Upgrade of the trigger detectors for the BM@N experiment

Valyo Velichkov

for the BM@N trigger group

Analysis and Detector Meeting of the BM@N Experiment at NICA,

March 4, 2025

Overview of the trigger detectors in the BM@N experiment

Beam pipe and detectors upstream of the target

Vacuum for heavy ion runs

2020-2023: new vacuum elements in nearly entire beam transport line from Nuclotron to BM@N

Radiators of BC1, BC2, VC are placed in the vacuum,

BC2 and VC PMTs are capable to work in the magnetic field

BC1

Trigger electronics

Status of the beam counters upgrade

Detector	PMT (mesh dynodes)	Radiator
BC0, BC1	Hamamatsu R2490-07	Scint. BC400B Ø 100 x 0.25 mm ³
VC	Hamamatsu R2490-07	Scint. Ø 100 x 0.25 mm ³ Ø 25 mm hole

New vacuum boxes

- > wider side tubes which will facilitate
- scintillator replacement

New counter BC0 - the same as BC1: ready

New vacuum boxes for BC0, BC1, VC, BC2: ready, installed (Belgorod team, the team of S. Piyadin)

New scintillator mounts for BC0, BC1, VC, BC2: design completed, preparation done (V. Velichkov, V. Azorskiy)

FEE : done (V. Rogov)

3D printed parts: done (A. Timoshenko)

New scintillators: available Mylar light guides: done

Upgrade of BC2 (T0)

Long negative tail in BC2 pulses complicates analysis of pile-up events. Reason for PMTs change from Photonis XPM85112/A1 Q400 to Hamamatsu R2490-07 (BC1 type).

Scintillator

Light guide support

Al-mylar "mirror" and light guide

ADC precision:14 bit Sampling rate:125

TDC time bin 25 ps

TQDC Multihit

MS/s

New parts for BC2

- PMTs change to R2490-07 (BC1 type)
- New design of mylar light guide

New vacuum box: ready, installed (Belgorod team, the team of S. Piyadin)

Adaptation of BC2 to Hamamatsu R2490-07 PMT: ready (V. Velichkov)

Scintillator mount: completed (V. Velichkov, V. Azorskiy)

Scintillators: available Mylar light guides: done

1D plot for the individual amplitudes

2D plot of Top versus Bottom amplitude

We see some degradation of the signals, which results in larger RMS at the end of the run – in BC1 Sum, BC2 Sum and individual signals.

BC1 and BC2: Amplitude and stability

BC1, BC2 response in spill

- stable at 1-2 % level for the sum signal
- stable at 2-4 % level for the individual signals
- sensitive to (X,Y) beam movement

*spill duration ~ 2.2 s

Offline amplitude resolution

Detector	<mark>Before</mark> corrections σ (%)	<mark>After</mark> corrections σ (%)
BC1	5.4	4.8
BC2	8.0	7.1

Corrections: 1)Top Amp versus Bottom Amp 2)TQDC binning

Time resolution of BC1, BC2

Measured with additional FD1 counter, placed behind the FHCal hole. FD1 is similar to BC1 in design - has exactly the same PMTs and scintillator.

	Detectors	σ _{ij} , ps	Detectors	σ _i , ps	
$\Delta t_{ij} = t_i - t_j$	BC1 - BC2	57	 BC1	43	
$\sigma^2 = \sigma^2 + \sigma^2$	BC1 - FD1	61	BC2	38	
	BC2 - FD1	58	FD1	44	
i,j: BC1, BC2, FD1	202 . 2.				
			(BC1&BC2)	28.2	
	(BC1&BC2) - FD1	52		28.5	

BC0 will be used to measure the time resolution of BC1 and BC2. BM@N

New Fragment Detector

Vacuum box: ready (Belgorod team, the team of S. Piyadin)

Design of the detector: completed (V. Velichkov, V. Yurevich, V. Azorskiy) Scintillator mount: design completed, preparation done (V. Velichkov, V. Azorskiy) Mechanics: done (V. Azorskiy)

FEE : done (V. Rogov)
3D printed parts: done (A. Timoshenko)

New scintillator: available Mylar light guide: done

- 1. FD radiator in vacuum, i.e. min. material between target and FD
- 2. Shorter distance between target and FD, shorter cable between FD and trigger electronics
- 3. Rejection of close pile-up in the TOU

Barrel detector as multiplicity counter

Target is located inside the BD

Barrel Detector (BD):

- 1 40 scintillation strips, 150 x 7 x 7 mm, BC418
- 2 the board with SiPMs, Sensl C-series, 6 x 6 mm
- 3 the board of front-end electronics.

