·10 ⁻⁴) мВт	
1МОм	2,22(±0,26·10 ⁻³) B	3,25(±0,25·10⁻³) B	2,68(±0,26·10 ⁻³) B	2,6(±0,28·10 ⁻³) B	
	/0,00542(±0,3·10 ⁻³) мВт	/0,0074(±0,16·10 ⁻⁴) мВт	/0,0086(±0,22·10 ⁻⁴) мВт	/0,0052(±0,2·10 ⁻⁴) мВт	

Измерение низкочастотного шума оптоизолированных фотодиодов

Схема экспериментальной установки по измерению шума канала DAQ-системы при подключенных ФД

Режим	Сопротивлен	Размах амплитуды шума (peak-to-peak) ± σ(СКО)				
работы	иe R		по данным за 24 часа			
		S12915-	S12915-66R	FDS-100	S3204-08	
		1010R				
вентил	R = 14.9кОм	3,1±0,3	3,02±0,32	3,06±0,3	3,02±0,3	
ьный		мкВ	мкВ	1 мкВ	1мкВ	
	R = 240кОм	7,53 ±1,3	8,04±1,17	5,9±0,66	6,07±0,7	
		мкВ	мкВ	мкВ	2мкВ	
фотоди	R = 14.9кОм	2,94	3,1±0,3 мкВ	3,1±0,3	3,02±0,3	
одный		±0,31мкВ		мкВ	1мкВ	
	R = 240кОм	8,7 ±1,4	12,2±1,07	6,78±0,9	7,53±0,1	
		мкВ	мкВ	7 мкВ	1мкВ	

Сравнение показателей шума при 4-х подключаемых образцах ФД

Анализ динамики долговременной стабильности мощности излучения

АРС-режим драйвера (t_{изм} = 18ч.)

АСС-режим драйвера (t_{изм} = 18ч.)

АРС-режим, измерение оптическим ваттметром (t_{изм} = 20ч.)

Анализ динамики долговременной стабильности мощности излучения

Сравнение сигналов лазерной мощности с встроенного в ЛД и внешнего фотодиодов

Сравнение стабильности лазерной мощности двух лазерных источников (t_{изм} = 48ч.) 18

Функциональное моделирование лазерного источника

Сравнение размаха выходных колебаний мощности излучения при различных цифровых регуляторах по результатам моделирования

Тип	Параметры	Размах колебаний		
регул	регулятора	мощности при		
ятора		Т _{модел.} =1800с, мВт		
		без	с	
		внешней	внешней	
		ссми	ссми	
И-	I=1,4050	2,71·10 ⁻²	8,38·10 ⁻⁴	
ПИ-	P=0,2339;	2,71·10 ⁻²	5,38·10 ⁻⁴	
	I=2,2078			
пид-	P=0,1121;	2,71·10 ⁻²	5,94·10 ⁻⁴	
	I=2,2118; D=-			
	2,125·10 ⁻⁴			

Моделируемая и реальная переходные характеристики

лазерного источника

Аппаратная реализация системы стабилизации

Программная составляющая системы стабилизации

 \times

COM7 System port MPLI temp: 24.00°C External temp: 25.20°C Write ADC reg DAC output(V)Read ADC regs Calib ADC Read ADC CH SEND 0.56 SET Kp Kd dt(s) Log data: Ki -201 ISC = 2009212 2,20 ÷ 0,23 ÷ 0,00 ÷ SET 0.1 RESET 30012323e1b5fdff3c232f pga = 8 ofc = -587 fsc = 3089212 Laser power stabilization Setpoint (V) 30012323e1b5fdff3c232f pga = 8 ofc = 0.112866 SET RUN Calib system -587 fsc = 3089212STOP ADC input signal() 0.11288 0.11286 0.11284 0.11282 3900 4000 Counts

ADC-DAC system control program for laser power stabilization

Для управления модулями ССМИ через ПК разработано программное обеспечение нижнего и верхнего уровня с возможностью конфигурации параметров АЦП и ЦАП, цифрового регулятора, запуском процесса стабилизации, мониторингом изменения температуры и т.д.

Тестирование системы стабилизации мощности излучения

Относительная стабильность мощности излучения: на мониторирующем ФД без ССМИ(а), на мониторирующем ФД и ФД обратной связи с ССМИ(б); в)АЧХ по данным рис. (а) и (б)

Тестирование системы стабилизации мощности излучения

Реакция системы на внешнее возмущение

Сигнал с ФД обратной связи системы стабилизации в условиях работающей системы кондиционирования: а) в абсолютной шкале; б) в относительной шкале

Применение нечеткой логики в регуляторе системы

-10

input variable "e"

-15

Структура нечеткого ПИ-регулятора с объектом управления

de					
e	NM	NS	Z	PS	PM
NM	VB/VB ³	B/VB ³	VS/S ²	S/S^2	M/M^2
NS	B/VB ³	M/VB^1	M/M^1	B/M^1	B/B^2
ZE	B/VB ³	M/B^1	M/M^1	M/B^1	VB/VB ³
PS	B/B^2	B / M ¹	M/B^1	VB/VB^1	VB/VB ³
PM	M/M^2	S/S^2	B/S^2	B/VB ³	VB/VB ³

Таблица нечетких правил для вывода коэффициентов регулятора

для входных переменных нечеткого ПИ-регулятора (ошибки и разности ошибок; NM – negative medium, NS – negative small; Z – zero; PS – positive small; PM – positive medium)

15

для выходных переменных (пропорц. и интегр. коэф-в; VS – very small; S – small; M – medium; B – big; VB – very big)

10

input variable "de"

Применение нечеткой логики в регуляторе системы

Сигналы с ФД обратной связи при низкочастотном возмущении ССМИ на основе: а) стандартного ПИ-регулятора; б) ПИ-регулятора на основе нечеткой логики

Блок-схема алгоритма коррекции параметров регулятора

Температурная зависимость АЦП-модуля системы стабилизации

а) Сигнал на входе АЦП модуля при нагрузке 1кОм с оптически изолированным ФД без термокомпенсации (красн.) и с термокомпенсацией (син.) ; б) сигнал с датчика температуры DS18B20 Программная термокомпенсация измерений АЦП-модуля: adc data new = adc data curr $-K_T(T_{curr} - T_{ref})$ adc data new – пересчитанный код АЦП adc_data_curr – текущий код АЦП *К*_{*T*} – температурный коэффициент *T_{сигг}* – текущее значение температуры *T_{ref}* – начальное значение температуры

Общий алгоритм цифрового регулятора системы стабилизации

Реализация альтернативных систем стабилизации мощности излучения

1)На основе аналогового АРСконтура с внешним ФД

Относительная стабильность мощности

при различных постоянных времени И-звена регулятора

Реализация альтернативных систем стабилизации мощности излучения

Относительная стабильность мощности без и совместно с термостабилизацией ЛД

Анализ функционирования референсного ПЧФУ МПЛИ от

стабильности мощности излучения

Схема экспериментального стенда для исследования зависимости референсного ПЧФУ МПЛИ от стабильности мощности излучения

Сигналы с ФД ПЧФУ (а), их разница и сумма (б), отношение разницы и суммы (в)

Сравнение составляющей нестабильности мощности излучения с сигналом на 1-м ФД ПЧФУ (а), разницей сигналов ФД ПЧФУ(б), суммой сигналов ФД ПЧФУ(в) без использования ССМИ; г) отношение разницы и суммы

Сравнение составляющей нестабильности мощности излучения с сигналом на 1-м ФД ПЧФУ(а), разницей сигналов с ФД ПЧФУ(б), суммой сигналов с ФД ПЧФУ(в) при использовании ССМИ

Анализ функционирования сигнального ПЧФУ МПЛИ от

стабильности мощности излучения

График сигнала с 5-го (сигнального) ФД МПЛИ: а) без подключенной ССМИ к лазерному источнику; б) с подключенной ССМИ; в) амплитудно-частотный спектры по данным графиков (а) и (б); г) отношение спектров

Основные результаты работы

1) При исследовании зависимости сигналов ПЧФУ МПЛИ от стабильности лазерной мощности определено её влияние при однодетекторной и дифференциально-детекторной конфигурации позиционно-чувствительного устройства инклинометра в случае регистрации сигналов, вызванных низкочастотными наклонами земной поверхности.

Применение системы стабилизации мощности излучения в МПЛИ при однодетекторной регистрации сигнала наклона уменьшает амплитудный шум от нестабильности мощности излучения в среднем в 5 раз в частотном диапазоне 10⁻³...10⁻²Гц, а на частотах, близких к частоте основного сигнала - примерно в 2 раза.