0 5 10 15 20

25

Readout:

signals from every channel in BD are digitized by multihit TDC providing time and time-over-threshold width Settings in Xe 2023 run:

 $CCT1 = BT * BD(\geq 4)$

Main physics trigger - $CCT2 = MBT * BD(\geq 4)$

35 BD Channel

New Barrel Detector

Upgrades for future runs with heavier beam ions (Bi)

- Larger number of channels 64 scintillation strips 57×7×5 mm³
- readout by 3×3 mm² SiPMs (J-ser. SensL)
- Cu layer inside BD for delta-electron absorption
- Shorter strips, easier to protect and position
- Larger inner diameter
- Consists of two parts (left /right) for simple installation

Mechanics (*V.Tikhomirov, V.* Azorskiy, *A.Timoshenko*): completed, assembled

FEE : completed, currently been tested (V.Rogov)

Multiplicity logic module (*S.Sergeev, V.Rogov, P. Grigoriev*): components available, about half a year needed for production

Scintillators, SiPMs : available (V. Yurevich)

Simulation: done (N.Lashmanov)

The compact TOF Neutron Spectrometer 2024

Neutron Detectors				
Detector θ (deg.) L (cm) Stilbene (mm)				
ND1	110 °	20	D30×10	
ND2	121 °	30	D25.4×25.4	
ND3	110 °	30	D25.4×25.4	
ND4	95 °	30	D25.4×25.4	

Mechanics: completed, assembled (V. Tikhomirov, V. Azorskiy, A. Timoshenko)

FEE : done (V. Rogov)

Simulation: done (N.Lashmanov)

Analysis of the data: (N.Lashmanov)

Compact time-of-flight spectrometer. Range of neutron energies from 1 to 200 MeV. With this spectrometer the neutron emission from target spectators in Xe + CsI collisions at 3.8 A GeV was studied by measuring double-differential neutron production cross section.

New neutron detectors for measurements at small angles

Forward Neutron Detectors

Detector	Stilbene	Angle
FND1	D31 × 31 mm	3°
FND2	D31 × 31 mm	6°
FND3	D40 × 20 mm	9º
FND4	D40 × 20 mm	12°

Energy range: 50 - 5000 MeV

Aim of the measurements

- ✓ Study neutron emission from beam spectators and comparison with theoretical models and results of the compact TOF spectrometer
- ✓ To get reference data for HGND project
- ✓ Study of energy and angular distribution of neutrons coming to nZDC

Design of the detector: completed (V. Velichkov, V. Yurevich, V. Azorskiy)
Radiators mounts and assembly: design completed, preparation done (V. Velichkov)
Mechanics: done (V. Azorskiy)
FEE : done (V. Rogov)
3D printed parts: done (A. Timoshenko)
Bosch profile holders: in progress

Summary and outlook

• Amplitude resolution of the BC1, BC2 and FD (~5-7 %) met the requirements for the event selection at the trigger level and at the later offline event analysis.

- Time resolution of BC1 and BC2 (~40 ps) is sufficient for a precise start time determination in the time of flight measurements.
- Some radiation damage of the scintillators is observed in the 2023 Xe run. The scintillators will be replaced.

Upgrades:

- > New counter BC0
- > New vacuum boxes for the beam counters
- New scintillator supports for the beam counters
- > New PMTs for BC2
- > **New FD** with the scintillator placed in vacuum.
- > New neutron detectors for measurements at small angles

Upgrades for future runs with heavier beam ions (Au, Bi)

New Barrel detector

Tests of quartz radiators for BC1, BC2, FD

Thank you for your attention!

Backup slides

TQDC_Digit \rightarrow GetPeak() will return different values, depending on the pulse phase with respect to the 8ns binning grid

TQDC "8ns binning" correction for amplitude resolution

Before and after time-walk correction for FD1T

Top/Bottom correction for time resolution analysis

Fragment Detector

1.03

1.02

1.01

0.99

0.98

0.97

<Norm. amp.>

PMT	Radiator	σ/A (%)
XP2020	Scint. 0.5 mm	6.0
XP2020/Q	Quartz 1 mm	11.7
R2490-07	Scint. 0.5 mm	5.3

Significantly better resolution with scintillator radiator. Less than expected photoelectron statistics with quartz radiator.

~65-70% centrality was selected by the threshold in FD

Z