Основные результаты работы

2) Проведен анализ методов стабилизации мощности лазерного излучения и предложен метод стабилизации мощности на основе прецизионного цифрового регулирования, применение которого улучшает относительную суточную стабильность мощности в 43 раза. На основе данного метода разработана и исследована ССМИ для лазерного источника МПЛИ.

3) Исследована долговременная стабильность мощности излучения лазерного источника факторов, определяющих точность измерений: уровень МПЛИ и влияние низкочастотного шума и температурная зависимость системы сбора данных, диапазон линейности световых характеристик и низкочастотные шумы ФД в частотном диапазоне 10⁻⁵..5Гц. Получена положительная корреляция между данными с канала без подключений, имеющего высокий входной импеданс и данными с температурного датчика. Установлено, что уровень максимальной границы линейного диапазона световой характеристики в вентильном режиме зависит от емкости ФД, а уровень шума в низкочастотной области 10⁻³ ... 10⁻²Гц больше при фотодиодном режиме, чем при 34 вентильном.

Основные результаты работы

4) Разработана функциональная модель лазерного источника, выполнен анализ ее характеристик и верификация с экспериментальными данными. На основе данной модели проведена оптимизация параметров трех цифровых регуляторов ССМИ.

5) Реализованы аппаратная и программная составляющие ССМИ, проведено исследование качества её работы на суточном интервале времени. Предложено использование термокомпенсации измерений с ФД АЦП-модуля ССМИ и реализован цифровой регулятор на основе нечеткой логики для улучшения работы ССМИ при внешних возмущениях.

Публикации по теме работы

В рецензируемых изданиях перечня ВАК

 М.В.Ляблин, Н.В.Атанов, И.В.Бедняков, Ю.А.Будагов, В.В.Глаголев, <u>Ю.В. Клемешов</u>, А.В.Краснопёров, А.М.Кузькин, Р.В. Ни, А.А.Плужников, К.Д.Поляков, А.А. Селецкий, Г.В.Трубников, Б.Ди Джироламо. Компактный прецизионный лазерный инклинометр: измерение сигналов и шумов // Физика элементарных частиц и атомного ядра. – 2023. – Т. 54. – №. 4. – С. 959-983.

2) М.В. Ляблин, Ю.В. Клемешов Стабилизация мощности лазерного излучения в Прецизионном Лазерном Инклинометре / Письма в ЭЧАЯ. – Дубна, 2023. – Т.20. - №2, 137-161с.

3) М.В. Ляблин, Ю.В. Клемешов Исследование фотовольтаического и фотодиодного режимов работы фотодиодов для их применения в Малогабаритном Прецизионном Лазерном Инклинометре / Письма ЭЧАЯ. – Дубна, 2024– Т. 21. – № 6. – с.1068–1085

В сборниках трудов конференций

1. Горбунов Н.В., Клемешов Ю.В. Разработка драйвера лазерного модуля для прецизионного лазерного инклинометра. Сборник тезисов Второй Всероссийской школы-конференции Государственного университета «Дубна»: «Фундаментальная физика и прикладные технологии», 2023

2. Исрапилов Д.И., Ляблин М.В., Красноперов А.М., Глаголев В.В., Кузькин А.М., Селецкий А.А., Плужников А.А., Ни Р.В., **Клемешов Ю.В.**, Глухов В.Е., Паровик Р.И. Прецизионный лазерный инклинометр: первичные результаты работы на Камчатке // Материалы V Всероссийской молодежной научной школы "Геосферы и космос": сборник материалов, Петропавловск-Камчатский, 02–03 октября 2023 года. – Петропавловск-Камчатский: Федеральное государственное бюджетное учреждение науки Институт космофизических исследований и распространения радиоволн Дальневосточного отделения Российской академии наук, 2023. – С. 13.

3. А.Г. Аронов, Г.А. Аронов, И.В. Бедняков, К.С. Бунятов, В.В. Глаголев, <u>Ю.В. Клемешов</u>, А.В. Красноперов, А.М. Кузькин, А.А. Курсевич, А.А. Левченко, М.В. Ляблин, Р.В. Ни, А.А. Плужников, К.Д. Поляков. ЭКСПЕРИМЕНТАЛЬНЫЕ НАБЛЮДЕНИЯ НА БАЗЕ ИНКЛИНОМЕТРА МПЛИ В ГЕОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ «НАРОЧЬ» // Современные методы обработки и интерпретации сейсмологических данных. Тезисы XVIII Международной сейсмологической школы, 2024

Прочие публикации

Горбунов Н.В., Клемешов Ю.В. Система управления пъезостакером для лазерного инклинометра/Вестник Международного университета природы, общества и человека «Дубна» (РИНЦ). - Серия: Естественные и инженерные науки. – 2019.

Научная новизна

1) Впервые проведено исследование зависимости функционирования малогабаритного прецизионного лазерного инклинометра от стабильности мощности излучения, которое показывает, что колебания мощности излучения оказывают влияние при однодетекторной и дифференциально-детекторной конфигурации позиционно-чувствительного устройства инклинометра в случае регистрации сигналов, вызванных низкочастотными наклонами земной поверхности.

2) Предложен метод долговременной стабилизации мощности излучения для малогабаритного инклинометра на основе прецизионного цифрового регулирования, включающий возможность термокомпенсации сигнала с АЦП и автоматическую подстройку параметров регулятора на основе нечеткой логики для уменьшения влияния внешних возмущений. Применение данного метода увеличивает относительную суточную стабильность лазерной мощности в 43 раза.

3) Разработаны цифровые функциональные модели маломощного лазерного источника инклинометра и системы стабилизации мощности излучения, повышающие точность настройки и оптимизации параметров цифрового регулятора.

Научные результаты и положения

1) Результаты экспериментальных исследований, показывающие, что применение системы стабилизации мощности излучения для лазерного источника малогабаритного инклинометра при однодетекторной конфигурации позиционно-чувствительного устройства в случае регистрации инклинометром наклона с частотой 2·10⁻⁴Гц уменьшает амплитудный шум от нестабильности мощности излучения в среднем в 5 раз в частотном диапазоне 10⁻³...10⁻²Гц, а в области частоты основного сигнала - в 2 раза.

2) Алгоритм цифрового регулятора для системы стабилизации мощности излучения с функциями программной термокомпенсации измерений датчика и автоматической коррекцией параметров регулятора на основе нечеткой логики, позволяющий улучшить относительный показатель суточной стабильности мощности маломощного лазерного источника в 43 раза.

3) Функциональные модели лазерного источника малогабаритного инклинометра и системы стабилизации, предназначенные для настройки и оптимизации параметров регулятора системы стабилизации.

Примеры близких работ по тематике стабилизации мощности излучения полупроводниковых лазеров

Название	Особенности	Достигнутая стабильность лазерной мощности		
Power stabilization of a diode	ECDL laser (based on laser diode 895 nm/7mW),	RIN:	Allan deviation:	
laser with an acousto-optic	use of AOM with attenuator and generator,	1kHz100kHz →2.2·10 ⁻⁸ Hz ^{-1/2}	100s (10 ⁻² Hz) → 6·10 ⁻⁷	
modulator, 2018	analog PI controller	$100 \text{Hz} \rightarrow 4.46 \cdot 10^{-8} \text{Hz}^{-1/2}$	$10000s(10^{-4}Hz) \rightarrow 2.10^{-6}$	
		$1\text{Hz} \rightarrow 2 \cdot 10^{-13} \text{Hz}^{-1/2}$		
Stabilization of Laser	DFB fiber laser (1550nm, 10mW),	RIN:		
Intensity and Frequency	use of AOM with driver	1Hz \rightarrow 6·10 ⁻⁷ Hz ^{-1/2}		
Using Optical Fiber, 2008		1kHz → $4 \cdot 10^{-8}$ Hz $^{-1/2}$		
Real-time and versatile laser-	ECDL laser (based on FP laser diode 795nm + ultra-low	short-term stability (1 hour) $ ightarrow$ 0.16	5%	
power stabilization	noise diode current source),	$P_{average} = 33.34 \ \mu W$		
with arbitrary amplitude	use of AOM with driver,			
modulation, 2019	digital PID controller			
	based on Arduino Nano (with internal DAC and ADC)			
A novel power stability drive	Laser diode ,	P _{average} = 493mW		
system of semiconductor	laser driver with ADC and digital pot,	long-term stability (20–30h) \rightarrow ±6n	nW (~2.4%)	
Laser Diode for high-	digital neural network PI controller	short-term stability (30–40min) \rightarrow	±3mW	
precision measurement,				
2019				
Design and Stability Analysis	Laser diode, (650nm, 3mW) , digital PI controller,	short-term stability(125min) $ ightarrow$ 3 m	וW (±2%)	
of a Digital Automatic Power	laser driver with ADC and digital pot.			
Control Based on a PI				
Controller for Laser, 2023				

Параметры используемых фотодиодов

ФД	S12915-	S12915-66R	FDS-	S3204-
	1010R		100	08
Тип	Si	Si	Si PIN	Si PIN
Емкость, пФ	13000	4000	24	130
Площадь	100	33	13	324
фоточувствительн				
ой области, мм²				
Эквивалентная	2.8·10 ⁻¹⁵	2·10 ⁻¹⁵	1.2·10 ⁻	6.6·10 ⁻¹⁴
мощность шума,			14	
Вт∕√Гц				
Темновой ток, нА	0.2нА	0.5нА	1	20
Макс.обратное	30	30	25	100
напряжение, В				

Сигнал на ФД S12915-1010R нагрузке 240кОм за 24 часа при вентильном и фотодиодном режимах на сопротивлении (а) и изменение температуры внутри корпуса с эксперименталь ной установкой(б)

мин. 630 нм Длина волны излучения тип. 635 нм макс. 640 нм 2.5 мВт Полная выходная мощность 15 мин: ±0.05дБ; 24ч.: ±0.1дБ (4.6·10⁻² в относит. Стабильность мощности показателе, после часа работы при температуре 25±10°C); Тип оптоволокна SM (одномодовое) 3R Класс лазера 0.01 мВт Разрешение уставки 0...5В, сопр-е 50 Ом Вход модуляции 5 кГц (при полной глубине модуляции) Полоса модуляции 30 кГц (при малом сигнале) Рабочая температура 15°C...35°C

Упрощенная схема и функциональная модель лазерного источника

Характеристики лазерного источника Thorlabs S1FC635

ЦАП DAC9881

АЦП ADS255

Разрешение	18 бит	Разрешение 24 бит			
Кол-во каналов	1, single-ended	Кол-во каналов	1 differential / 2 single-ended		
Питание	Питание 2.7В-5.5В(аналог.+цифр.)		2.5SPS-30	DkSPS	
Низкочастотный шум /дрейф	1.25-5.5В(опорное) 2мкВ (peak-to-peak, 0.110Гц) 0.1ppm от полной шкалы (за 500 часов, 5.5·10 ⁻⁷ Гц)	— Питание Температурный дрейф нуля	 4.75В-5.25 В (аналог.), 1.8В-3.6 В (цифр.), 0.5-2.5В (опор.) ±100нВ/°С (при PGA=1); ±4нВ/°С (при PGA=64) 		
Температурный дрейф нуля	±0.250.8ppm/°C от полной шкалы	Температурный дрейф усиления	±0.8ppm,	/°C	
Температурный дрейф усиления	±0.25±0.4 ppm/°C	Ошибка смещения нуля	0.247мкЕ 0.033мкЕ	0.247мкВ (rms, PGA=1, 2.5SPS) 0.033мкВ(rms, PGA=64, 2.5SPS)	
Ошибка смещения нуля	±16±32LSB	Ошибка усиления	±0.005% ±0.03% (r	±0.005% (при PGA=1) ; ±0.03% (при PGA=64)	
Ошибка усиления	±16±32LSB	Интегральная нелинейность	±3·10 ⁻⁴ FS	SR (при PGA=1) ; ±7·10 ⁻⁴ FSR (при PGA=64)	
Дифференциальная нелинейность	±0.75±2LSB	Особенности	РGА(16 диф. вхо,	РGA(164), встроенный буфер, цифровой фильтр диф. вход опорного напряжения	
Интегральная нелинейность	±0.1±2LSB Встроенный буфер, максимальный	ИОН REF5025			
	выходной ток 2.5мА.	Output Voltage Noise, f = 0.1 Hz	Output Voltage Noise, f = 0.1 Hz to 10 Hz		
	дифференциальный вход опорного напряжения с коррекцией	Output Voltage Temperature Dri	ft	High-Grade, 2.53 ppm/°C	
				Standard-Grade, 38 ppm/°C	
		LONG-TERM STABILITY		0 to 1000 hours, 100ppm/1000 hr	
	•	-		1000 to 2000 hours, 50ppm/1000 hr	

АЦП-модуль

ЦАП-модуль

1E-6 1E-7 1E-7 1E-8 1

Спектры сигналов отклика на низкочастотное возмущение с ФД обратной связи ССМИ при стандартном регуляторе и регуляторе на основе нечеткой логики

Температурная зависимость ЦАП-модуля

Time(h)